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Abstract
Tight regulation of cellular processes is key to the development of complex
organisms but also vital for simpler ones. During evolution, different regulatory
systems have emerged, among them RNA-based regulation that is carried out
mainly by intramolecular and intermolecular RNA–RNA interactions. However,
methods for the transcriptome-wide detection of these interactions were long
unavailable. Recently, three publications described high-throughput methods to
directly detect RNA duplexes in living cells. This promises to enable in-depth
studies of RNA-based regulation and will narrow the gaps in our understanding
of RNA structure and function. In this review, we highlight the benefits of these
methods and their commonalities and differences and, in particular, point to
methodological shortcomings that hamper their wider application. We conclude
by presenting ideas for how to overcome these problems and commenting on
the prospects we see in this area of research.
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Introduction
RNA-based regulation is an important regulatory layer in all  
domains of life, carried out by a multitude of non-coding RNAs 
(ncRNAs). They interact with proteins, RNA, and DNA and  
thereby interconnect different regulatory systems. The elucida-
tion of the underlying networks is thus of central importance  
for a holistic understanding of cellular regulation. Compu-
tational prediction based on sequence alone turns out to be  
unsatisfactory, and, with the availability of second- and third-
generation sequencing technologies, data-based inference of  
regulatory networks involving ncRNAs is the more promising 
approach. RNA–protein interactions are more or less routinely 
studied using crosslinking immunoprecipitation-sequencing  
(CLIP-seq)1, RNA immunoprecipitation-sequencing (RIP-seq)2, 
mapping RNA interactome in vivo (MARIO)3, or related meth-
ods, which rely on ultraviolet-induced crosslinking or affinity 
of proteins to RNA; specific complexes are then enriched  
by immunoprecipitating the RNA-binding protein of interest,  
followed by sequencing of the RNA content using RNA sequencing 
(RNA-seq) (see recent reviews4,5).

A large fraction of ncRNAs carry out their function through  
complementary base pairing to other RNAs, often mRNAs. This 
may involve proteins, as in the case of the RISC complex for  
microRNA (miRNA)- or small interfering RNA (siRNA)- 
mediated post-transcriptional gene silencing, but the ncRNA 
is the main factor that specifies the target RNAs via base com-
plementarity. Thus, unbiased methods for the transcriptome-
wide discovery of direct RNA–RNA interactions are needed to  
decipher RNA regulatory networks. Approaches developed in 
2016, described as Direct Duplex Detection (DDD) methods6,  
represent an important first step toward this goal. In the  
following, we will discuss their pros and cons and present our 
view on what future improvements may look like and what their  
impact might be.

State of the art
RNA–RNA interactions pose two basic problems when  
analyzing them. First, they are commonly disrupted during the  
process of RNA extraction and cannot be reconstituted to their 
native state in vitro. Second, there is no technology available 
that can sequence interacting RNA strands and maintain their  
relationship. The first approach to tackle these problems (in a  
rather coarse way) was described by Ramani et al.7. They  
presented RNA proximity ligation (RPL), in which interacting 
RNA strands are ligated to each other in a standard ligation  
reaction using RNase inhibitor-treated crude cell extracts  
followed by RNA-seq. The resulting sequencing reads contained 
chimeric reads but to a rather low fraction (0.28%). Neverthe-
less, the proximity ligation approach presents a solution to the  
abovementioned second problem because it allows one to trace 
back RNA–RNA interactions in data sets obtained by next- 
generation sequencing technologies.

The remaining problem of losing RNA–RNA interactions due 
to the harsh RNA extraction protocols is as long-standing as its  
solution: direct RNA crosslinking via psoralen derivatives.  

Following irradiation, psoralens covalently and reversibly con-
nect two pairing stretches of RNA. Thus, duplexes are maintained  
during RNA extraction, which enables their enrichment, for 
example, by nucleases that digest single-stranded RNAs. The  
psoralen-mediated in vivo crosslinking of RNAs has been 
known since the 1970s and successfully used to interrogate the  
structure of ribosomal RNAs, interactions between small nuclear 
RNAs, and several other RNA structures and interactions8–20.

The combination of the two aforementioned strategies is the 
hallmark of the currently available DDD methods, namely 
ligation of interacting RNA followed by high-throughput  
sequencing (LIGR-seq)21, psoralen analysis of RNA interactions 
and structures (PARIS)22, and sequencing of psoralen-crosslinked, 
ligated, and selected hybrids (SPLASH)23. Although they differ 
in several steps of their experimental protocols, they all share  
the same principal design, which is in vivo RNA crosslinking 
followed by RNA extraction, enrichment of crosslinked RNAs,  
proximity ligation, and sequencing via RNA-seq. A comparison of 
the individual methods is shown in Figure 1.

A common bias that occurs when psoralen is used to crosslink  
double-stranded RNA (dsRNA) is its preference to interca-
late into adjacent opposite pyrimidine bases, preferably uracil24,  
meaning that interactions in GC-rich regions may be under-
represented. Nevertheless, the chance that uracil residues are  
neighboring another base pair is 25%, assuming a uniform  
distribution of all possible pairs of bases.

The major problem of all of the abovementioned methods is that 
the proximity ligation step is highly inefficient and that it is not  
possible to perform an RNA-seq library preparation that enriches 
for or specifically targets the ligated RNAs. Furthermore, the  
proximity ligation step does not exclusively ligate interact-
ing RNA strands but also all kinds of single-stranded RNAs in a  
random fashion. As a result, the yield of RNA–RNA interaction 
informative reads is very low, as shown in Table 1.

Nevertheless, the presented approaches provided interesting and 
deep insights into the RNA–RNA interaction networks of the  
studied organisms and the respective growth conditions. With 
the help of these DDD methods, already experimentally verified  
RNA structures could be accurately recapitulated; in addition, 
novel RNA structures as well as new RNA–RNA interactions were 
revealed. For instance, LIGR-seq identified novel interactions 
between small nucleolar RNAs (snoRNAs) and mRNAs, includ-
ing the snoRNA SNORD83B that controls the steady-state levels 
of its target mRNAs21. Data from PARIS support the results of  
Lin et al.25, who discovered that the interactions within the long 
ncRNA NEAT1 have an important architectural function in 
paraspeckle formation and thus impact the regulation of gene  
expression. In addition, PARIS could detect inter-repeat duplexes 
in the long ncRNA XIST, which is essential for X chromosome 
silencing22. Furthermore, the use of SPLASH has uncovered the 
RNA–RNA interactome of influenza A viruses required for virus 
growth26; this might facilitate the prediction of the emergence of 
new pandemic influenza strains.
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Table 1. Comparison of read statistics.

LIGR-seq PARIS SPLASH

Total number of 
sequencing reads

171,239,817 99,698,824 189,340,955

Chimeric reads 6,614,251 (~3.9%) 2,077,743 (~2%) 1,038,801 (~0.5%)

RNA–RNA interactions 1,029 232,031a 4,026

Data derived from psoralen-treated human cell line samples (LIGR-seq and PARIS: total RNA 
isolated from HEK293T human embryonic kidney cells; SPLASH: total RNA from GM12892 
human lymphoblastoid cells); all replicates included. Values are taken from the supplementary 
information of the respective publication (LIGR-seq21, PARIS22, and SPLASH23). In the case of 
LIGR-seq, the number of chimeric reads was determined by the corresponding analysis pipeline 
Aligater21. a So-called Duplex Groups, representing gapped reads with interacting RNA sites. 
LIGR-seq, ligation of interacting RNA followed by high-throughput sequencing; PARIS, psoralen 
analysis of RNA interactions and structures; SPLASH, sequencing of psoralen-crosslinked, 
ligated, and selected hybrids.

Figure 1. Schematic comparison of Direct Duplex Detection methods. Overview of the protocols for LIGR-seq21, PARIS22, and SPLASH23. 
The first column shows the principal steps of the three experimental procedures: crosslinking (violet crosses) was conducted in vivo by  
365 nm irradiation and 4′-aminomethyltrioxsalen (AMT) or biotinylated psoralen treatment. Fragmentation was performed enzymatically 
(LIGR-seq and PARIS) or chemically (SPLASH). Crosslinked RNAs were additionally enriched either by size separation using two-dimensional 
(2D) gel electrophoresis (crosslinked RNAs above the main diagonal were eluted; PARIS) or by biotin-streptavidin binding to magnetic 
beads (SPLASH). Proximity ligation was carried out using different ligases. Crosslinks were reverted by 254 nm irradiation. For sequencing, 
different library preparation strategies were performed. Colors of RNA strands (blue and orange) indicate different RNA molecules. LIGR-seq, 
ligation of interacting RNA followed by high-throughput sequencing; PARIS, psoralen analysis of RNA interactions and structures; SPLASH, 
sequencing of psoralen-crosslinked, ligated, and selected hybrids.

Conclusion and perspective
Even based on the highly inefficient proximity ligation, the  
currently available DDD methods have been able to capture and 
analyze crucial RNA–RNA interactions in a transcriptome-wide 

fashion and in vivo. Nevertheless, there is still room for improve-
ment. A stricter enrichment of crosslinked RNAs by combin-
ing enzymatic digestions (LIGR-seq) with two-dimensional 
gel-electrophoretic separation (PARIS) or biotinylated-psoralen 
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selection (SPLASH) or both could eliminate the undesired for-
tuitous ligation of single-stranded or non-crosslinked RNA  
duplexes.

The efficiency of the proximity ligation could be enhanced with 
non-complementary overhangs. These may be either left over by 
a limited nuclease digestion or introduced synthetically before 
ligation, for example, by polyA tailing or by using different  
terminal transferases. Such duplex overhangs are more likely 
to be ligated and could lead to improved yields of interaction- 
informative sequencing reads.

The most straightforward approach to turn RNA duplexes 
into sequencing templates would be a direct dsRNA ligation  
method. So far, only one report has proposed using RNA and 
DNA ligases for the enzymatic joining of two or more dsRNA  
molecules27. However, to the best of our knowledge, the results 
have never been reproduced, nor was the method used in fur-
ther studies. In addition, future discoveries might provide engi-
neered DNA ligases with substrate promiscuity to increase the 
dsRNA ligation efficiency. Eventually, a direct ligation of dsRNA  
adapters would pave the way for novel and hopefully more- 
efficient DDD protocols.

Likewise, the bioinformatics pipelines for basic data analysis 
and statistical inference of interactions need to be improved.  
Currently, none of the existing software packages considers the 
actual complementarity of the putative interaction partners but 

relies only on statistical measures. Furthermore, RNA–RNA  
interactions are driven by base-pair formation, for which  
thermodynamic parameters and kinetic models exist. Integrating 
these aspects into the analyses may additionally improve the  
reliability and robustness of data analysis.

In conclusion, the currently available DDD methods pave 
the way to a deeper understanding of the so-far little-studied  
RNA–RNA interactome. Crucial for their future acceptance and 
success will be to increase the yield of informative reads, which 
would allow RNA regulatory networks to be deciphered in  
greater depth. Results from such studies could have a great  
impact on many research areas. For example, a lot of human  
diseases are associated with ncRNAs (for example, Alzheimer’s 
disease28, schizophrenia29, and various cancer types30 such as  
leukemia31, breast cancer32, or lung cancer33). Thus, there is and 
will be a wide application range for first- and next-generation  
DDD methods that have the potential to provide important  
contributions in areas of basic and applied sciences.
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