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Tumors need blood vessels for their growth, thus
providing the rationale for antiangiogenic therapy in cancer
treatment. However, intrinsic and acquired resistance and low
response rates have turned out to be major limitations of
antiangiogenic therapy. This emphasizes the need to further
understand how the vasculature in cancer can be targeted.
Although endothelial cells (ECs) rely on multiple growth
factors and cytokines to grow, antiangiogenic therapies have
mainly centered on targeting vascular endothelial growth
factor (VEGF). Phosphoinositide 3-kinases (PI3Ks) form a
family of 8 isoenzymes with non-redundant functions in
normal biology and cancer. The subgroup of class I PI3Ks are
situated at the crossroad of a plethora of proangiogenic
signals and control cell growth, survival, motility, and
metabolism. These isoenzymes have pleiotropic roles in the
tumor microenvironment, including cell-autonomous
functions in ECs, underscoring the complexity of targeting
this pathway in cancer. Here, we describe how the PI3K axis
influences angiogenesis in different cell compartments and
summarize the diversity of vascular responses to PI3K
inhibition. Targeting PI3K signaling by isoform-selective
inhibitors, together with readjusting the current doses below
the maximum tolerated dose, may improve clinical responses
to class I PI3K anticancer agents.

Introduction

Highly proliferative tumor cells are in continuous need of oxy-
gen and nutrients. To meet these needs, tumor cells produce large

amounts of proangiogenic signals that stimulate vessel growth.
This observation forms the basis of the idea that blocking angio-
genesis would inhibit the capacity of tumor cells to grow and
metastasize.1,2 To this end, several antiangiogenic agents have
been developed in the last decade for clinical applications. Tradi-
tional antiangiogenic therapies have focused on targeting VEGF,
which plays a central role in vessel morphogenesis.3-5 Preclinical
studies have demonstrated that vessel pruning through inhibition
of VEGF delays tumor progression and have provided the ratio-
nale for pursuing this strategy in the treatment of human can-
cers.6-8 However, when used as single agents these drugs have not
met therapeutic expectations, and the lack of a widespread antitu-
mor impact, insufficient efficacy, and acquired resistance remain
major limitations.8

At least 2 important concepts should be considered in order to
improve current antiangiogenic therapies. First, inhibition of ves-
sel growth and pruning results in intratumor hypoxia, which over
time promotes invasion and metastasis.9,10 To overcome this
aggravation, a novel strategy based on normalizing the vasculature
is being tested in preclinical models.7 Although promising data
are emerging that suggest a real alternative to vessel pruning, key
questions concerning the mode of action of these new drugs still
need to be resolved.11 For example, it remains unclear whether
vessel normalization will have a negative impact on tumor growth
(because of improved delivery of nutrients and oxygen), or how
the transient window for normalization will be identified in
patients. Second, other proangiogenic factors such as fibroblast
growth factor (FGF), ephrins, placental growth factor 1 (PLG1),
and angiopoietins4,10 also stimulate tumor angiogenesis; more-
over, the contribution of these proangiogenic factors is particularly
significant upon resistance to VEGF therapy.4,11 Therefore, multi-
targeted antiangiogenic drugs that inhibit several different proan-
giogenic tyrosine kinase receptors are currently being tested in
clinical trials.12,13 An important challenge of this strategy is to
identify the particular angiokinase receptors to inhibit in different
tumor types or individual patients. To overcome this problem, it
may be beneficial to target the intracellular signaling hubs that
converge in the plethora of angiogenic tyrosine-kinase receptors
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instead of distinct receptors. In this sense, the class I PI3Ks that are
situated at the crossroad of many proangiogenic signals and that
control cell growth, survival, motility, and metabolism, might
offer a potential target. In this review, we will summarize how
PI3K signaling contributes to tumor angiogenesis and the poten-
tial therapeutic effects of inhibiting this signaling node.

The PI3K Family as A Key Signaling Hub

PI3Ks are lipid kinases that phosphorylate the 3-hydroxyl
group of the inositol ring present in membrane-bound phospha-
tidylinositol (PtdIns) lipids. By generating different PtdIns spe-
cies, PI3Ks play a master role in the regulation of many cellular
processes including cell cycle progression, cell growth, survival,
migration, metabolism, and intracellular vesicle transport.14,15 In
vertebrates, the PI3K family consists of 8 catalytic isoenzymes
divided into 3 classes (class I, class II, and class III) based on their
domain structures and lipid substrate preferences.14,16-19 Class I
PI3K consists of 4 catalytic isoforms—p110a (PIK3CA), p110b
(PIK3CB), p110g (PIK3CG), and p110d (PIK3CD). Class II
PI3K, which contains 3 members—PI3K-C2a PIK3C2A),
PI3K-C2b (PIK3C2A), and PI3K-C2g (PIK3C2G)—is the most
enigmatic subgroup because the physiological roles of these pro-
teins remain largely unknown. The sole member of class III,
vps34 (PIK3C3), is principally involved in vesicle trafficking and
autophagy.14 To date, mainly the class I PI3Ks have been

implicated in human cancer; hence this review will be principally
focused on this subset of isoenzymes. However, class II and III
PI3Ks could play a role in tumor angiogenesis, and might have
to be considered in the future (see box 1).

Class I PI3Ks are heterodimeric proteins composed of a regu-
latory subunit and a p110 catalytic subunit. The class IA PI3Ks
are composed of a p110a, p110b, or p110d subunit constitu-
tively bound to one of 5 types of p85 regulatory subunit. p110g
is the sole catalytic subunit of the class IB isoform and binds to
either p101 or p84. All class I PI3Ks produce the same lipid but
differ in their expression patterns, modes of activation, and physi-
ological functions.14,15,20 Key information on class I catalytic
subunits is summarized in Figure 1.

The lipid PtdIns(3,4,5)-trisphosphate (PtdIns(3,4,5)P3) is the
second messenger made specifically by class I PI3Ks and acts as a
membrane tether for multiple proteins, including Ser/Thr and
Tyr protein kinases (such as AKT and BTK), adaptor proteins
(such as GRB2 associated binding [GAB] 1 and GAB2, TAPP1,
and DAPP) and regulators of small GTPases (GTPase-activating
proteins [GAPs] and guanine nucleotide exchange factors
[GEFs]).14,18,19 The Ser/Thr kinase Akt is responsible for the
majority of PI3K-mediated responses as it phosphorylates a num-
ber of downstream targets, including the mammalian target of
rapamycin complex 1 (mTORC1). Importantly, little attention
has been paid to other PI3K downstream targets such as the small
GTPases and their regulators, which might very well play a role
in endothelial cell biology (Fig. 2).

Figure 1. Class I PI3K isoforms at a glance. Expression patterns, modes of activation, and physiological and pathophysiological roles of class I PI3K iso-
forms are summarized. p110a and p110b are ubiquitously expressed, in contrast to p110d and p110g, which are enriched in leukocytes. p110a and
p110d are preferentially activated by RTKs, whereas p110b and p110g are activated by GPCRs. Each of the class I catalytic isoforms contain a Ras-binding
domain (RBD). p110a, p110d, and p110g interact with Ras although a physiological role of this interaction has only been reported for p110a and p110g:
The activation of p110g by Ras allows RTKs to activate this isoform in some cell types. The RBD of p110d preferentially interacts with the small G protein
TC21. p110b does not bind to Ras but interacts with the Rho subfamily GTPases Rac and Ccd42. p110b also binds to the GTP-bound RAB5 and regulates
receptor-mediated endocytosis and autophagy independent of its kinase activity.
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Pleiotropic Role of PI3Ks in Angiogenesis

Angiogenesis, meaning vessels sprouting from pre-existing
ones, is a process that relies on a variety of different cell types,
including endothelial cells (ECs), mural cells, immune cells,
astrocytes and, in the context of cancer, tumor cells.3,4,21 Tissue
hypoxia triggers vessel morphogenesis through the production of
proangiogenic signals, of which VEGF is the most impor-
tant.22,23 ECs occupy a key position at the inner surface of the
tubular vessel network and respond to angiogenic signals includ-
ing growth factors, guidance cues, and biophysical stimuli.3,4 To
acquire full functionality, blood vessels need to be surrounded by
perivascular mural cells (pericytes and vascular smooth muscle
cells). The vessels with the smallest diameter (venules and
capillaries) are associated with solitary pericytes, whereas multiple
concentric layers of vascular smooth muscle cells surround larger
vessels, in particular the arteries.24 For detailed information
about how blood vessels grow, we refer the reader to cited refer-
ences.3-5

The PI3K signaling pathway is engaged in nearly all cell types
involved in vessel growth (Fig. 3). New insights into the biology
and the context of activation of PI3K signaling in these different
cell types are clarifying the mode of action of PI3K inhibitors in
cancer. Although the majority of PI3K-mediated angiogenic

functions involve the p110a isoform, the role of other p110 iso-
forms cannot be ignored. These include the role of p110g in EC
migration and recruitment of inflammatory cells,25,26 p110d in
the proliferation and chemotaxis of macrophages27 and in the
immune responses of regulatory T cells 28, and p110b in platelet
adhesion,29 all of which probably also contribute to vessel
growth. Identifying the specific roles of these isoenzymes in the
tumor stroma is particularly important when deciding whether
pan-PI3K versus isoform-selective inhibitors should be used in
cancer treatment. Summarized below is a detailed description of
PI3K signaling in the different cell types that are relevant to
angiogenesis.

PI3K in endothelial cells: isoforms are key
Class I PI3K signaling in ECs is required in a cell-autonomous

manner in order to grow vessels.30 Although ECs express all class
I PI3K isoforms, only the catalytic subunit p110a is required for
vessel sprouting.30,31 p110a accounts for most of the PtdIns
(3,4,5)P3 produced upon activation of tyrosine kinase receptors
(RTKs) in ECs.31 It is therefore likely that p110a regulates many
functions of the angiogenic process. Cell-based studies have
clearly demonstrated that PI3K signaling is activated downstream
of VEGF-A, VEGF-C, angiopoietin (Ang)1, Ang2, VE-cadherin,
Dll4, and ephrins, among others.30 In contrast, when, by what,

Figure 2. General overview of the class I PI3K signaling pathway. The PH domain-containing proteins can be divided into 3 groups: kinases, adaptor pro-
teins, and GAPs and GEFs. Although the role of kinases has been extensively studied, little attention has been paid to how adaptor proteins or GAPs and
GEFs drive PI3K cell functions, especially in cancer. The PI3K effector AKT is a master kinase that activates or inhibits a plethora of proteins by phosphory-
lation; one of its targets is mTORC1. A variety of compounds have been developed to inhibit different nodes of the PI3K/Akt/mTOR signaling axis, includ-
ing PI3K inhibitors (subdivided based on their selectivity into pan-PI3K-mTOR inhibitors, pan-PI3K inhibitors, and isoform-specific inhibitors), AKT
inhibitors (allosteric inhibitors and catalytic inhibitors), and mTOR inhibitors (allosteric inhibitors, commonly known as rapalogues, and mTOR catalytic
inhibitors).
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and how p110a/PI3K signaling is engaged in vivo remains
unknown. Progress in the field has been hampered by the embry-
onic lethality of constitutive and endothelial-specific kinase-dead
p110a mutant mice.31 Further studies using more sophisticated
assays and inducible systems are needed to fully elucidate the role
of this PI3K isoform in angiogenesis. To date, 2 major in vivo
downstream effectors of p110a have been identified in angio-
genic ECs, namely Akt132,33 and Arap3.34

To counterbalance class I PI3K signaling, ECs principally use
the 3-phosphatase PTEN that converts PtdIns(3,4,5)P3 into
PtdIns(4,5)P2. In line with this, PTEN is required in ECs in a
cell-autonomous manner for vessel morphogenesis.35 However,
to achieve fine-tuned regulation of PtdIns(3,4,5)P3 levels, ECs
have evolved an additional layer of regulation by modulating the
levels of the p85 regulatory subunits. Loss of both p85a and
p85b in ECs results in failure to make vessels.36 Studies in zebra-
fish, however, have shown that partial inactivation of these regu-
latory subunits results in improved EC responses. Two specific
microRNAs (miRs), miR221 and miR126, have been found to

modulate the levels of p85a
and p85b respectively.37,38

Upregulation of miR-221
and miR-126 decreases
p85a and p85b protein lev-
els but increases PI3K activ-
ity, leading to stimulation of
angiogenesis.37,38 The most
likely explanation for this
discrepancy is that during
sprouting angiogenesis a
pool of “free” p85 regulatory
subunits (that lack kinase
activity) exists that competes
with the functional p85/
p110 complex in binding to
Tyr-phosphorylated activa-
tors.39,40 Interestingly, the
boost of PtdIns(3,4,5)P3
generated upon miR221
expression and subsequent
p85a downregulation seems
to specifically regulate EC
migration.37 In contrast,
miR126 regulates vascular
integrity in a p85b-depen-
dent manner.38 Whether
these regulatory mechanisms
also occur in mammals still
needs to be determined.

Although sprouting
angiogenesis is the principal
mechanism of vessel forma-
tion in health and dis-
ease,3,41 other mechanisms,
such as the recruitment of
endothelial cell precursors

(EPCs) from the bone marrow,41,42 also contribute to the growth
of vessels. Interestingly, p110g, rather than p110a, seems to be
the PI3K isoenzyme required in EPCs to drive postnatal neovas-
cularization.43 A peculiarity of p110g in EPCs is that it mediates
EPC recruitment in an Akt-dependent manner but indepen-
dently of the p110g lipid kinase activity. This favors the hypothe-
sis that, in this context, p110g acts as a scaffolding protein rather
than a lipid kinase.

PI3K signaling in mural cells: a hidden gem
Very little is known about the role that PI3K signaling plays in

regulating mural cell biology in vivo. The signaling cascade stim-
ulated by platelet-derived growth factor-B/platelet-derived
growth factor receptor-b (PDGFR-b/ in mural cells is critical for
recruiting pericytes to growing vessels and for regulating their
proliferation, migration, and survival.24 Broad-spectrum PI3K
inhibitors have implicated PI3Ks as key effectors of PDGFR-b
signaling in cell-based studies (as described in Refs.44-46 among
others). It is therefore tempting to speculate that PI3K signaling

Figure 3. Isoform-specific roles of class (I)PI3Ks. This illustration shows the cell-autonomous roles of class I PI3K iso-
forms in normal physiology and cancer.
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also plays a critical role downstream of PDGFR-b in mural cells
in vivo; however, roles for the individual class I PI3Ks in mural
cells have not yet been identified. The p110a and p110b isoen-
zymes, which are widely expressed compared to p110g and
p110d, are likely to generate PtdIns(3,4,5)P3 in mural cells. As
few examples of redundancy of p110 isoforms have been
found,14 we speculate that p110a is the key isoform engaged by
RTKs, with p110b mediating G protein-coupled receptor
(GPCR)-mediated signaling47 in mural cells. Of note, inhibition
of p110a in the tumor microenvironment of syngeneic tumors
alters pericyte marker expression.48 Currently, however, it is not
clear whether this is a cell-autonomous effect of p110a in mural
cells or simply correlates with the reduced vessel caliber observed
upon inhibition of this isoenzyme.48 Low pericyte coverage on
tumor vessels facilitates metastasis49,50 and has been associated
with the emergence of intratumor hypoxia, epithelial-to-mesen-
chymal transition, and Met receptor activation,49 all of which are
believed to facilitate tumor cell dissemination. This is an impor-
tant concept to take into account, as it is possible that therapies
that aim to reduce pericyte coverage (either by inhibiting their
recruitment and proliferation or by inducing their cell death)
may have negative therapeutic consequences by promoting cancer
progression and metastasis.

PI3K in VEGF producing cells: a proangiogenic link
There are numerous studies documenting a positive role for

PI3K signaling in regulating VEGF protein levels (for exam-
ple,48,51-55). While oncogenic signaling induced by Ras, p110a,
or Akt further enhances the levels of VEGF,51,56 inhibition of
PI3K signaling reduces intratumor VEGF levels.48,54,55 Mecha-
nistically, activation of the PI3K/mTOR axis induces HIF1a
expression and/or stabilization,51-53 which in turn upregulates
VEGF protein levels. p110a has been reported to be the principal
isoform regulating VEGF levels in cancer cells.51,54 However,
inflammatory cells are also an important source of proangiogenic
signals.57 With p110g and p110d .but not p110a/ accounting
for most of the class I PI3K signaling in immune cells,58 we
hypothesize that these 2 isoenzymes also stimulate the production
of proangiogenic factors in health and disease.

Based on these observations, it was thought for many years
that the antiangiogenic activity of PI3K inhibitors was mediated
by their capacity to reduce VEGF levels. However, inhibition of
PI3K signaling does not always mirror the vascular response of
anti-VEGF targeted therapies.36,48 Whereas anti-VEGF therapy
prunes vessels,21 inhibition of PI3K in some contexts may result
in more, but less functional, vessels.48 These observations high-
light the fact that the antiangiogenic activity of PI3K inhibitors
goes beyond inhibiting VEGF expression.

PI3K as An Antiangiogenic Target

The PI3K pathway is frequently activated in cancer as a conse-
quence of oncogenic RTK and Ras, amplification or mutational
activation of PIK3CA, and/or inactivation of the tumor suppres-
sor PTEN. Furthermore, PI3K signaling is required for

promotion of tumor stromal functions such as angiogenesis and
recruitment of inflammatory cells15,26,48,59 (Fig. 3). This central
role of PI3Ks in most hallmarks of cancer has promoted a sub-
stantial effort to target this signaling pathway in cancer.15,60 Sev-
eral strategies aimed to interfere with the PI3K cascade are
currently being tested in clinical trials, including pan-class I
PI3K inhibitors, isoform-selective PI3K inhibitors, rapamycin
analogs (rapalogues), active-site mTOR inhibitors, dual PI3K-
mTOR inhibitors, and Akt inhibitors (Fig. 2).15 It is clear, how-
ever, that inhibition of the PI3K pathway will not only directly
impact tumor cells, but will also affect the tumor stroma, includ-
ing the vasculature. Indeed, targeting of PI3K, Akt, or mTOR
has demonstrated antiangiogenic activity in preclinical tumor
models.36,48,59,61-67

Context-dependent vascular responses
Antiangiogenic responses to PI3K inhibitors in preclinical

models are not homogenous but can be grouped into 4 different
categories depending on their effects on microvascular density
(MVD) and vessel function36,48,53,55,59,61,63,64,67-69 (Fig. 4). The
different MVD outcomes are likely related to the intrinsic charac-
teristics of the tumor (i.e., mutational status and origin) and
therefore the differences in vessel numbers observed upon inhibi-
tion of PI3K could simply be explained by the capacity of PI3K
inhibitors to target VEGF expression. It is possible that, in those
settings where VEGF expression is dependent on PI3K, the final
angiogenic outcome upon PI3K inhibition in tumors is reduced
MVD. In other cases, where VEGF expression is not dependent
on PI3K, stromal-autonomous effects upon PI3K treatment
would simply be observed. PI3K signaling regulates both VEGF
expression in tumor cells, and Delta-like 4 (Dll4) levels in ECs.48

Whereas anti-VEGF approaches prune vessels, Dll4 blockers
result in more, but smaller, vessels.7 An important conclusion to
be drawn from the diversity in the MVD responses seen upon
treatment with PI3K inhibitors is that the vascular density value
is of limited use; instead, a change in the functionality of the vas-
culature is a more reliable parameter for measuring the antiangio-
genic activity of PI3K inhibitors.

Inhibition of PI3K in cancer also results in different vessel
function responses. Frequently, PI3K inhibitors (irrespective of
their impact on vessel number) result in reduced vessel function,
as shown by reduced vascular flow and perfusion, which in turn
enhances intratumor hypoxia.36,48,53,55,59,61,62,67,69 High hyp-
oxic levels have been associated with increased tumor dissemina-
tion and metastasis.9,10 It is therefore possible that resistance to
PI3K inhibitors60 may also be attributed to their antiangiogenic
activity. An important question to consider, though, is whether
there is a threshold of hypoxia that determines the switch toward
a more malignant phenotype. It is possible that the long-term
beneficial effects of the antiangiogenic therapy may depend on
the amount of hypoxia generated. Therefore, it would be interest-
ing to compare the strength and the durability of inhibiting PI3K
versus traditional anti-VEGF agents.

In sharp contrast, recent studies have shown that PI3K inhib-
itors can also improve tumor vessel function. In this context,
PI3K inhibitors enhance tumor vascular flow and perfusion,
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and reduce tumor hypoxia.63,64,68 Although at first glance this
seems paradoxical, several possible explanations can be put for-
ward: First, the tumor models tested in Refs.63,64,68 exhibit
oncogenic activation of the PI3K pathway, re-addressing the
issue that vascular response may depend on tumor-intrinsic
mutations; Second, the PI3K inhibitors used have several off-

target effects, suggesting a
possible PI3K-independent
vascular response; Third,
low doses (below the maxi-
mum-tolerated doses and
even below the EC50) of
PI3K inhibitors were used
by Qayum et al. and Fokas
et al. (Ref 63,64,68). These
authors claim that low doses
of PI3K inhibitors target
only some tumor functions,
with no impact on stromal
cells. However, 2 important
issues remain unclear: First,
what is the threshold at
which PI3K inhibitors selec-
tively impair only some
tumor functions? Second,
how are these effects related
to changes in the tumor vas-
culature? A possible expla-
nation is that low doses of
PI3K inhibitors principally
interfere with the produc-
tion of cytokines by tumor
cells, and therefore reduce
immune cell infiltration.
Immune cells, such as
tumor-infiltrating macro-
phages and T cells, produce
proangiogenic signals that
may in turn impact tumor
angiogenesis. Although
blocking all class PI3K
activity may result in
immune suppression, low
doses of these agents may
bypass intolerable side
effects by leaving residual
immune functions.

Improved vascular
responses associated with
low doses of PI3K inhibitors
may offer an alternative to
vascular normalization ther-
apy.7 However, these agents
should be used in combina-
tion with cytotoxic agents to
avoid the risk of enhancing

perfusion of the tumor vasculature. Interestingly, treatment with
a low dose of GDC-0941, a pan-class I PI3K inhibitor, resulted
in improved doxorubicin delivery64 and a dramatic reduction in
tumor growth. Although promising, these findings warrant fur-
ther mechanistic experiments to elucidate the target of low doses
of PI3K inhibitors in tumor cells.

Figure 4. Four modes of vascular responses to PI3K inhibitors in tumors. Antiangiogenic responses to PI3K inhibi-
tors are not homogenous; in fact, these agents can have opposite effects on vessel number and vessel function.
Current data seem to indicate that vessel function, rather than number, determines the antitumor efficacy of PI3K
inhibitors. Thus, reduced vessel function leads to a decrease in tumor growth, whereas enhanced blood flow and
perfusion does not. The doses of the PI3K inhibitors used in preclinical models are shown for comparison.
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Tumor-extrinsic effects
The importance of PI3K signalling in the tumour stroma has

recently been addressed by inoculation of syngeneic tumour cell
lines in mice with genetic inhibition of class I PI3K iso-
forms.36,48,59 An important conclusion from these studies is that
inhibition of PI3K in the tumor stroma is sufficient to reduce
tumor growth.36,48,59 These data suggest that inhibition of PI3K
may offer therapeutic benefits even in those scenarios in which
tumors do not rely on PI3K to grow. Given that clinical
responses to PI3K inhibitors do not always correlate with
PIK3CA mutations15,59,70, an important point to consider is
whether the effectiveness of PI3K inhibitors is related to their
capacity to impact stromal or malignant cells. It is tempting to
speculate that the tumor stroma, and in particular the vascula-
ture, could be a predictive factor for the therapeutic response to
PI3K inhibitors. More experiments are needed to further eluci-
date how the tumor microenvironment determines the effective-
ness of PI3K inhibitors.

Isoform-specific PI3K functions call for the use of PI3K
isoform-selective inhibitors

A current clinical debate is whether the PI3K members should
be targeted at the isoform-specific level. Given that tumor cells
express all 4 class I PI3K isoforms, pan-class I PI3K inhibitors are
expected to offer higher effectiveness. However, long-term inhi-
bition at the doses needed to fully block all class I PI3K isoforms
is believed to be not tolerable.15,60,71 It is also worth mentioning
that the first generation of PI3K inhibitors showed several off-tar-
get effects, which have hampered efforts to understand the effects
of these agents. Isoform-selective PI3K inhibitors may have the
ability to block the relevant target with fewer side effects.60,72

Current data seem to indicate that there is no obvious differ-
ence in the antiangiogenic properties of p110a inhibitors and
pan-class I PI3Ks inhibitors. This suggests that p110a-selective
agents may be a better antiangiogenic option due to their reduced
toxicity. However, the possible positive impact of inhibiting
other members of the family in the tumor microenvironment
cannot be ignored. Recent studies in preclinical models have
shown that blocking p110g activity restricts tumor growth by
inhibiting recruitment of inflammatory cells.25 Additionally,
inhibiting p110d suppresses the function of regulatory T cells,
allowing cytotoxic T-cell responses to tumors,28 which in turn
decreases tumor growth and metastasis. One could imagine that
using either a pan-PI3K inhibitor or a dual p110a/p110d inhibi-
tor would be the best strategy by providing both an antiangio-
genic effect and a procytotoxic T cell response. Unfortunately,
though, this strategy may result in immune suppression as, upon
p110d inhibition, p110a compensates for B cell development in
the bone marrow and B cell survival in the spleen.73,74 An inter-
esting alternative could be to use p110a-selective and p110d-
selective inhibitors sequentially, which would offer the advantage
of inhibiting each isoform individually (antiangiogenic activity
upon inhibition of p110a and procytotoxic T cell responses
upon inhibition of p110d) without inducing immune suppres-
sion. However, given the exciting vascular phenotype observed
upon administration of low doses of pan-PI3K inhibitors

(described above), the idea of using low doses of a dual p110a/
p110d inhibitor should not be neglected in the attempt to rede-
fine the landscape of clinical trials with PI3K inhibitors.

Contrasting effects of PI3K versus mTOR inhibition
Inhibition of mTOR using rapalogues reduces tumor vascular

density,75 but it is still unclear whether this is an endothelial
intrinsic effect or simply due to reduced intratumor VEGF lev-
els.75 Although cell-based studies have shown than rapalogues
reduce EC proliferation,61,76,77 such thorough analyses have not
been performed in vivo. Rapalogues, though, often show limited
efficacy due to the activation of mTORC2 signaling via a
p70S6K-IRS1-mediated negative feedback loop.78 Indeed, treat-
ment with an ATP-competitive inhibitor that targets both
mTORC1 and mTORC2 signaling shows a higher antiangio-
genic response than rapamycin.79 BEZ235 and PI-103, dual
pan-PI3K/mTOR inhibitors, also show stronger antiangiogenic
activity than rapalogues, suggesting that PI3K regulates vessel
growth through additional downstream effectors. This additive
effect could also be explained by tumor and stromal effects,
which result from PI3K inhibition with only tumor intrinsic
effects upon mTOR inhibition. These observations suggest that
PI3K blockers are a better choice, especially in those settings
where a link between VEGF levels and PI3K/mTOR signaling is
not clear, as at least stromal therapeutic benefits could be
obtained.

Conclusions and Perspectives

Current limitations of antivascular therapy call for the identi-
fication of common signaling hubs that target multiple angio-
genic signals in a broader spectrum of tumor types. PI3K is a key
hub that is engaged by multiple, if not all, proangiogenic signals.
The identification of specific and non-redundant roles of class I
PI3K isoforms in the tumor microenvironment is revealing the
way in which this hub dictates cancer progression. Although
promising results of targeting PI3K as an antiangiogenic strategy
are emerging, the pleiotropic role of PI3Ks in different cell types
(including ECs) have highlighted the complexity of targeting this
pathway in cancer. Furthermore, PI3K inhibitors show context-
dependent responses depending on their ability to block VEGF
levels, which cannot be ignored.

How can we design novel strategies to maximize the effect of
PI3K inhibitors as antiangiogenics? Based on the current data, 3
options could be considered: First, sequential treatment of
tumors with p110a- and p110d-selective inhibitors might pro-
vide the benefits of inhibiting each isoform individually but avoid
complete immune suppression. Second, drugs could be tested
below their maximum-tolerated dose to study whether stromal
responses are better modulated, especially when targeting of
more than one stromal compartment is expected. In such set-
tings, both pan-PI3K inhibitors and isoform selective inhibitors
may prove to be efficient as low doses of PI3K inhibitors are not
expected to target all tumor functions. This could also minimize
the risk of developing tumor-intrinsic resistance mechanisms. It
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would also be pertinent to compare agents with even subtle dif-
ferences in potency against different isoforms, as their degree of
efficacy, tolerability, and beneficial stromal responses may differ.
Finally, it is currently believed that selecting patients based on
their cancer mutations will be critical to achieve better responses
to PI3K inhibitors. We propose that this selection ought to
include analysis of the nature of the tumor stroma as these non-
malignant cells may be an even better predictor of response to
these agents.

BOX 1 – Role of class II PI3Ks in angiogenesis
Class II PI3Ks are monomers of high molecular weight. They

principally generate PtdIns(3)P and are constitutively bound to
intracellular membranes. The three members of class II PI3Ks—
PI3K-C2a, PI3K-C2b and PI3K-C2g—represent the least-stud-
ied members of the PI3K family. According to in vitro data, both
PI3K-C2a and PI3K-C2b regulate EC functions.80 However,
work to date on vascular morphogenesis in vivo has included
only PI3K-C2a. Both global and endothelial-specific deletion of
the PI3K-C2a isoform lead to embryonic lethality due to severe
vascular defects associated with impaired vesicle trafficking,
junction assembly, and VEGF receptor internalization.81,82 Inoc-
ulation of tumor cells upon endothelial-specific deletion of

PI3K-C2a reduces tumor growth by reducing vascular density,81

suggesting that inhibition of PI3K-C2a could be a promising
antiangiogenic agent. More experiments are needed to further
elucidate the potential of PI3K-C2a inhibitors in tumor
angiogenesis.
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