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Abstract: Pancreatic β-cells are the only type of cells that can control glycemic levels via insulin
secretion. Thus, to explore the mechanisms underlying pancreatic β-cell failure, many reports have
clarified the roles of important molecules, such as the mechanistic target of rapamycin (mTOR), which
is a central regulator of metabolic and nutrient cues. Studies have uncovered the roles of mTOR in
the function of β-cells and the progression of diabetes, and they suggest that mTOR has both positive
and negative effects on pancreatic β-cells in the development of diabetes.
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1. Introduction

The number of diabetic patients continues to increase worldwide, causing a variety
of problems [1]. The development and progression of diabetes can lead to microvascular
complications, including neuropathy, nephropathy, and retinopathy [2]. In addition, the risk
of macrovascular complications, such as cardiovascular disease and cerebrovascular disease,
has become a major issue. Although the risk of dying from these diabetic complications has
been decreasing in recent years, they still threaten the lives of many patients worldwide
and reduce their quality of life [3,4].

The majority of diabetic patients are diagnosed with type 2 diabetes mellitus, which
can be divided into two major pathologies: insulin resistance, in which insulin becomes
less effective, and decreased insulin secretion from pancreatic β-cells [5]. Insulin resistance
means that insulin does not play its normal role in target organs, such as the liver, skeletal
muscle, central nervous system, and adipose tissue, despite the presence of insulin in
the blood. In contrast, insulin hyposecretion is caused by a decrease in pancreatic β-cell
mass, the only tissue that secretes insulin, or by an abnormality in the insulin secretory
mechanism. The pathway shared by these mechanisms is the insulin signaling pathway,
which is activated by the binding of insulin to insulin receptors, and it plays a role in
promoting cell proliferation and growth [6]. Insulin also inhibits glycogenesis in the liver,
promotes glucose uptake in skeletal muscle, and suppresses lipolysis in adipocytes [7–9].
Insulin resistance develops when there is some disturbance in the activation of these signals.
Insulin signaling is also important for the regulation of pancreatic β-cell mass [10–13], and
it regulates glucose-stimulated insulin secretion by pancreatic β-cells [14]. That is, the
disruption of insulin signaling in pancreatic β-cells results in a decrease in pancreatic β-cell
mass and a decrease in insulin secretory capacity. The impairment of insulin signaling can
be attributed to a variety of causes, including genetic factors, environmental factors, and
gene–environment interactions [15]. At the center of these causes is nutrition. Given that
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overnutrition is a trigger for the development of diabetes, the effect of nutrition on in-
sulin signaling seems to be significant. The mammalian target of rapamycin (mTOR) is
an important molecule in the insulin signaling pathway. mTOR plays a central role in
sensing extracellular nutrient status, intracellular energy, and other information, and it
links them to cell growth and proliferation [16–18]. It is also well known that mTOR is an
oncogene and has been clinically applied as a target molecule for cancer therapy [19,20].
Various roles of mTOR in glucose metabolism have been reported in skeletal muscle, kidney,
and liver [21–23], and particularly interesting findings have been published regarding its
action in pancreatic β-cells. As mentioned above, the “mass” and “function” of pancreatic
β-cells are important for the maintenance of blood glucose levels, and mTOR is involved in
both processes [24–28]. At the same time, however, it remains controversial whether mTOR
provides a benefit or a risk to pancreatic β-cells [29]. Therefore, in this review, we introduce
reports on the role of mTOR in pancreatic β-cells and focus on the positive and negative
effects of mTOR on them.

2. Basic Knowledge of mTOR

mTOR is a serine/threonine kinase that plays a central role in sensing extracellular
nutrient status and intracellular ATP levels to promote cell growth and proliferation [16–18].
mTOR exists in two large protein complexes within the cell, namely, mTOR complexes 1
and 2 (mTORC1 and mTORC2), and both complexes are activated by signals from growth
factors, such as insulin [30] (Figure 1).
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Figure 1. mTORC1 and mTORC2 activation signals in cells. In cells, mTORC1/2 is activated by
growth factors, glucose, and amino acids. In particular, mTORC1 positively and negatively regulates
cell growth and proliferation through protein synthesis, ER stress, and inhibition of autophagy.
Gray arrows indicate activation, line segments in red indicate inactivation. The symbol of cross
means that the action of Furin on V-ATPase is inhibited [30].

mTORC1 is composed of mTOR; regulatory associated protein of mTOR complex 1
(RAPTOR); proline-rich AKT1 substrate; 40 kDa (PRAS40); DEP domain-containing mTOR-
interacting protein (DEPTOR); and mTOR-associated protein, LST8 homolog (mLST8).
mTORC1 is activated by growth factors, such as insulin and insulin-like growth factor
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1, via the phosphorylation of TSC complex subunit 2 (TSC2) by AKT. TSC2 is stabilized
in the intracellular TSC1-TSC2 complex, which is a GTPase-activating protein (GAP) of
Ras homolog enriched in brain (Rheb). However, when TSC2 activity is inhibited by
upstream signals, it activates mTORC1 via Rheb activation [31]. Activated mTORC1
phosphorylates S6 kinase (S6K1) and eukaryotic translation-initiation factor 4E binding
protein 1 (4E-BP1), which, in turn, phosphorylate various ribosomal proteins and promote
translation. 4E-BP1 binds to mRNA and represses translation, but when phosphorylated, it
separates from mRNA and initiates translation. That is, mTORC1 plays a central role in
translational regulation [32]. In addition, mTORC1 inhibits autophagy by phosphorylating
autophagy-related 13 (ATG13) and Unc-51-like autophagy-activating kinase 1 (ULK1),
which are responsible for this phenomenon [33,34]. Furthermore, mTORC1 is involved in
the regulation of lipid synthesis and mitochondrial biogenesis [35,36].

mTORC2 is composed of DEPTOR and mLST8, which are both in mTORC1; mTORC2-
specific RAPTOR-independent companion of mTOR complex 2 (RICTOR); mammalian
stress-activated protein kinase-interacting protein 1 (mSIN1); and protein observed with
RICTOR (PROTOR). The activation mechanism of mTORC2 is less well understood com-
pared with that of mTORC1, but mTORC2 is reported to be activated by growth factors,
such as insulin [17,37]. In addition, mTORC2 enhances the activity of AKT by phospho-
rylating serine 473 of AKT. In particular, it plays a significant role in the regulation of the
cytoskeleton [16,17].

mTORC1 is activated by extracellular nutritional conditions, including amino acid lev-
els. The stimulation of cells with amino acids activates mTORC1 by transferring mTORC1
to the lysosomal membrane via the Rag GTPase complex [38,39]. Glycolysis and mitochon-
drial oxidative phosphorylation suppress AMPK activity by increasing the intracellular
ATP/AMP ratio, thereby activating mTORC1 [40]. In contrast, during energy deprivation,
such as fasting, AMPK is activated by a decrease in the ATP/AMP ratio, resulting in the
suppression of mTORC1 activity [41,42].

3. mTOR and Insulin Secretion

mTORC1 activation enhances protein translation, which also promotes insulin synthe-
sis [43,44]. Mitochondria that produce ATP, which is required for insulin secretion, are also
regulated by mTORC1 activity [36].

The subunits of the respiratory chain complexes (I, III, IV, and V) are made of 13 pro-
teins encoded by mitochondrial DNA. The complexes produce most of the energy required
for cellular activity [45]. Mitochondrial diabetes is caused by pancreatic β-cell failure
resulting from mutations in mitochondrial DNA [46]. The transcription factor peroxi-
some proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a regulator
of mitochondrial biogenesis [47,48]. PGC1α is a coactivator of the transcription factor
nuclear respiratory factor (NRF)-1/2, which activates transcription factor A, mitochondrial
(TFAM), thereby inducing the transcription and stabilization of mitochondrial DNA [49–51].
Pancreatic β-cell-specific TFAM-knockout mice show reduced insulin secretory capacity
in association with reduced mitochondrial DNA content and abnormal mitochondrial
morphology [52]. Although AMP-activated protein kinase (AMPK) is a key molecule
in the regulation of insulin secretion and pancreatic β-cell mass [53], it is also known to
be a significant factor in mitochondrial biogenesis [54]. Aminoimidazole carboxamide
ribonucleotide, which activates AMPK, promotes mitochondrial biosynthesis via PGC1α
and NRF [55,56]. It has been shown that mTOR enhances mitochondrial function in the
HEK293 cell line [57]. Furthermore, rapamycin inhibits mitochondrial gene transcription
by dissociating PGC1α from the complex of mTORC1 and the transcription factor YY1 [58].
YY1 functions as a coactivator of PGC1α, and the YY1-PGC1α complex is important for
mitochondrial gene transcription, but its function is dependent on mTORC1 activity. In the
skeletal muscle of type 2 diabetic patients, mitochondrial density and protein levels are
decreased, but the expression levels of PGC1α, NRF, and TFAM remain unchanged [59],
suggesting that mitochondrial gene expression is regulated by the extracellular nutritional
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environment and growth factors via mTORC1. PGC1α activation is known to be affected
not only by its expression level but also by protein modifications, such as deacetylation
and phosphorylation [60]. PGC1α deacetylation is mediated by sirtuin 1 and phosphory-
lated AMPK, and as a result, PGC1α acts as a coactivator of transcription factors [61,62].
Because TSC2 deficiency and mTORC1 activation lead to AMPK phosphorylation [63,64], it
is possible that increased levels of phosphorylated AMPK deacetylate PGC1α and increase
its activity [65] (Figure 2).
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Figure 2. mTORC1 and mitochondrial biogenesis. AMPK, phosphorylated by mTORC1, promotes
NRF gene transcription by activating PGC1α, which, in turn, activates mtDNA replication and tran-
scription via TFAM. At the same time, activated mTORC1 contributes to mitochondrial biogenesis by
promoting mitochondrial gene expression by binding to PGC1α and YY1 in the nucleus. Gray arrows
indicate activation, line segmant in red indicates inactivation. Blue arrows indicate transcribed
mitochondrial genes function within mitochondria [65].

Statins are widely used cholesterol-lowering drugs, but their administration is re-
ported to cause decreased insulin secretion and hyperglycemia [66,67]. Type 2 diabetes and
hyperlipidemia often coexist, and their side effects are a major problem. However, the mech-
anism by which statins decrease insulin secretion is not well understood, although mTORC1
has been implicated in this process [68]. High-fat-diet-fed mice treated with the statin ator-
vastatin have decreased insulin secretion and insulin granules. Transcriptome profiling of
islets from these mice showed the decreased expression of various transcription factors and
decreased mTOR signaling. Rab5a, a small G protein, was downregulated by atorvastatin,
suggesting that Rab5a positively regulates mTORC1 activity in pancreatic β-cells.

Although the palmitic acid loading of pancreatic islets induces compensatory hy-
perplasia and insulin hypersecretion in the acute phase and pancreatic β-cell failure in
the chronic phase, the mechanism is not well understood [69–71]. Hatanaka et al. found
that palmitate loading increases the polyribosomal occupancy of total RNA and increases
mRNA translation [72]. This translation-promoting effect was due to the activation of
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the mTOR pathway via L-type Ca2+ channels and was independent of insulin signaling.
At longer incubation times, the levels of polyribosome-associated RNA are decreased,
leading to the activation of the unfolded protein response (UPR).

4. mTORC1 and Regulation of Pancreatic β-Cell Mass

Many reports have shown that mTORC1 influences pancreatic β-cell mass because it is
involved in cell proliferation and growth. Factors that suppress mTORC1 include TSC1 and
TSC2 complexes, and mice with pancreatic β-cell-specific activation of mTORC1 have been
generated and analyzed by deleting these genes [44,73–78] (Figure 3). Mice overexpressing
Rheb, a target molecule of TSC2, specifically in pancreatic β-cells have also been generated,
and mTORC1 activation is observed in the islets of these mice [79]. Rheb-overexpressing
mice show an increase in pancreatic β-cell mass and a marked enhancement of insulin
secretion, resulting in an improvement in glucose tolerance. In addition, islets isolated from
pancreatic β-cell-specific mTOR-knockout mice have abnormal mitochondrial function and
decreased insulin secretion due to oxidative stress. Gene expression analysis of the pancre-
atic islets of these mice revealed the increased expression of thioredoxin-interacting protein
(TXNIP) and carbohydrate-responsive element-binding protein (ChREBP), consistent with
the results from the islets of diabetic model mice and islets from type 2 diabetic patients.
In contrast, the binding of mTOR to the ChREBP-Max-like protein complex reduces its
transcriptional activity and decreases TXNIP expression, thereby suppressing oxidative
stress and apoptosis [80,81]. Furthermore, the inhibition of mTORC1 activity by deleting
RAPTOR specifically in mouse pancreatic β-cells is accompanied by increased apoptosis
of postnatal pancreatic β-cells, as well as impaired glucose-stimulated insulin secretion
and reduced β-cell mass [82]. In addition, mice overexpressing a pancreatic β-cell-specific
mTOR kinase-dead mutant show a normal proliferative trend in β-cell mass but become
glucose intolerant due to abnormal insulin secretion caused by a deficiency of pancreatic
and duodenal homeobox 1 (PDX1) [83]. These results indicate that mTOR is essential for
the maintenance of normal pancreatic β-cell mass and insulin secretion.

Recent reports indicate that mTORC1 activity plays an important role in pancreatic
β-cell growth during embryonic and neonatal periods. The inhibition of mTORC1 activity
in fetal pancreatic β-cells affects the growth and differentiation of pancreatic endocrine
cells, resulting in hyperglycemia in the neonatal period [85]. When pregnant mice are fed
a low-protein diet, mTORC1 activity is decreased through changes in microRNA expres-
sion during fetal development, resulting in impaired insulin secretion, decreased PDX1
expression, and decreased pancreatic β-cell mass [88]. Furthermore, mice lacking S6K1
exhibit intrauterine growth restriction (IUGR) and reduced pancreatic β-cell mass, but the
restoration of IUGR by tetraploid embryo complementation does not improve pancreatic
β-cell mass [89]. These results suggest that S6K1 regulates pancreatic β-cell mass inde-
pendently of IUGR. In humans, fetal growth restriction due to placental abnormalities
of nutrient transport is associated with decreased S6K1 phosphorylation [90], but S6K1
phosphorylation is increased in the placenta of patients with gestational diabetes melli-
tus [91], which may be a compensatory response to promote fetal growth, as well as one of
the mechanisms by which infants born with gestational diabetes mellitus become gigantic.
Recently, cell signaling in pancreatic β-cells was reported to contribute to the maturation of
pancreatic β-cells by switching from mTORC1 to AMPK from the fetal stage to the postnatal
period [92]. When mTORC1 is homeostatically activated in post-mature pancreatic β-cells,
the cells exhibit an immature phenotype. Thus, mTORC1 activity in pancreatic β-cells
during embryogenesis and birth affects various aspects of pancreatic β-cell proliferation,
apoptosis, and differentiation, and it is thought to be involved in pancreatic β-cell failure
after growth.
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5. Autophagy

Autophagy is an autolytic catabolic process that occurs within cells and is required
for β-cell survival, insulin secretion, and blood glucose homeostasis. Electron microscopic
analysis showed the abnormal accumulation of autophagosomes in MIN6 cells, a mouse
insulin-secreting cell line, loaded with high free fatty acids or high glucose and in human
islets from type 2 diabetic patients [93,94]. These results suggest that autophagy is abnor-
mally regulated in type 2 diabetes, but whether autophagy in pancreatic β-cells is promoted
or inhibited in diabetes is still controversial. However, there is no doubt that the regulatory
mechanism of autophagy in pancreatic β-cells plays a crucial role in the development of
type 2 diabetes and pancreatic β-cell failure. In particular, it has been shown that when
mice lacking the autophagy-related gene Atg7 are fed a high-fat diet, β-cell apoptosis is in-
creased, insulin secretion is decreased, compensatory β-cell hyperplasia is lost, and diabetes
is enhanced [95]. mTORC1 is a negative regulator of autophagy and may affect β-cell func-
tion and survival via the suppression of autophagy in the type 2 diabetic state [93,96–98].
mTORC1 activation by glucotoxicity and lipotoxicity associated with diabetes, as well as
genetic activation, induces the accumulation of p62 and impairs autophagy [94]. The consti-
tutive activation of mTORC1 also impairs mitophagy, the autophagic removal of damaged
mitochondria. Pancreatic β-cells from aged pancreatic β-cell-specific TSC2-knockout mice
tend to have more degenerated mitochondria, which can lead to the depolarization of the
mitochondrial membrane and increased oxidative stress, thereby causing apoptosis [99].
Furthermore, the restoration of autophagy via mTORC1 inhibition following treatment
with rapamycin leads to the protection of β-cells [94]. mTORC1 inactivation by rapamycin
improves β-cell function and blood glucose levels in Akita mice, a model of endoplasmic
reticulum (ER) stress-induced diabetes, by enhancing autophagy [100]. These results in-
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dicate that autophagy and ER stress are strongly linked through proinsulin misfolding in
pancreatic β-cells and that mTOR has roles in both processes. The relationship between ER
stress and mTOR is discussed in the next section. Nevertheless, these observations suggest
that inhibiting mTORC1 activity, which induces autophagy, may protect pancreatic β-cells.
ULK1, an autophagy-initiating kinase, is a common substrate of AMPK and mTORC1.
The phosphorylation of ULK1 (Ser 317 and Ser 777) by AMPK induces autophagy, and the
phosphorylation of ULK1 (Ser 757) by mTORC1 dissociates the binding of ULK1 to AMPK;
that is, mTOR and AMPK regulate autophagy via ULK1 under glucose stimulation, which,
in turn, affects β-cell survival and insulin secretion [101]. It is thought that prolonged
nutritional stress, such as type 2 diabetes, may inhibit AMPK activation in pancreatic
β-cells, leading to chronic mTORC1 activation, which, in turn, impairs autophagy and
mitophagy, resulting in pancreatic β-cell dysfunction and diabetes. Recently, Pasquier et al.
reported macroautophagy-independent lysosomal degradation, termed stress-induced
nascent granule degradation (SINGD) [102]. In the pancreatic β-cells of type 2 diabetic
patients, SINGD is enhanced by the decreased expression of protein kinase D. Consequently,
mTORC1 is recruited to the membrane of granule-containing lysosomes, and the chronic
activation of mTORC1 inhibits macroautophagy. Thus, the aberrant activation of SINGD
contributes to β-cell damage in type 2 diabetes [102]. In addition, it was recently shown
that mTORC1 is regulated via Hippo signaling [86], which is an evolutionarily conserved
pathway that regulates organ size by controlling apoptosis, cell proliferation, and stem cell
self-renewal. In diabetic conditions, large-tumor suppressor 2 (LATS2), a core component of
Hippo signaling, is activated to induce pancreatic β-cell apoptosis, which is also mediated
by mTORC1. Activated LATS2 suppresses macroautophagy and induces pancreatic β-cell
failure by homeostatically activating mTORC1. Thus, the mTORC1-mediated suppression
of autophagy is regulated through various signals and is thought to be involved in the
development of pancreatic β-cell failure in diabetic conditions.

6. ER Stress

The ER is an organelle that is responsible for protein folding in cells. Pancreatic β-cells,
which are required to supply a large amount of insulin rapidly under insulin-resistant
conditions, such as type 2 diabetes, accumulate a large number of unfolded proteins in the
ER and are thus vulnerable to ER stress. ER stress triggers an adaptive response called the
UPR to repair unfolded proteins and restore ER homeostasis to normal (adaptive UPR).
However, if the imbalance between protein abundance and folding capacity persists and the
UPR fails to restore ER function, chronic ER stress activates complex intracellular signaling
pathways and triggers apoptosis via apoptosis-inducing factors, such as CHOP (terminal
UPR) [103–105]. Since 2002, when ER stress was found to occur in pancreatic β-cells of
type 2 diabetic patients, a chronic hyperglycemic load has been shown to be an important
pathological factor in pancreatic β-cell failure, and many papers on the relationship between
ER stress and pancreatic β-cell failure have been published [106]. The induction of ER stress
in diabetes mellitus by hyperglycemia and hyperlipidemia is mediated by the activation
of mTORC1 upon nutritional stimulation [107,108]. Furthermore, it is easy to imagine
that many misfolded proteins accumulate in pancreatic β-cells because protein translation
is enhanced by increased mTORC1 activity. Embryonic fibroblasts isolated from mice
lacking pancreatic β-cell-specific TSC2 (βTSC2KO mice) exhibit severe ER stress and
undergo apoptosis, suggesting that mTORC1 promotes ER stress. Islets isolated from these
mice show increased expression of several UPR markers, including PRKR-like ER kinase
(PERK), C/EBP-homologous protein (CHOP), activating transcription factor 4 (ATF4), and
CCAAT enhancer-binding protein beta (C/EBPβ), indicating that mTORC1 promotes ER
stress [73,99,109]. High glucose enhances palmitate-induced ER stress in INS-1E cells, a rat
β-cell line, by activating the IRE1a-JNK pathway and promoting apoptosis in an mTORC1-
dependent manner. This response has been confirmed by the fact that mTORC1 inhibition
by rapamycin suppresses apoptosis by inhibiting X-box-binding protein 1 splicing, PERK
phosphorylation, and CHOP expression [110]. The inhibition of mTORC1 was shown to
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alleviate ER stress in MIN6 cells exposed to lipophilic conditions [72]. In contrast, although
ER stress is increased in neonatal pancreatic β-cells of Akita mice, temporarily increasing
mTORC1 activity during this period is effective in maintaining pancreatic β-cell mass in
adulthood [111].

The mechanism by which mTORC1 affects β-cell survival under ER stress has re-
cently become clearer. Because mTORC1 promotes translation, it is possible that it also
promotes apoptosis during ER stress due to the accumulation of additional misfolded
proteins [112,113]. Furthermore, it has been shown that mTORC1 activation has roles in
ATF4-induced translation recovery, increased amino acid flux, and protein synthesis [112].
mTORC1 also regulates ATF4 expression by stabilizing ATF4 mRNA and promoting its
translation through 4E-BP1 [114]. That is, mTORC1 has been found to regulate ER stress at
various stages of the UPR.

7. mTORC2 and β-Cell Growth and Function

As mentioned above, compared to mTORC1, there are many aspects of mTORC2 that
are not well understood, both its upstream and downstream signals. However, there have
been several reports on mTORC2-specific roles in pancreatic β-cells, which we discuss in
this chapter.

Similar to mTORC1, mTORC2 is activated by growth factors and signals to several
effectors. Insulin is best known to stimulate mTORC2 activity, which is mediated by PI3K,
among other growth factors. The downstream effectors of mTORC2 include the PKC family,
SGK1, and MST1, which promote insulin secretion and cell growth through the activa-
tion of these molecules [115]. mTORC2-specific components include RICTOR and mSIN1.
To investigate the specific role of mTORC2 in pancreatic β-cells, pancreatic β-cell-specific
Rictor-deficient mice were generated and analyzed [116]. mTORC2 activity in pancreatic
β-cells was reduced in Rictor-deficient mice, resulting in the inhibition of serine 473 phos-
phorylation of AKT. This result induces a decreased pancreatic β-cell volume due to the
suppression of pancreatic β-cell proliferation, as well as decreased insulin secretion due to
decreased GSIS and insulin content. The phosphorylation of AKT serine 473 by mTORC2
regulates pancreatic β-cell volume and function by translocating PDX1 into the nucleus
via FOXO1 phosphorylation. It has also been shown that compensatory changes, such as
hyperinsulinemia and increased β-cell mass, are cancelled in Rictor-deficient mice [117].
The loss of these compensatory changes has been shown to be due to the inhibition of
PKCα activation by mTORC2.

8. Is mTOR “Good” or “Bad” for Pancreatic β-Cells?

As described above, mTOR has diverse roles in pancreatic β-cells, and it regulates the
function and quantity of pancreatic β-cells through various signaling pathways. The study
of genetically modified mice has advanced our understanding of the role of mTOR, and
many transgenic mice related to mTOR signaling have been generated, some of which are
described below.

βTSC2KO mice, reported by Shigeyama et al. in 2008, show increased pancreatic
β-cell mass, hyperinsulinemia, and hypoglycemia at a young age but decreased pancreatic
β-cell mass, hypoinsulinemia, and hyperglycemia in old age [73]. This biphasic change
was thought to be caused by a decrease in insulin receptor substrate 2 expression due to the
negative feedback associated with the constitutive activation of mTORC1. As a result, there
is a decrease in β-cell number probably due to attenuated insulin signaling. In 2014, the
constitutive activation of mTORC1 was reported to induce pancreatic β-cell apoptosis by
inhibiting autophagy and mitophagy [99]. In the state of mTORC1 activation, mitochondrial
DNA transcription is increased by PGC1α activation, and mitochondrial production is
increased, but the inhibition of mitophagy prevents the degradation of old mitochondria,
resulting in the accumulation of abnormal mitochondria in pancreatic β-cells. This is also
considered an important factor for pancreatic β-cell failure. Rachdi et al. independently
generated and analyzed pancreatic β-cell-specific TSC2-deficient mice and found increased
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pancreatic β-cell mass, increased insulin secretion, and improved glucose tolerance [74].
However, unlike the aforementioned βTSC2KO mice, these mice did not show biphasic
changes and remained hyperinsulinemic throughout their lives. It is difficult to explain
the reason for the phenotypic differences between these two strains of mice, and there are
many possibilities. For example, they could be due to differences in the mouse strains,
but both were well backcrossed to B6 mice, or due to differences in the constructs of
the TSC2-floxed allele or in environmental conditions that affect the phenotype, such as
variation in the microbiota in the breeding environment or the amino acid content of the
food. Further studies are needed to clarify such details.

Other genetically modified mice related to mTOR include mice lacking pancreatic
β-cell-specific TSC1, which forms a complex with TSC2, that showed increased β-cell
mass [44]. Furthermore, mice in which mTORC1 is activated by overexpressing Rheb
specifically in pancreatic β-cells have increased pancreatic β-cell mass, enhanced insulin
secretion, and improved glucose tolerance [79]. These mice do not show biphasic changes.
In contrast, mice lacking mTOR or RAPTOR specifically in pancreatic β-cells have decreased
pancreatic β-cell mass and hyperglycemia [24,80,82,118]. Furthermore, mice overexpressing
kinase-dead mTOR display decreased PDX1 expression in pancreatic islets and decreased
insulin secretion, although there is no change in pancreatic β-cell mass [83].

From these reports, it is clear that mTOR plays essential roles in pancreatic β-cells,
and the loss or long-term inactivation of mTOR may be an important cause of pancreatic
β-cell failure. However, there is a difference of opinion as to whether mTOR activation is
beneficial for maintaining pancreatic β-cell mass and blood glucose levels. Recent reports
suggest that phosphatases called pleckstrin homology domain leucine-rich repeat protein
phosphatases 1 and 2 (PHLPP1/2), the expression of which is upregulated by activated
mTORC1, regulate pancreatic β-cell apoptosis [119]. In 2021, Brouwers et al. found that
FURIN, a proprotein convertase, is highly expressed in human pancreatic islets, and mice
lacking FURIN specifically in β-cells show decreased pancreatic β-cell mass, decreased
insulin secretion, and glucose intolerance. The mechanism underlying the decrease in
insulin secretion and glucose intolerance is thought to be ATF4 activation caused by in-
creased mTORC1 activity in pancreatic β-cells [84]. In contrast, analysis of Rab1a-knockout
mice revealed that amino acid-Rab1a-mTORC1 signaling maintains the identity and insulin
secretion of pancreatic β-cells through the expression of PDX1 [87].

9. Conclusions

Despite the fact that pancreatic β-cells are the most important contributors to the
development and progression of diabetes, there are still many aspects of their biology that
remain unknown. In addition to the small amount of tissue and the difficulty in isolating
them from humans, this may be due to the complexity of the many signaling pathways
that exist in these cells. In particular, nutritional factors, such as glucose, amino acids, and
free fatty acids, regulate pancreatic β-cell mass and insulin secretion via the stimulation of
many signaling pathways. At the center of these signals is mTOR. Previous reports have
revealed the existence of various upstream and downstream signals of mTORC1, all of
which are crucial for maintaining glucose homeostasis in pancreatic β-cells. Notably, the
role of mTOR may vary depending on specific environments and the degree and duration
of its activation. These results are very interesting because they suggest that mTOR may
have an impact on the phenotypic diversity of type 2 diabetes. In addition, mTORC1
activity is increased in the islets of patients with type 2 diabetes, suggesting that it also
plays a key role in its development in humans [120]. However, it is not clear whether this
molecule or signal can be a therapeutic target. There are still many unanswered questions,
especially regarding the role of mTORC2 activation and its effect on differentiation, and
more research is needed. It is hoped that the elucidation of the role of mTOR in pancreatic
β-cells will lead to a complete picture of the fate of pancreatic β-cells.
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