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Abstract

Detecting binding motifs of combinatorial transcription factors (TFs) from chromatin immuno-

precipitation sequencing (ChIP-seq) experiments is an important and challenging computational

problem for understanding gene regulations. Although a number of motif-finding algorithms

have been presented, most are either time consuming or have sub-optimal accuracy for proc-

essing large-scale datasets. In this article, we present a fully parallelized algorithm for detecting

combinatorial motifs from ChIP-seq datasets by using Fisher combined method and OpenMP

parallel design. Large scale validations on both synthetic data and 350 ChIP-seq datasets from

the ENCODE database showed that FisherMP has not only super speeds on large datasets, but

also has high accuracy when compared with multiple popular methods. By using FisherMP, we

successfully detected combinatorial motifs of CTCF, YY1, MAZ, STAT3 and USF2 in chromo-

some X, suggesting that they are functional co-players in gene regulation and chromosomal

organization. Integrative and statistical analysis of these TF-binding peaks clearly demonstrate

that they are not only highly coordinated with each other, but that they are also correlated with

histone modifications. FisherMP can be applied for integrative analysis of binding motifs and

for predicting cis-regulatory modules from a large number of ChIP-seq datasets.
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1. Introduction

In the past two decades, the motif-finding problem has been an im-
portant issue in sequence feature recognition. A motif represents a
set of binding sites recognized by a transcription factor (TF). Based

on co-regulation of genes and phylogenetic footprinting of TFs, TF
motifs can be discovered from a set of upstream non-coding DNA
sequences of co-regulated or orthologous genes. Many motif-finding
algorithms have been developed in the past two decades
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including MEME,1 BioProspector,2 Weeder,3 MotifClick4 and so on.
These traditional motif finders search for over-represented segments
with higher significance than non-binding segments. In the last de-
cade, some new experimental techniques such as chromatin immuno-
precipitation sequencing (ChIP)-chip and ChIP-seq have been
developed to locate TF-binding sites.5,6 By using these technologies,
many motif datasets have been generated for a variety of model
organisms. For example, there are Lee/Harbison ChIP-chip and
ChIP-seq datasets for Saccharomyces cerevisiae,7,8 Caenorhabditis
elegans and Drosophila melanogaster in the modENCODE proj-
ect9,10 as well as human ChIP-seq datasets in the ENCODE proj-
ect.11 One ChIP-seq experiment for a TF may produce millions of
binding peak sequences by running peak-calling tools, such as
MACS2.12,13 In the ENCODE database, over 60% of binding peak
datasets have more than 10,000 sequences, the largest of which can
have a million sequences. However, many of them include false posi-
tives due to binding peaks introduced through the mediation of protein
complexes, reducing the precision of motif-finding tools. A further chal-
lenge is to find specific combinations of binding sites of potential co-
regulatory TFs, which are widely observed for cis-acting transcriptional
regulatory elements in mammalian genomes.14,15 However, most popu-
lar tools such as MEME,1 GLAM2,16 W-ChIPMotifs17 and
XXmotif18,19 can only model a single motif at a time and do not detect
alternative binding motifs of co-factors.20 Therefore, it is critical to de-
velop a fast and efficient method for processing the increasing ChIP-seq
data to discover binding motifs as well as their combinations of poten-
tial co-factors.

To find motifs from ChIP-seq datasets, many motif-finding tools,
including DREME,21 HOMER,22 Amadeus,23 Trawler,24

motifRG,25 XXmotif,18,19 DECOD26 and FastMotif,27 have been
specially designed. The vast majority of these new motif finders used
a ‘discriminative’ strategy, meaning that the motif patterns should
discriminate between a foreground sequence dataset and a back-
ground sequence dataset. However, they usually took a lot of com-
puting time to find binding motifs of targeted TFs, especially for
those that have millions of binding peaks called from very deeply se-
quenced data. In order to speed up the motif-finding procedure, these
algorithms adopted some approximation schemes that include
restrictions on search space (e.g. HOMER, XXmotif), the P-value
estimation by approximation formula (e.g. DREME), replacing posi-
tion weight matrices (PWMs) by IUPAC characters28 (e.g. DREME
and motifRG), or replacing word-based methods by probabilistic
sampling (e.g. FastMotif). Although several tools such as DREME,
HOMER, MotifRG and FastMotif have been evaluated to be faster
than other tools according to recent comparative analysis,21,27,29

they still consume a lot of time on large-scale datasets. Furthermore,
these programmes are extremely slow for detecting the combinatorial
motifs from large-scale ChIP-seq datasets that often occur in
genomes.30 Parallel computing is a promising strategy for large data
computation. HOMER and MotifRG have the option to set the
number of processes, but they are still not fully parallel algorithms.
Actually, HOMER is designed for a fixed motif length. The multi-
threading technique used in HOMER is called ‘Pthread’, which is a
thread API built in Linux. When calculating k multiple motif lengths,
k threads are called to run the same whole HOMER programme
simultaneously. When the number of considered motif lengths is less
than the number of available threads, HOMER cannot use the full
computational resource. MotifRG is an R package that directly
employs the parallel package of Bioconductor to call multiple cores.
Although the iterations of enumerating and evaluating candidate
motifs were performed in parallel, the other steps such as refining the

top motifs were not parallelized. Furthermore, after getting the refined
motifs, MotifRG masks all of their occurrences and repeats the same
process to find next motifs sequentially, which can be further optimized
by well-designed parallel strategies. Therefore, these computational
tools only partially performed parallelization techniques at one or lim-
ited steps. As far as we know, only MEME and Gibbs Sampler-based
algorithms have been parallelized with CUDA,31–33 and there is no spe-
cialized parallel algorithm for discriminative motif discovery in ChIP-
seq data. Since these word-based algorithms should determine whether
each k-mer in a sequence set is highly conservative (or discriminative),
we can parallelize this step for all of the k-mers with different lengths.

Based on these observations, a fully parallel algorithm called
FisherMP is presented to predict the short and core-binding sites of a
TF from its large-scale-binding peaks identified via ChIP-seq.
FisherMP is ultra-fast and can discover genome-wide motifs from a
large number of ChIP-seq datasets. In particular, the FisherMP algo-
rithm can find the motifs of a TF’s co-factors from its binding peaks.
Our analysis on CTCF ChIP-seq datasets of human chromosome X
revealed the high correlation of CTCF and YY1 motifs. The combi-
natorial motifs of CTCF and YY1 were further confirmed on multi-
ple human cell lines and integrative analysis of histone modification
signals, indicating that they are functional co-players.

2. Materials and methods

2.1. Motivation and methodology overview

FisherMP is a ‘discriminative’ motif-finding programme which
requires two input data files; one is the (foreground) data file con-
taining motifs to be sought, and the other is an explicitly collected
background data file. FisherMP uses Fisher’s exact test to calculate
P-values of motifs. In FisherMP, the regular expression based on
IUPAC symbols used in DREME21 is discarded, and the motifs are
constructed directly based on word conservation. Furthermore, in or-
der to obtain the corrected P-value of each motif, FisherMP utilizes a
hash of arrays to store the indices of all possible sequences for each
existing word instead of estimating the number of sequences contain-
ing each word of a motif as in DREME. Unlike DREME and
MotifRG, which directly merge IUPAC motifs, FisherMP merges two
motifs into a bigger one if they reach a specified high similarity score.
The motif similarity metric used in FisherMP is SPIC,34 which is con-
structed by using information contents, PWMs and position fre-
quency matrices (PFMs) of motifs. The parallel implementation of
FisherMP is completely based on OpenMP, which is a standard API
for portable shared memory parallel programming in C/Cþþ and is
supported by the GNU Compiler Collection (GCC).

2.2. The FisherMP algorithm with parallel computing

design

The (foreground) input file should be a set of ChIP-seq-binding peak
regions from a TF ChIP-seq experiment which can be identified by a
peak-calling algorithm. The (background) negative sequence set
should either be a similar dataset from a different ChIP-seq experi-
ment or a set of randomly generated sequences based on the distribu-
tion of bases in the foreground file. In order to parallelize the
programme, FisherMP employs six ‘fork-join’ structures. The flow-
chart of FisherMP with parallel design is shown in Fig. 1.

Step 1: Reading the input files. If there is a background file, two
threads are called to synchronously read the foreground and back-
ground files into two matrices (i.e. vectors of vectors) F and B of nu-
cleotide bases, respectively. In F and B, each sequence in the input
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files corresponds to a row vector of base pairs. In addition, for the
later construction of PWMs, the frequency of each nucleotide is
counted at the same time. If there is not a background file, the matrix
B is generated randomly based on the frequencies of nucleotides with
the same size of F.

Step 2: The first ‘fork-join’ structure. F and B are scanned with
different window widths k in parallel to count all of their k-mers and
construct two hash maps. Multiple threads are called for different
window widths k and the two different matrices. Ideally, the optimal
number of threads is 2(kmax–kminþ1) if k=kmin, kminþ1, . . ., kmax.
The hash map of F (or B) stores all the k-mers and the index set of
the foreground (or background) sequences in which they are located.
More specifically, a k-mer associated with its reverse complement is
stored as a key of the hash map, and the corresponding value of the
key is the index array of sequences containing the k-mer or its reverse
complement.

Step 3: The second ‘fork-join’ structure. P-values of all k-mers
based on Fisher’s exact test are calculated in parallel. From the above
two hash maps, for each k-mer and its reverse complement, the num-
bers of sequences containing either of them in F and B can be directly
calculated and used to model the Fisher’s exact test by constructing a
contingency table (Supplementary Section S1 and Supplementary Table
S1). In the Fisher’s exact test, the p-value of a k-mer is given by a

hypergeometric distribution, which can be approximated by the
Stirling formula35 (Supplementary Section S1). The P-values of different
k-mers can be calculated in different threads because there is no data
interchange among the threads. If t threads are called, all the k-mers in
F can be divided into t groups evenly. As a result, all the k-mers in F
and their corresponding P-values are stored in a hash map (for a k-mer
and its reverse complement, only one is stored in the hash map).

Step 4: Motif seeding and generating in the third ‘fork-join’ struc-
ture. An array A of k-mers is formed by sorting all k-mers in F by
P-values in numerically ascending order and then deleting the k-mers
with P-values > 0.05. The top m (the default is 100) k-mers in the ar-
ray A are selected as motif seeds. For a motif seed s, a primitive motif
M is constructed as follows:

i. The motif M is initially set asfsg, and the P-value of M is set as
the P-value of s.

ii. Starting from the last k-mer added to M in the array A, select the
top k-mer t (or its reverse complement) in the following queue of
A as a candidate element for M if (a) only one position of t (or its
reverse complement) is different than one of the k-mers in M and
(b) at most a percent (the default is 30%) positions are not con-
served among t (or its reverse complement) and all the k-mers in
M. If there is no such a candidate element, return M and stop.

Figure 1. Flowchart of FisherMP with parallel computing design.
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iii. Calculate the P-value of M [ ftg. If the P-value of M [ ftg is less
than b (the default value is 0.05), t is added into M and go to (b),
else return M and stop.

Notice that for each k-mer the foreground and background indices
of sequences containing it or its reverse complement have been stored
in two hash maps respectively built in Step 2. Therefore, for a motif
M composed of u k-mers, the union of foreground (or background)
sequence index sets of the u k-mers forms the motif’s foreground (or
background) sequence index array, whose size is used to calculate
the P-value of M. In the end, for each primitive motif M, the PFM,
PWM and the position information contents (PICs), which will be
used to calculate motif similarity in the next step, are generated
based on the counts of k-mers in M and the frequency of each nucle-
otide in F (Supplementary Section S2). Clearly, the primitive motif
construction process can be conducted in parallel for each seed. If t
threads are called, these seeds can be split into t groups evenly.

Step 5: Computing motif similarities in the fourth ‘fork-join’
structure. The SPIC metric, which was shown to have the best perfor-
mance among several metrics,34 is used to calculate the similarity be-
tween each pair of primitive motifs. For each pair of primitive motifs
with the same motif length, the SPIC metric without alignment is
used to calculate their similarity score which is called their “A-score”
(Supplementary Section S2).

For each pair of equal-length primitive motifs Mi and Mj where
i < j, the PFM, PWM and PICs of Mj are first transferred into their
reverse complementary forms, then two A-scores between Mi and Mj

and between Mi and the reverse complement of Mj are separately cal-
culated, and the larger one is selected as their final similarity score.
Notice that all pairs of motifs can be evenly distributed to all threads
because the similarity calculation between a pair of motifs does not
require the information of any other motifs.

Step 6: Motif merging. If a set of equal-length primitive motifs
have high A-scores among one another, then they are merged into a
new motif and the P-value of the new motif is also calculated.

Step 7: Computing merged motif similarities in the fifth ‘fork-join’
structure. For each pair of merged motifs, the SPIC metric with
ungapped alignments is used to calculate their similarity score which
is called their ‘B-score’ (Supplementary Section S2). The calculation
procedure of B-score is exactly the same as that of A-score in Step 5.

Step 8: Motif deleting and sorting. If two motifs share the highest
similarity B-score, the motif with the higher P-value is removed from
the motif set. The refinement is repeated until no pair of motifs has a
higher B-score than the given threshold.

Step 9: Computing combinatorial motifs in the sixth ‘fork-join’
structure. With the single motif and its P-value available, we further
calculate the P-value for the combinations of 2, 3, . . ., n motifs (the
default is 2) by using a Fisher combined probability test36,37

(Supplementary Section S3). Finally, the single and combined motifs
are sorted by P-values in ascending order.

Note that the two steps of scanning all the k-mers in the foreground
and background sequences and calculating their P-values are the most
time consuming in all ‘word-based’ algorithms. In FisherMP, two
‘fork-join’ structures are designed to perfectly parallelize the two steps.

2.3. Threshold settings in FisherMP

In order to find real motifs accurately, the parameters in the
FisherMP algorithm should be set scientifically. At the stage of gener-
ating the primitive motifs in Step 4, it is necessary to set the ratio a of
non-conserved positions in each primitive motif. For this purpose,
the PICs of the 1,404 CORE PFM profiles in the JASPAR2018

database were calculated (http://jaspar.genereg.net/downloads/). If
the information content of a position in a motif is <1 (note that any
PIC’s value is between 0 and 2), then the position is considered rela-
tively non-conserved. The percentage of relatively non-conserved
positions was counted for each CORE PFM in JASPAR. We set the
parameter a as 30% in FisherMP since 74% of the 1,404 motif pro-
files each contain at most 30% relatively non-conserved positions
(Supplementary, Section S4 and Supplementary Fig. S1A).

Furthermore, the threshold settings of the A-score and B-score
used in FisherMP are based on the distribution of similarity between
two sub-motifs randomly split from each known motif in JASPAR.
For each motif in the JASPAR2018 CORE database, it was split into
two sub-motifs randomly and the A- and B-score were calculated be-
tween the two sub-motifs. This process was repeated 10 times. For
each pair of different motifs in JASPAR, the B-score was calculated,
and A-score as well if the two motifs had the same length. The distri-
butions of A-scores and B-scores between two different motifs and
pairs of sub-motifs (of the same motif) are separately plotted. For the
majority of the real motifs, the similarity A-scores and B-scores be-
tween two sub-motifs of the same motif were around 0.8, while the
similarity scores between different motifs were generally around 0
(Supplementary Section S4and Supplementary Fig. S1B). In the step
of motif merging, the threshold of A-score was set to a relatively
high value 0.7 in order to reduce the chance of merging primitive
motifs which do not belong to the same real motif. After the motif
merging step, we found that there were very few pairs of motifs
with B-scores > 0.7. Thus, in the following step of redundant motif
deleting, the B-score threshold was set to a relatively high value of
0.6 in order to reduce the probability of deleting a non-redundant
motif.

2.4. Datasets used

The datasets of TF ChIP-seq uniform peaks used in the paper were
generated by the ENCODE project. There are 690 binding peak files
available in the UCSC genome browser (http://genome.ucsc.edu/cgi-
bin/hgFileUi? db=hg19&g=wgEncodeAwgTfbsUniform). To assess
FisherMP on real data, a total of 350 ENCODE ChIP-seq-binding
peak datasets belonging to 51 TFs which have known (literature)
motif profiles were selected from the Kheradpour and Kellis’s collec-
tion (http://compbio.mit.edu/encode-motifs/).38 The summarization
of the ENCODE datasets, known motifs and discovered motifs used
in the paper are shown in Supplementary Table S2. The binding
peak file of ER in MCF-7 cells was downloaded from GSE19013
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? acc=GSE19013).39

2.5. Recovering motif pairs

The known TF combinations were downloaded from TcoF data-
base40 (latest version, March 2018). In our 51 selected TF ChIP-seq
datasets, 21 TFs have known combinatorial motifs including 30
combinatorial motif pairs. FisherMP was run on these 21 TF ChIP-
seq datasets to detect not only the TF motifs themselves but also their
combinatorial motifs. To reduce bias, the ChIP-seq datasets for each
pair of cooperative TFs were selected from the same cell line as much
as possible.

2.6. Performance assessment

In order to verify whether a predicted motif is identical to a known
motif, the SPIC metric with ungapped alignments (i.e. the B-score) is
employed to calculate their similarity.34 The SPIC metric is extremely
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robust because it considers sequence position in additional to iden-
tity. The SPIC metric has been optimized to have the best perfor-
mance for separating true motifs from putative motifs after
comparing it to seven other motif similarity metrics including
Pearson correlation coefficient, average log-likelihood ratio, sum of
squared distances, asymptotic covariance, P-value of Chi-square, av-
erage Kullback-Leibler and k-mer frequency vector.34,41

To test the accuracy of a predicted motif for each algorithm, for a
binding peak dataset of a TF, the similarity B-score was calculated
between its predicted motif and each known motif profile of the TF,
and only the highest similarity score was taken as the final similarity
between the predicted motif and the real motif of the TF. If a TF TFi

has mi known motif profiles fMi1;Mi2; . . .;Mimig and di datasets
fDi1;Di2; . . .;Didi

g, supposing that Pij is the predicted motif output
by a motif-finding programme for the dataset Dij, we say that Pij is a
real motif discovered correctly by the programme if
mazmi

t¼1fBscoreðPij;MitÞg is greater than a similarity threshold c. For
all the 350 datasets of 51 TFs, the prediction accuracy (PA) of a mo-
tif-finding programme can be defined as

PA ¼
P51

i¼1

Pdi
j¼1 sgn

�
maxmi

t¼1fBscoreðPij;MitÞg > c
�

P51
i¼1 di

;

(1)

where sgn (�) is an indicator function which returns 1 if the argument
is true and 0 otherwise.

Note that besides the known literature motif profiles; there are of-
ten multiple discovered motifs for each of the 51 TFs in the
Kheradpour and Kellis’s collection (Supplementary Section S5 and
Supplementary Table S2). For convenience, we call these discovered
motifs ‘KK motifs’. These KK motifs were collected from the top 10
most enriched motifs (excluding duplicates) discovered by multiple
motif-finding tools for each TF group.38 A large part of these KK
motifs are likely to be the true motifs of these TFs and their co-
factors. Each tool was evaluated by counting the number of recov-
ered KK motifs in its top 10 predicted motifs in each dataset.

If TFi has ki KK motifs and di datasets, for each dataset Dij, sup-
pose that Rij of the ki KK motifs are recovered by the top 10 pre-
dicted motifs output by a motif-finding tool. We said a KK motif is
‘recovered’ if there is a motif in the top 10 predicted motifs such that
the similarity B-score between the KK motif and the predicted motif
is greater than a similarity threshold c. Then the average recovered
rate (ARR) for all datasets is defined as

ARR ¼
P51

i¼1

Pdi
j¼1 RijP51

i¼1 diki

(2)

We also calculated the ROC curve by using the methods provided in a
previous study.42 In detail, 10 motifs of lengths from 5 to 10 were picked
out from JASPAR, and then each of the 10 motifs was separately
implanted into each of 10 datasets to produce 100 synthetic-binding peak
files. The ith dataset consists of 1; 000 � i sequences of length 1,000 (i = 1,
2,. . ., 10). We ran the seven motif discovery algorithms to output top 20
motifs on each of the 100 synthetic peak files. With the rank of output
motifs increasing, we plotted the receiver operating characteristic (ROC)
curves and the areas under these curves (AUCs) for seven algorithms.

In order to test the computational speeds of the algorithm for in-
put datasets with different sizes, we conducted experiments with
both synthetic data and real data. The length of each sequence in any

synthetic dataset was set to 1,000 base-pairs (bp). The dataset sizes
were arranged from 0.1 to 1 Mb in steps of 0.1 Mb, and from 1 to
10 Mb in steps of 1 Mb. For each setting of dataset size, 10 synthetic
datasets were generated randomly based on a three-order Markov
model on ENCODE-binding peak datasets, and each element of a
motif were randomly picked out and inserted into each synthetic se-
quence. For each dataset size, 10 datasets of real data were also
extracted separately from the top sequences of 10 different files
which were picked up from the 690 ENCODE-binding peak files. As
a result, for each motif-finding programme, the average running time
was reported for each synthetic (or real) dataset size.

2.7. Programme selection and parameter settings

Based on the previous literature on the comparison of motif-finding
algorithms, the six new tools, DREME, HOMER, MotifRG,
XXmotif, FastMotif and DECOD perform better than others on dis-
covering true motifs.18,19,21,26,27,29 Therefore, these top tools were
selected to compare the accuracy with that of FisherMP. In order to
compare the computational speeds of different algorithms, four rela-
tively fast tools, HOMER, DREME, MotifRG and FastMotif, were
selected from these new tools. Note that XXmotif and DECOD were
discarded for comparing computational speeds because their running
times are significantly longer than the others. WSMD was also not
used for comparison because it requires a commercial payment com-
ponent, claims to be slower than HOMER, and is based on weak su-
pervised learning and thus has compromised accuracy.

To maximize experimental integrity, the parameter settings of
these tools were kept as consistent as possible. The maximum num-
ber of motifs to find was set to 10 (e.g. FisherMP, DREME,
MotifRG and DECOD). If there was no such option to set motif
number in a motif-finding tool (e.g. HOMER, XXmotif and
FastMotif), then the top 10 output motifs were used for performance
comparison. If the motif length range could be set in a tool, then the
lengths of output motifs were set from 5 to 10 (e.g. FisherMP,
DREME, HOMER and MotifRG). Otherwise, the motif length was
fixed to be 10 (e.g. DECOD). All the background negative sequences
used in these tools were generated by themselves except DECOD,
whose background sequences were generated by shuffling the corre-
sponding foreground sequences. Note that multiple processer cores
can be called by FisherMP, HOMER and MotifRG. The number of
threads was set to four in HOMER and MotifRG due to the popular-
ity of quad-core processors. Four and six threads were tested sepa-
rately for FisherMP. Besides the above settings, the motif search was
double-stranded if possible, the P-value cut-off was 0.05, and all
other settings were set by default. The specific commands of the
seven tools used in the paper are described in the last section of the
Supplementary Material. All of the experiments were done on a 64-
bit Linux server with two 8-core CPUs (Intel Xeon E5 2.1 GHz).

3. Results

3.1. High performance of FisherMP for finding motifs

on human ChIP datasets

To evaluate the performance of FisherMP for finding TF motifs, we
ran it on all 350 ChIP-seq experiments of 51 TFs that were down-
loaded from the ENCODE project. The validations on genome-wide
ChIP experiments for TFs of multiple cell lines provided unbiased
performances in real applications. Since the predicted motifs are de-
fined by their consensus sequences, we considered the real motif of a
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TF as recalled if its similarity to its predicted motifs was larger than a
certain similarity threshold. We used two criteria: the PA and ARR.
For these 51 TFs, the PA was defined as proportion of recalled motifs
among all 350 datasets. We found FisherMP achieved as high as
80% for the similarity threshold of 0.6 (Fig. 2A). When ranging simi-
larity threshold from 0.6 to 0.9, the PAs of FisherMP were decreas-
ing, suggesting that the predicted consensus motifs are different than
the real motifs in some of datasets.

In the Kheradpour and Kellis’s collection,38 many motifs are likely
to be the true motifs of these TFs and their co-factors, named KK
motifs. We collected the KK motifs of our studied 51 TFs and defined
a KK motif as ‘recovered’ if the top 10 predicted motifs contained a
motif such that the similarity between the KK motif and the predicted
motif was greater than a similarity threshold. Then the ARR was de-
fined as averaged proportions of each TF’s recovered KK motifs among
all 350 datasets. Consistent with the previous PR results, we found
FisherMP achieved an ARR as high as 62% for the similarity threshold
of 0.6 (Fig. 2B). Taken together, these cross TFs and cross cells valida-
tions indicate FisherMP can achieve accurate performance not only for
single motifs, but also for multiple alternative motifs of a TF.

3.2. Comparing FisherMP with other methods

We compared FisherMP with six other motif-finding tools on these
350 ChIP-seq datasets. All methods were separately executed, and
the PA and ARR values for each programme were calculated for dif-
ferent motif similarity thresholds. As shown in Fig. 2A, FisherMP
achieved the best PR score of 80% for a similarity threshold of 0.6.
Although PR scores were decreasing when similarity thresholds
increased, FisherMP kept the optimum PR scores among these

methods. For the ARR scores, we found FisherMP and XXmotif
were better than other methods. Specifically, FisherMP can achieve
an ARR score of 63% when similarity thresholds ranged from 0.6
(Fig. 2B).

Considering that the criteria PA and ARR mainly focus on the
sensitivity rather than specificity, we further calculated the ROC
curves by using the methods provided in a previous study.42 The
ability of FisherMP and other algorithms to recall real testing motifs
was validated on 100 synthetic-binding peak files. We then plotted
ROC curves and calculated the AUC for these seven algorithms
(Fig. 2C and D). We found FisherMP can achieve a high true positive
rate (TPR) of 80% while keeping a low false positive rate (FPR) of
�7%. When the TPR of FisherMP is bigger than 90%, the FPR is
still <12%. The AUC of FisherMP is 93.45%, which is the best
among seven tested algorithms.

3.3. Super computational speed of FisherMP

The main goal of the FisherMP algorithm is to improve the computa-
tional speed of motif prediction. To test and prove its computational
superiority, four relatively fast programmes were used for compari-
son. Four threads (or processes) were called in MotifRG and
HOMER. For each dataset size (the length of each sequence is 1,000
bp), the average running time of a programme on 10 synthetic data-
sets of the size was obtained. As shown in Fig. 3A and B, FisherMP
was the fastest among the five programmes if it also called four
threads. In particular, for a big file of 10 Mb, FisherMP took only
300–400 s, while each of the other algorithms took thousands of sec-
onds. For real ENCODE ChIP-binding peak data, as shown in
Fig. 3C and D, FisherMP was also the fastest, and the running times

Figure 2. Performance comparison of FisherMP with six other motif-finding methods. (A) The distributions of PA for seven motif-finding programmes under dif-

ferent similarity thresholds. (B) The distributions of ARR under different similarity thresholds. (C) The ROC curves of seven programmes. FPR and TPR. (D) The

AUC scores of seven programmes.
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had no significant change between real data and synthetic data. Note
that the other algorithms were more time-consuming in the real data
than in the synthetic data because each synthetic dataset was only
embedded in one motif while the number of real motifs in a real data-
set is unknown.

Because the design of FisherMP is fully parallelized, the algorithm
will be faster if more threads are called. As with our previous experi-
ments, the lengths of motifs searched by FisherMP were set with 6
different lengths (from 5 to 10), and the number of output motifs
was set to 10. By changing the number of threads, the running time
curve of FisherMP can be obtained. In order to see how efficient
FisherMP was with the number of threads increasing, only the real

ENCODE datasets with two big sizes (5 and 10 Mb size) were used
to plot two running time curves, respectively (Fig. 3E). When the
number of threads was set higher than 6, the running time of
FisherMP was not severely affected. This is because FisherMP was
executed with six different motif lengths in the experiments, and one
motif length corresponding to one thread is the best parallel scheme.

3.4. Detecting combinatorial motifs

In mammalian genomes, gene expressions are widely controlled by
combinatorial TFs but rarely by a single TF. From a ChIP-seq dataset
of a TF, current motif-finding tools can usually find the binding

Figure 3. Comparative analysis of running time. Comparisons of running times on synthetic datasets (A) and (B) and human ENCODE datasets (C) and (D) with

different sizes. (E) Running times of FisherMP on different number of threads.
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peaks for a TF but can’t output the potential combinatorial TF
motifs of its co-player TFs. One may overlap two sets of TF ChIP-seq
data to get the co-occurrence of two TFs. However, there are more
than 2,000 TFs encoded in the human genome and most of them
have no antibodies, and thus no ChIP-seq data available.
Considering that combinatorial cis-regulatory TFs in mammalian
genomes typically exhibit their binding sites within the same genomic
proximity, we hypothesized that it should be possible to discover the
co-players and their potential combinatorial motifs for a targeted TF
from its ChIP-seq by identifying over-represented combinations of
sequence motifs that occur together in the ChIP-seq peaks. To this
aim, we further extended our method to detect the combinatorial
motifs by using a Fisher combined probability test of the P-values of
single motifs.

We tested our strategy for the known TF combinations that were
downloaded from TcoF database40 (latest version, March 2018). In
our 51 selected TF ChIP-seq datasets, 21 TFs have known combina-
torial motifs including 30 combinatorial motif pairs among them
that belong to 4 cell lines, K562, GM12878, HepG2 and Hela-S3,
where GM12878 has the most abundant resource of TF ChIP-seq in
the ENCODE project database. For each of the 21 TFs, FisherMP
was run on the peaks of its ChIP-seq datasets to detect whether the
motifs of the TF and its cooperative TFs can be found in pairs with
high confidence. We found that, among 24 of 30 datasets (24/30 =
80%), the true motif was top one ranked (Table 1). Of the remaining
six datasets, two had the true motif ranked in the second position,
three had the true motif ranked in the third position, and one had the

true motif ranked in the sixth position. In total, the average rank of
these TF motifs was 1.43 (S.D. = 1.07). We then checked the motifs
for their cooperative TFs and found 25 of them successfully detected
co-players (25/30 � 83.33%). These 25 paired TFs were ranked very
high (5.08 6 5.33) and their combined P-values are very significant
(P-values � 1.35e-59). Considering that the binding sites and co-
binding partners of each TF can be tissue-specific, we further checked
the results of the same TF on two cell lines and found that the signifi-
cance (P-value) of cooperative TFs are different between cells. For
example, we can detect the cooperative pair of CEBPB and MYC
from CEBPB ChIP-seq of K562 cell line but not from the CEBPB
ChIP-seq data of GM12878 and HepG2 cell line respectively.
Furthermore, we also observed the asymmetric ranking for a cooper-
ative TF pair for a same cell line. For example, when checked the
SRF ChIP-seq of K562, we can find the motifs of its cooperative TF,
SP1, to be ranked in 10 (P-value 2.30e-82). However, SRF motifs
can’t be detected by using SP1 ChIP-seq of K562. These results dem-
onstrated that the TFs preferentially collaborate with different TFs
for implementing cellular functions in different cells.

We performed FisherMP on ER alpha ChIP-seq data of MCF-7
cell line and outputted top 10 ranked TFs with high significance
(P-value < 1.0e-100, Supplementary Table S3). To characterize if these
TFs are potential cooperative factors with ER alpha in MCF7-7 cell,
we searched the publications in the PubMed database and found
eight of them have been reported to be correlated with ER alpha in
MCF-7 for regulating gene expressions. Additionally, many research
papers had reported that the SP1, ZNF384, TP53 and TFAP2C are

Table 1. Predicting 30 combinational motif pairs

ChIP-ed TF (TF A) Cooperative TF (TF B) Cell line Motif A rank Motif B rank Motif A þ B rank P-value of motif A þ B

NRF1 MAFF K562 1 4 2 4.39e-246
IRF4 SPI1 GM12878 1 4 1 4.51e-325
E2F1 SP1 HeLa-S3 1 4 3 1.05e-248
CEBPB HSF1 HepG2 1 5 4 1.38e-310
STAT1 HSF1 K562 3 2 2 2.49e-109
NR2C2 HNF4A HepG2 6 6 1 0
STAT1 IRF1 K562 3 1 1 8.68e-120
BRCA1 STAT1 GM12878 1 4 1 4.96e-127
E2F4 BRCA1 GM12878 3 4 8 2.77e-183
NFYA BRCA1 GM12878 1 — — —
BRCA1 SP1 GM12878 1 5 8 1.35e-59
NFYB MYC GM12878 1 — — —
GATA1/2 TAL1 K562 1 3 2 4.94e-324
GATA1 SP1 K562 1 10 17 2.81e-199
GATA2 SPI1 K562 1 4 3 9.87e-324
NFYA ELF1 GM12878 1 6 2 1.65e-179
NFYA SPI1 GM12878 1 9 11 1.44e-110
NFYA SRF GM12878 1 1 1 0
ELF1 SP1 GM12878 1 3 1 1.35e-325
EGR1 CEBPB K562 1 — — —
EGR1 SP1 GM12878 1 1 1 0
SPI1 CEBPB GM12878 1 10 14 4.37e-311
SRF CEBPB HepG2 1 — — —
CEBPB SP1 K562 2 10 13 3.52e-245
CEBPB MYC K562 2 1 3 7.67e-294
SP1 TAL1 K562 1 11 16 3.55e-117
CTCF YY1 GM12878 1 2 1 0
SRF SP1 K562 1 4 10 2.3e-82
MEF2C SP1 GM12878 1 — — —
MYC SP1 GM12878 1 2 1 1.4e-244

‘—’ means out of detection.
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important cooperative players with ER alpha in breast cancer devel-
opment.43–46 For example, SP1 is essential for the full transcriptional
activity of ER alpha and their interactions will control the transcrip-
tion of IGF-IQ gene whose dysregulated expression have pathologic
consequences with relevance in breast cancer aetiology.43,47 Recent
research revealed that ZNF384 can stimulate MCF-7 breast cancer
growth by regulating cell cycle and metastasis-related genes via an
ER alpha dependent pathway.46 These results demonstrated that our
programme can well predict the cooperative factors even for tissue-
specific TF.

3.5. CTCF and YY1 are co-players in human X

chromosome

To further demonstrate the ability of FisherMP for finding true TF
combinations, we performed integrative analysis of CTCF and YY1
for chromosome X in the GM12878 cell line. CTCF is a ubiquitously
expressed protein with 11 zinc finger DNA-binding domains, and it
is involved in the transcriptional regulation of many genes.48 Acting
as a transcriptional activator, repressor, and insulator, it binds to
tens of thousands of genomic sites and can interact with a plethora
of other TFs.49 The divergent functions of CTCF and abundance of
its cooperative TFs make it difficult to detect a specific cooperative
TF. Among these cooperative TFs, YY1 was reported as a cofactor
of CTCF for the chromosome X binary switch.50 Here we tested
whether the motifs of CTCF and its co-factor YY1 can be found by
these motif-finding tools in chromosome X. To this end, the binding
peaks of CTCF in chromosome X (total 140,569 peak sequences)
were isolated from the CTCF’s 99 ChIP-seq datasets and merged
into a new file which contained 4471 unique binding peaks. After
running FisherMP, XXmotif, MotifRG, DECOD, DREME,
HOMER, and FastMotif on the new file, we found that FisherMP
had the best performance. The top two output results of FisherMP
correspond to the motifs of CTCF and YY1 (Table 2). Meanwhile,
among the motifs output by the six motif-finding tools, FisherMP
had the best fit with the two known motifs of CTCF and YY1, re-
spectively. XXmotif and FastMotif could not output any motif simi-
lar to YY1’s directly. Even though the results of MotifRG, DREME,
HOMER, and DECOD contain some motifs similar to YY1’s, their
predicted YY1 motifs had lower ranking and lower similarity than
FisherMP predictions. In addition, among the 4,471 peak sequences
FisherMP found that 2584 sequences contain CTCF’s-binding sites

and 2353 sequences contain the binding sites of both CTCF and
YY1. This overlap was found to be very significant (P-value 8.02e-
334, hypergeometric testing, one-sided), indicating that YY1 and
CTCF work together on the X chromosome. We also performed the
detections of the seven motif-finding tools on CTCF ChIP-seq of
GM12878 cell line by using all chromosomes as a control. As shown
in the Table 2, these tools, excepting FisherMP and DREME, are
failed to find the YY1’s motifs in a genome wide way. Although
MotifRG, HOMER, and DECOD can output suspected motifs of
YY1 for the ChrX, they failed to detect the YY1 motifs by using all
chromosomes.

We then performed a systematic analysis of all combinatorial
motifs outputted in top 10 ranked results to check if they belonged
to potential combinatorial TFs. Indeed, these motifs were found to
be very significant and their consensus sequences were highly similar
to the sequences provided in the JASPAR database (Supplementary
Table S4). Among these top ten motifs, we aligned the binding peaks
of YY1, MAZ, STAT3, and USF2 that had ChIP-seq data available
in the ENCODE database. We found that the paired binding peaks
were highly correlated to each other (Pearson correlation 0.71 6

0.16). To understand the high correlations of these TFs and their po-
tential functions, we illustrate an integrative analysis of a 2.4 Mb re-
gion (ChrX: 46400000-48800000) that displays TF motifs, binding
peaks, and histone modifications. It is clearly shown that the TFs-
binding peaks are not only highly coordinated with each other, but
that they are also correlated to the histone modifications H3K27ac,
H3K79me2, H3K4me2, H3K9ac, H3K4me3, and H2A.Z (Fig. 4A).
Since these histone marks are usually located at active chromosomal
regions, these motifs may collaborate with CTCF for gene regulation.
In fact, the peaks of histone modifications and TF-binding peaks are
mainly observed at gene promoter regions (Fig. 4B). Meanwhile, the
TF-binding peaks are located within a �200 bp gap of histone modi-
fications, suggesting that the histone proteins had been removed in
order to facilitate TF binding (Fig. 4C). By searching the chromo-
somal sequence of this TF-binding region (400 bp, ChrX: 47052880-
47053260), we successfully detected the motifs for these TFs
(Fig. 4C, right side). For each TF, we further scanned 4471 CTCF
peaks located on chromosome X to detect peaks that included its
motifs. In total, we found 2,584, 4,033, 2,189, 2,254 and 2,526
peaks including CTCF, YY1, MAZ, STAT3 and USF2 motifs respec-
tively. We observed they are highly overlapped (Fig. 4D) and their
paired overlapping are significant (P-value < 0.05, hypergeometric

Table 2. Comparisons of CTCF and YY1’s motifs output on ChrX and all chromosomes by seven motif-finding tools, respectively

Tools Chr Top 1 predicted motif Predicted YY1’s motif Rank of YY1 motif

FisherMP ChrX AG(g/a)(g/t/a)GGC (g/a/c)CCAT 2
All GG(g/c)CAG(a/t/g)G CCA(c/t)CT(a/c/t) 4

XXmotif ChrX (c/g/t)(a/g/t)(c/g)(c/t)GCC(a/c)(c/t)CT(a/g/t)(c/g)TGG — —
All (a/g/t)(c/g)(c/t)GC(c/a)(a/c)(c/t)CT(a/g/t)(c/g)TGG(g/a) — —

MotifRG ChrX C(c/g)(c/t)AGG(g/t)GGC GCCATNTT 6
All C(c/g)(c/t)AG(c/a/g)(g/t)GGC — —

DREME ChrX AG(g/a)TGGC(g/a) C(a/t)CCATCT 28
All AG(g/a)(g/t)GGC(a/g) C(t/a)CCATCT 62

HOMER ChrX C(A/c/t)(c/g/t)C(t/a/c)NN(t/a)GG TTT(c/g)CAT 20
All C(c/a)(c/g)(t/c)AG(g/a)(g/t)G — —

DECOD ChrX (C/g)(a/t)G(c/g)C(a/t)(g/c)(g/c)(a/t)G (c/g)C(a/t)(t/g/c)(t/g/c)(c/g/t)(c/t)C(a/t)(g/c/t) 12
All (c/g)C(a/c/t)(c/g/t)C(t/a)G(g/c)(t/a)G — —

FastMotif ChrX (t/a)AGG(t/a)GGC(g/a) — —
All C(c/a/t)CAGC — —

‘—’ means out of detection.
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testing, one-sided. Supplementary Table S5). We further tested that if
the CTCF motifs can be detected from the YY1, MAZ, STAT3
and USF2 ChIP-seq data. As shown in Table 3, we found that
CTCF motifs were ranked in top 10 in YY1, MAZ and STAT3
ChIP-seq data. However they are not top ranked in USF2 ChIP-seq
data (rank of 21). These results were confirmed on all chromosomes,
suggesting CTCF could be a major partner of YY1, MAZ and
STAT3 in the whole genome. Meanwhile, CTCF might be a major
partner of USF2 in the X chromosome but not in the whole genome.
Taken together, the mutual analysis of these 5 TFs supports their ge-
nomic proximity as well as their co-occurrence with histone modifi-
cations, strongly suggesting that they are cooperative regulators of
gene expression.

Figure 4. Integrative analysis of CTCF and combinatorial TFs on chrX. (A) The co-localizations of TF-binding peaks and histone modifications on a �2.4 Mb re-

gion of chrX. (B) A zoom-in region of three genes. (C) A zoom-in region shows the complementary signals of TF-binding peaks and histone modifications. The

right side shows the DNA motifs and their coordinates of five TFs. (D) Venn graph shows the genomic overlapping of five TFs among CTCF-binding peaks.

Table 3. Detect CTCF motifs from YY1, MAZ, STAT3 and USF2

ChIP-seq of GM12878 cell line

TF Chr Predicted CTCF motif Rank of CTCF motif

YY1 ChrX GA(a/g)GG 7
All A(g/a)ATGG(c/a/t) 2

MAZ ChrX GAGG(g/a)G 6
All AGGNGG 3

STAT3 ChrX GGNGGA(a/g) 10
All GGAA(g/a/c)(t/a/g)G 4

USF2 ChrX GG(g/a/t)GGA 2
All AGGAG(g/a) 21

FisherMP was run ChrX and all chromosomes (All), respectively.
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4. Discussion

Finding the binding motifs of TFs and their combinations is a long
standing problem in computational biology. Since it has been proved
to be a NP-hard problem,51 suggesting there is no polynomial time
algorithm to find the exact solution, the existing methods are all
based on the balance of the precision and running speed. Many heu-
ristic strategies have been used in these methods, but they are still
quite time consuming on large scale ChIP-seq datasets. By fully using
parallel computation technology, FisherMP is designed as an ultra-
fast programme for discriminatively finding motifs on large-size
ChIP-seq datasets while keeping relatively high precision. Actually,
FisherMP is faster than most of other algorithms even when a single
thread is called, since it is designed to avoid multiple nested loops
and iteratively updating PWMs. FisherMP merges motifs and
removes redundancies quickly (without complex iterations) by calcu-
lating motif similarity to reduce computing time. Furthermore,
FisherMP identifies relatively more true motifs of the corresponding
TFs from all the ChIP datasets of a species than the other tools, and
has the additional capability of recovering many motifs of their co-
factors in the meantime. A useful feature of the software is that it
computes sequence indices containing all cis-regulatory elements of
the motif and stores the information in a hash map. This enables
FisherMP to output all important information including motif posi-
tion, its PFM, PICs and PWM, which is convenient for researchers
investigating motif profiles or performing module analyses. For ex-
ample, the PFM and PWM outputted by our pipeline can be directly
used to generate motif logos52 or calculate the binding energy.53 In
genome-wide predicting cis-regulatory modules from a large number
of ChIP-seq datasets, PWMs can be firstly used for scanning the mo-
tif positions among sequences to find homotypic or heterotypic clus-
ters of binding sites for any combination of TFs.30

Although large scale validations on ENCODE ChIP-seq datasets
demonstrate that FisherMP has exceptional performance in finding
motifs, there is always room to improve precision and running speed.
Also, although the majority of known motif profiles have lengths no
>10 bp, we noticed that some longer KK motifs exist. The default
parameters of FisherMP will not identify the full length of long KK
motifs since the single motif length is defaulted as 10 in the pipeline.
Users are suggested to extend the search range of motif lengths if
they want to detect longer motifs. Furthermore, there is little acceler-
ating room if the number of threads is >12, because the optimal
number of threads is 2(kmax–kminþ1) = 12 to construct two hash
maps in the first ‘fork-join’ structure of FisherMP. The default num-
ber of threads in FisherMP is set to kmax–kminþ1 if the minimum and
maximum motif lengths are set to kmin and kmax.

Finding combinatorial motifs is extremely important in real bio-
logical applications since gene expressions are widely controlled by
combinatorial TFs. We had applied FisherMP on 30 known TF com-
binations provided by TcoF database40 and 25 pairs were success-
fully recalled, achieving a high precision of 83.33%. A detailed
analysis of CTCF and YY1 shows their motifs are highly correlated
in chrX. Besides CTCF and YY1, we also analysed the top ranked
motifs of STAT3, MAZ and USP2, which all were clearly supported
by the binding peaks from independent ChIP-seq data from the
ENCODE project. Furthermore, these TF-binding peaks and their
DNA motifs were also observed to be correlated with multiple his-
tone modifications, exhibiting clusters of regulatory factors at gene
promoter regions. In general, this integrative analysis of DNA motifs,
binding peaks, histone modifications, and RNA-seq results can be
performed for detecting not only active TFs related to gene

expressions but also regulatory modules of TFs among divergent
cells. In summary, these computational results and integrative analy-
sis demonstrate that FisherMP is ultrafast and highly precise for
detecting combinatorial motifs. We believe that FisherMP can help
systematically investigate the mechanisms how TFs work collabora-
tively and coordinately in gene regulation.

Data availability

FisherMP was parallelized with OpenMP and coded in Cþþ for
achieving not only fast speed, but also the installation convenience.
FisherMP is very easy to install since OpenMP is a standard library
in the GCC and no additional plug-in for parallel programming is re-
quired. The Cþþ source code of FisherMP is publicly available at
https://github.com/shaoqiangzhang/fishermp.
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