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Abstract CAS (Cell Annotation Software) is a novel tool
for analysis of microscopic images and selection of the
cell soma or nucleus, depending on the research objectives
in medicine, biology, bioinformatics, etc. It replaces time-
consuming and tiresome manual analysis of single images
not only with automatic methods for object segmentation
based on the Statistical Dominance Algorithm, but also
semi-automatic tools for object selection within a marked
region of interest. For each image, a broad set of object
parameters is computed, including shape features and opti-
cal and topographic characteristics, thus giving additional
insight into data. Our solution for cell detection and analy-
sis has been verified by microscopic data and its application
in the annotation of the lateral geniculate nucleus has been
examined in a case study.
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Introduction

Studying the principles of the structure of neuronal nets can
bring us closer to unraveling the functioning of heterogenic
populations of neurons within the central nervous system.
The investigation of these nets involves consideration of
the characteristics of neurons and their distribution within
a particular nervous structure. In some cases, the distribu-
tion of neurons is enough to predict their characteristics.
Often neurons form repetitive, regularly organized groups
within which they share common physiological and neu-
rochemical characteristics. For example, this phenomenon
is pronounced within the visual cortex (Dyck and Cynader
1993; Kaas 2012; Ohki et al. 2005) and the spinal cord
(Merkulyeva et al. 2016). However, in many other cases the
structure of the object of interest is not so highly ordered;
however, this does not mean that neurons are randomly dis-
tributed. A good example is a laminated visual thalamic
structure, the lateral geniculate nucleus, LGN, which con-
tains neurons differentiated by multiple features, such as
input from ipsilateral or contralateral eye, the visuotopic
position of retinal projections, or the type of projecting gan-
glion cell (Sanderson 1971; Payne and Peters 2002; Schiller
2010). In such cases, we expect these neuronal nets to have a
complex structure; a full description of them can be obtained
only by means of thorough analysis of cell parameters mea-
sured within the entire structure. Obviously, this leads to a
significant increase in the effort needed to detect and ana-
lyze neuronal data, but this can be significantly facilitated
with the use of specialized software.

The software applications designed for this purpose
offer a wealth of opportunities for manual cell detection;
however, in many cases only restricted opportunities for
automatic cell detection are provided, usually based on
brightness and color filters. Sometimes these techniques
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are suitable, but there are many cases in which biological
objects have staining that is too difficult to be entrusted to
automatic detection modes. Examples include a high level
of noise, such as stained fibers and dendritic arbors, or high
variability of the color intensity of objects of interest. More-
over, subsequent analysis is performed in statistical data
processing software such as Statistica (StatSoft) and SPSS
Statistics (IBM). These applications have a specific way
of organizing data, but image processing software cannot
export data to these programs; therefore, a lot of additional
work is necessary for data preparation.

Cell Annotation Software, CAS!, was created in order
to meet the needs arising from investigations of objects
in histological specimens. *Object’ is a general term we
use throughout whole paper, but it should be understood
as cell soma or cell nucleus, since either can be selected
with CAS depending on the chosen parameters. The selec-
tion procedure ensures that any artifacts that are a result
of tissue processing are considered. Comparative analysis
of neuronal populations is also possible. Moreover, easy
navigation between various levels of analysis and final
data storage in files whose format is easily accessible to
other software makes CAS a unique and fully functional
program.

The program is designed to work with histologically and
immunohistologically prepared specimens of neuronal tis-
sue for which topological information about neural object
placement is crucial. It allows different parts of stratified
structures (e.g. laminae of neocortex, thalamic nuclei, spinal
cord) to be compared and their intrinsic inhomogeneity to
be examined. Definition of a region of interest of any shape
is very practical and easy to apply. The semi-automatic
detection of objects depends on only a few parameters; the
rules of how to set these parameters are given in this work.
Data unification in the X-axis allows for better comparison
between several specimens; this is important in ontoge-
netic research, in which the absolute size of brain structures
changes progressively.

Brightness normalization is important for quantitative
comparison of the degree of histochemical or immuno-
histochemical staining of tissues. This makes it possible
to analyze the amount of stained substance in objects
indirectly, which in turn allows examination of the accu-
mulation (or degradation) of a substance during mat-
uration of the nervous system or under experimental
conditions

Combining the aforementioned functionality of this tool
makes CAS a powerful solution which facilitates histologi-
cal structure analysis and removes the manual work which
is normally necessary with other open-source software.

Uhttp://home.agh.edu.pl/pioro/cas/
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The basic discussion of selecting the most accurate image
processing algorithms for object detection is presented in
“Object Segmentation”. This draws attention to many prob-
lems which must be considered in order to choose a suitable
method for data segmentation. Detecting objects requires
automatic description of shape, size, and distribution. The
implemented measures and their interpretations are given in
“Shape Parameters”. Finally, Section “Case Study” presents
an example of the application of CAS in research on the
LGN. The “Conclusions” summarize the article.

Object Segmentation

Although it has already been addressed, the problem of
correct segmentation between cell soma/nucleus and back-
grounds in extensive groups of microscopic images does not
yet seem to have been universally solved. This is interesting
because the problem of object detection in biplanar images
(in which there are only objects and a well-defined back-
ground) is widely discussed in the literature and there are
many methods with various degrees of accuracy for solving
it (Irshad et al. 2014).

The standard approach is based on a family of bina-
rization methods and other more advanced algorithms ded-
icated to this problem. In most cases, researchers conduct
object segmentation manually, exploiting the tool-set in
Imagel/Fiji (Papadopulos et al. 2007; Collins and et al.
2007; Schneider et al. 2012; Schindelin et al. 2012; Har-
tig 2001). Researchers, who specialize in image processing,
have also created solutions dedicated to specific applica-
tions. Examples include the Image]J plug-in (Forero et al.
2010; Pool et al. 2008), an Image] framework expansion
(Gulyas et al. 2016), software for the Matlab environment
(La Torre et al. 2013), and stand-alone applications such as
CellProfiler (Kamentsky et al. 2011; Carpenter et al. 2006).
Commercial solutions also exist, but their license usually
precludes them from comparison. In many of the afore-
mentioned solutions, extended H-minima is exploited for
segmentation, while in our work the Statistical Dominance
Algorithm SDA (Piorkowski 2016) is applied; this is novel
in this field.

This section presents the common problems which
should be considered when object segmentation is per-
formed on microscopic images. The discussion starts with
the choice of color space and its influence on the accu-
racy of the location of the border of the final object.
The difficulties which must be overcome by binariza-
tion procedures are then described. Finally, a compari-
son of the standard procedures exploiting the extended
H-minima method and the novel approach based on
the SDA algorithm applied in the presented software is
given.
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Adjusting Color space

Data gathered by microscopic examination is stored as color
images. Generally, the correct approach to further anal-
ysis of color data assumes the necessity of color-space
normalization (Ing et al. 2016). However, in the case of
microscopic nerve tissue data, which is the main objec-
tive of CAS development, normalization is not necessary
due to the monochromatic nature of the input data, which
holds most information in one or two channels of the three
used for acquisition (usually in RGB format). Moreover, the
differences between channels are not substantial. Previous
attempts at selecting the most representative color channel
of various tissues have shown that the best solution is to
choose the channel with the highest variance (in RGB) for
processing (Kolodziejczyk et al. 2014).

Standard approach to image binarization

The standard approach to object segmentation has already
been established and is based on microscopic prepara-
tions, a commonly used solution that was introduced in
neuro-science (Selinummi et al. 2005; Baecker 2010; Hartig
2001). This technique consists of two stages of image pro-
cessing: background correction and application of one of a
range of binarization methods.

Background correction aims to remove the very com-
mon phenomenon of uneven illumination. This can be
achieved in various ways, for instance by high-pass filter-
ing (which removes low frequencies). However, the rolling
ball algorithm, which is the most widely applied, is based on
background subtraction, as suggested by Sternberg (1983).
This procedure subtracts average illuminance in a usually
disc-shaped given neighborhood and prompts the operator
to specify its dimensions. It is assumed that this size (the
radius) should be a few times larger than the object’s area
in order to avoid distorting objects while maintaining the
effective removal of uneven illumination. A discussion on
the influence of changing radius on the performance of
the rolling ball algorithm was presented by Ekstrom et al.
(2016).

Binarization is the second stage; it assigns 1s for pix-
els belonging to the object and Os for the background. The
easiest approach uses global thresholding, which defines
one threshold value for the whole image. This is an effi-
cient solution for a group of selected images; however, when
larger variations in image content are considered or noise
and distortions are present, more sophisticated approaches
are necessary. In such cases, adaptive methods are useful,
such as the essential method introduced by Otsu (1975).
Imagel/Fiji software (Hartig 2001) also implements other
methods which can be exploited (e.g. Huang, Li, Max
Entropy, Renyi Entropy, Shanbhag, Yen, etc.). The common

advantage of all adaptive methods is the lack of necessity
for the operator to set parameters, hence the human influ-
ence on data processing is removed. Still, these techniques
may misinterpret areas of images that have different object
density and background type than the rest of the image, or
where images containing tissues have varying structures.

Extended H-minima Technique

Two of the basic methods of object segmentation in bipla-
nar images are the H-minima technique and the extended
regional version (extended H-minima) described by Soille
(1999). The main idea assumes that objects are sought that
differ in intensity from the background by least the value of
H. This algorithm is often applied for cellular nuclei seg-
mentation or detection of whole cells (Cheng et al. 2009;
Jung and Kim 2010; Koyuncu et al. 2016; Gertych et al.
2016). In the case of LGN images, this method gives unsta-
ble results. Figure 1a presents an exemplary part of an image
and the segmentation results achieved for consecutive H
parameter values: Fig. 1b — d. One can see that differ-
ent cells are present with increasing H. In the next steps,
some cells disappear, while others appear or reappear; there-
fore, image segmentation is not consistent, which is not
acceptable.

Statistical Dominance Algorithm

We suggest a novel approach for object segmentation based
on the recently introduced Statistical Dominance Algo-
rithm (SDA) Piorkowski (2016), which exploits statistics
to specify image content. For each pixel in a monochro-
matic image, a number of neighboring pixels are defined
such that the currently analyzed pixel is dominant over them
(or inversely, neighboring pixels are dominant over the cur-
rent pixel). As with H-minima, it is possible to define an
additional threshold that must be reached to assume dom-
inance. Thus, the output image contains statistics of point
distribution in the input data; however, it is interesting that
this method makes it possible to keep the original shapes.
Because relations between points instead of illumination
differences are computed, sensitivity to uneven illumination
and structure variation diminishes. Moreover, this technique
can derive indirect information about an object’s area.

The concept of the SDA algorithm is based on a statistical
calculation of how many points dominate the central point
of a neighborhood. The algorithm seems simple, especially
if it is presented in the form of the code given in Listing 1,
where:

— imgin — input image,
— imgout — output image,
SX, SY — width and height of input/output image,
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Fig. 1 Example of cell
segmentation with extended
H-minima for LGN. Red color
denotes objects which should be
located

(a) Source image.
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(b) Ext H-min, H=65.
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(c) Ext H-min, H=66.

(d) Ext H-min, H=67.

R — radius of neighborhood,

N — size of neighborhood mask (also size of mirror
margin used here), N = [R]

T - the threshold to be checked (especially for noisy
images); its value usually is positive.

The SDA algorithm for each pixel statistically deter-
mines its reference in the neighborhood. If a point dom-
inates most of the surrounding points, it is qualified as
a fragment of the sought object; otherwise, it is treated
as part of the background. Adjusting the minimum level
of brightness accordingly can eliminate background noise.
Figure 2 shows an illustrative picture of a sample bitmap
that assumes dark colors for objects (levels 0, 10, ...) and
bright for background (levels 90, 80, ...). The fragment of
the input image (see Fig. 2a) contains four different objects:

in the upper left: fragment of larger, uniform tissue (or
aggregation of objects);

in the lower left corner: regular cell, with lighter lumi-
nance;

in the upper right corner: cell with dendrites, with a
darker luminance;

in the bottom right corner: background luminance
unevenness (levels 60-70-80).

Using the SDA algorithm, statistics were calculated for
each point of the input image to produce an output image
(see Fig. 2b). The following parameters were adopted:
threshold = 50 and a disc-shaped mask with radius R =
3.75 (see Fig. 2c) that covers an area of 45 pixels (out-
put range: 0-45). By analyzing the received statistics the
following can be concluded:

Listing 1 The Statistical
Dominance Algorithm

for (x
for (y

{

imgout [x, y

N; x < SX - N; x++)
N; v < SY - N; y++)

1 =20;

for (i = -N; 1 <= N; i++)
for (j = -N; j <= N; j++)
if (i » 1 + 7 « J <= R » R)
if (imgin[x + i, y + j] >= imgin[x, y] + T)

imgout [x,

yl++;
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Fig. 2 The illustrative picture

2 5 9 14 20

of SDA algorithm processing

5 9 1420 0

principles

8 1319

o O ©O ©O o o

=
(=)

1218 0
17 0 0

© O W =+ O O©

N

o W - O O © o o

|
N W

—

o O O

O O O O O O O O O o o

O O O O © © o o o o

OOOOOOOOE
O O O O O OO ©O oo ©o o o o o o
O O O OO O 0O O O o o o o o o o

O O O O O © o o o

(a) An example input.

O O O O O ©O © o o o o
O ©O ©O O © ©O © © O © o

WIW|W|W|w|Ww|w
WD
W [= == |N]|w
W |[=|O=|N]|W
W= == |N]|w

W[N] | W

WIW|W|W| W |Ww|w

(¢) SDA mask, R=3.75.

objects of a small, round shape, regardless of real
brightness, are clearly promoted if only the minimum
threshold condition is met;

both cells have comparable statistical values despite the
difference in brightness in the input image; the normal-
ization of these values is shown in the real microscopic
image (Fig. 3b);

— dendrites have the highest statistical values;

— uniform larger objects are suppressed and can be
removed by simple binarization (Fig. 2d); this corre-
sponds to the real case presented in Fig. 5.

The aforementioned features are quite well suited to
biplanar images. In the case of additional interference, spots
with a different average brightness than the background
(Fig. 4) can be removed using adaptive binarization, e.g.
Otsu.

The above considerations show that the characteristics of
the SDA algorithm justify its use in the analysis of nerve
cells. Preliminary studies have shown the utility of seg-
mentation algorithms in other tissues and histopathological
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(d) Binarisation (threshold=25).

images for which classical methods such as Otsu or adap-
tive thresholding do not provide accurate solutions (Kowal
et al. 2013).

As described, it is necessary to set two parameters: the
size of the neighborhood, specified by radius R (which
defines a circular neighborhood), and minimal difference
threshold 7', which is analogous to the binarization thresh-
old H exploited in H-minima. In the case of the neigh-
borhood radius, the procedure is similar to the one used in
background subtraction: usually a radius two or three times
longer than the object is sufficient and testing for larger val-
ues does not change the outcome (this is presented more
precisely in “Comparison of Object Detection Methods™).
The selection of thresholding value, as in H-minima, also
demands operator interaction. However, some datasets con-
taining large groups of images give similar, stable results
for the same parameter settings (a group of images acces-
sible at BrainMaps (2005) was used for verification). The
novel approach implemented in CAS assumes exploitation
of the SDA algorithm in the background subtraction stage,
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Fig. 3 Rat DAPI neural image
with the SDA normalisation

(a) Rat Brain DAPI.

followed by manual or automatic application of global or
adaptive binarization. The image obtained from SDA should
also be binarized, which can be done automatically (in
the case of CAS, the Otsu method is suggested as it can
remove some types of disturbance; refer to Fig. 4), or the
global threshold can be set manually. The presented research
focuses on object detection with the application of SDA,
whose compatibility with other techniques has been proved.

The main advantage of SDA compared to other tech-
niques is the representation of objects not as a binary map,
but as an estimation of the probability that each pixel
belongs to the object. This is well visualized in Fig. 5.

This image is too difficult for the standard object seg-
mentation method, but was successfully segmented by
applying SDA. The complex input data (see Fig. 5a) shows
sagittal sections of cerebellum cut on a Leica microtome
and stained with cresyl violet. The greatest challenge here
is the presence of different tissues in the image. The stan-
dard approach based on binarization does not correctly
segment the cells from the (darker) tissue — the granu-
lar layer — regardless of whether the manual or automatic
global thresholding method implemented in Imagel/Fiji is
used. An example of the outcome is depicted in Fig. 5b.
Since the SDA’s output gives greyscale values (see light-
grey and dark-grey objects in Fig. 5c), it was possible to
continue with further segmentation and select an appropriate

Fig. 4 An example of LGN
image processed by the
suggested approach using SDA
and Otsu

(a) Original image.

@ Springer

(b) SDA output (R=50, Threshold = 7).

threshold in order to obtain accurate cell detection, as anno-
tated on the original image in Fig. 5c. This feature proves the
attractiveness of the SDA method for semi-automatic seg-
mentation of cells in nerve tissues (Kopacz and Piorkowski
2017). The presented solution does not perform automatic
segmentation of clustered nuclei; although this problem
is still unresolved, some approaches are addressed by
(Koyuncu et al. 2016; Jung and Kim 2010; Cheng et al.
2009; Gertych et al. 2012; Skobel et al. 2017).

Comparison of Object Detection Methods

In order to choose a method for further processing, the
agreement in object detection in biplanar microscopic
images was evaluated. Good quality resolution of objects
and backgrounds was assured in all examples. For the
standard approach, the global threshold was selected man-
ually to assure correct segmentation. The radius applied in
background subtraction methods and SDA was set to 50
pixels.

The goal of the first experiment was to evaluate the sim-
ilarity of object segmentation masks achieved for various
threshold values applied for standard and SDA methods. A
similar problem was presented by (Ekstrom et al. 2016),
but with lower precision. Here, the tests were performed
on images presenting the LGN and perigeniculate nucleus

v . ,i . ’ | QYJ . ‘,‘ . >’v
,' % Pl i = v
" L g ”’ ) .\\“‘
- . & .. y
v Qg hail . ,or g d'ﬁ *

(b) Transformed with SDA. (c) After Otsu binarization.
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Fig. 5 Example of SDA (c,d)
over performance on standard
segmentation methods (b) for
cell detection. Image is taken
from work (Mikula et al. 2007)
and presents the sagittal section
of the molecular layer, Nissl
stained in cerebellum brain of
the cat characterised by uneven
nuclei distribution

A “5- Sl
(c) Statistical output of SDA R=50 and

T=50.

PGN of 123-day-old cats acquired with a Leica MDI6000
inverted fluorescence microscope (Fig. 6a shows an exam-
ple.). The coincidence of object detection was evaluated
using the Dice coefficient (Dice 1945), which is expressed
by following formula:

2-TP

Dice = , (D
2-TP+FP+FN

where T P stands for true positives (count of pixels belong-
ing to objects), F' P describes false positives (count of pixels
wrongly assigned to the object), and FN is a false nega-
tive (count of object pixels which were wrongly assigned
to the background). In medical research, coefficient val-
ues above 0.9 are assumed to have good correspondence.
Figure 6b presents a 3D plot in which varying threshold
values are given on the X and Y axes, while the Dice coef-
ficient score change is presented by the surface. It can be
observed that for several threshold combinations, the coef-
ficient value reaches and exceeds 0.8-0.9; the maximum
value of 0.99 clearly shows that both methods can be applied
interchangeably.

We then concentrated on the relation between SDA
parameters applied for images of objects of varying sizes.

(b) Binary objects detected by rolling ball
R=50 and Otsu.

’
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»
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(d) Binary objects for SDA with manual
thresholding.

The influence of varying radius on detected object area is
presented in Fig. 6d for the image presented in Fig. 6c,
which was taken from a public dataset prepared for the
Nucleus Counting Challenge competition that took place at
the 2015 Biolmage Informatics Conference. From this plot,
one can see that the outcome stabilizes for radii above 20
pixels; the bigger the detected threshold value, the smaller
the influence of data size. Of course, when the image is
resized, the radius should be scaled as well. Moreover, the
radius is always related to the object size, but the relation to
the threshold value is nevertheless maintained.

The suggested methodology for object segmentation has
been also tested on various tissues taken from an interactive
multi-resolution brain atlas (BrainMaps 2005; Mikula et al.
2007). This database provided us with tissues from various
species prepared using different types of staining; this gave
a good overview of the possible problems that should be
addressed in the developed tool. Using CAS, it was possi-
ble to perform segmentation quickly (about 2 minutes per
slice), as presented in Fig. 7, while the parameters set in the
program are gathered in Table 1. As one can see, the pro-
gram enables accurate segmentation and labeling of objects
regardless of their shape and the input data type.
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Fig. 6 Different aspects of
SDA superiority over standards
methods

(a) Exemplary test image for
Dice.

(c) Exemplary test image for ra-
dius influence.

Discussion

The presented experiments and considerations address all
the problems encountered in achieving accurate object seg-
mentation in microscopic images of various tissues. From
the elaborated results, it was decided that the CAS tool
should interpret input images using only one data channel.
The SDA was suggested as a segmentation method; how-
ever, to maintain compatibility with other research tools,
the extended H-minima is also accessible. Finally, setting
method parameters demands knowledge about object size,
which for method radius is straightforward, while the SDA
threshold should be adjusted and the final binarisation threshold
can be chosen automatically using the Otsu approach.

Shape Parameters

It is not sufficient to develop techniques for automatic detec-
tion of objects in images: in most tasks, especially when
general insight into object population is sought, this is the
starting point for further analysis which demands thorough
inspection of object features. Depending on the require-
ments, the desired characteristics vary, yet in general they
concentrate on basic shape features which allow analysis
of not only circularity or elongation, but also spatial and
size distribution within a sample. This area of research is
very tiresome, therefore automation is of great importance.

@ Springer
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between standard and SDA method applied for various threshold val-
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(d) The relation between total object area and the choice of parameters
for SDA method.

Below, several shape parameters implemented in CAS are
detailed and an interpretation is given with some examples.

General Features

The area and perimeter of an object are computed in order
to obtain general information about the detected cell soma
or cell nucleus (for complex shapes a fractal area could be
considered Mazurek and Oszutowska-Mazurek 2014). Ini-
tially, the number of pixels belonging to the object is treated
as the area value; similarly, pixels on the object bound-
ary form the perimeter. However, for convenience it is also
possible to compute these features in real units if this infor-
mation was stored during data collection. Figure 8 presents
an exemplary cell with the perimeter denoted by a white
line, while Table 2 contains general features. The next fea-
ture — a centroid — holds information about object placement
in the entire image. However, when necessary, it is possible
in CAS to define start (x = 0%) and end (x = 100%) refer-
ence points and recalculate the x centroid coefficient for all
objects.

Other global information about an object is provided by
its intensity. The average brightness is defined for image /
as the average intensity of all pixels p that belong to the
object:

1
AvgB = — Z 1(p). )
Pl 4
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(a) The macaca, Weil’s staining.

staining against the neuronal potassium voltage-
gated channel-interacting protein 2.
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(f) The titi monkey, the immunohistochemical
staining against the neuronal potassium voltage-
gated channel-interacting protein 1.

Fig. 7 Examples of object segmentaton with CAS on images presenting various tissues with diverse stainig. The exemplary data was gathered
from BrainMaps (2005). The description contains — spieces: stain, plane, methodx

Since the intensities may vary depending on the data sam-
pling procedure, this measure is very subjective when
comparison between samples is considered. Therefore, a

intensity RI denoted by the user is exploited in order to
obtain objective object brightness information:

reference brightness was defined for which a reference Avg.B —RI
Table 1 CAS parameters for
which the results presented in Figure 7 Specie SDAR SDAT Binarisation Area Dendrites
Fig. 7 were obtained
a the makaka 40 30 Otsu 40 3
b the human 70 70 Otsu 100 3
c the mouse 40 13 Otsu 40 3
d the grivet 40 25 Otsu 10 3
e the titi monkey 40 40 Otsu 90 3
f the titi monkey 50 50 Otsu 120 3
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Fig. 8 Exemplary neural cell with marked perimeter by white line

Circularity Measures

An object’s shape is described by topological attributes
(Russ 1998; Gonzalez and Woods 2001; Jahne 2002), of
which only those not affected by translation and rotation
were chosen in this research. These have found applications
in research, where shape plays an important role (Nurzynska
et al. 2013; Nurzynska and Piorkowski 2016; Piorkowski
et al. 2017). The formulation of many attributes exploits
information about area A and perimeter P to define a circu-
larity measure. Here are some examples implemented in the
described software:

4.-71-A

CIZT’ “
P2

Cy = —, 5

2 I )
2-m-A

Cy = —, 6

3 P (6)
P

Cy = —, @)
T

Table 2 General features computed for exemplary neural cell pre-
sented in Fig. 8

Feature Value
Area [pum?] 145.90
Perimeter [pum] 61.12
Centroid (x,y) (392, 104)
Average brightness 93.04
Relative brightness 0.36
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Apax
Cs = , 8
5 P (®)
Mali k F 1 9
alinowska = —— — 1,
24/m - A
4. A
Roundness = ————, (10)
My
A
Roughness = 2 -,/ —, (11
b4
P2
Shapeless = ——, 12
apeless 17 A (12)

where Apax is a maximal area calculated as a multipli-
cation of the maximal width and height of the object, and
M 4x1s is the length of the major axis of an object.

Table 3 presents examples of various shapes and their cal-
culated features. The objects are ordered by ascending area
size to better check the influence of scale on the result. It
can be observed that in case of the C; parameter, a value
equal to 1 corresponds to a circular shape, while a smaller
value corresponds to a more elongated shape. In contrast,
smaller values of C, and C3 better describe round shapes,
while bigger values are obtained for elongated ones.

It is difficult to find a pattern in which C4, Cs, and
Roughness are considered. The results gathered for C4 seem
completely unrelated to the shape, as one can see that using
only the circumference for description is insufficient. A
similar observation is also seen for the Roughness param-
eter, for which only area was exploited in the calculation.
However, for Cs, the feature value is still strongly related
to the object size, yet smaller values represent more circular
shapes when objects with comparable area are considered
(for instance, check the outcomes in rows 4-6, 7 with 8,
etc.).

Next, when the Malinowska parameter is taken into
account, values close to O describe circular objects, while
higher values are related to longer shapes; this is also true
of the Shapeless parameter. Moreover, we can additionally
state that this works inversely for C; when the formulas
are compared. Finally, Roundness is equal to 1 for circular
objects and gets smaller for longer shapes.

Other

The last group of parameters that describe objects should
help to organize this data and obtain more spatial informa-
tion about it. First of all, it is possible to mark a region
(bigger patch) on the image and work only with the objects
belonging to it. Such a region can be automatically divided
into three perpendicular horizontal layers. Next, for each
object the major and minor axes are found. Here, two
algorithms are exploited:
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Table 3 Topological features computed for different cells
Feature A [umz] P [um] Ci Cy Cs Cy Cs Malinowska Roundness Roughness Shapeless
O 1 4 0.79 16 1.57 1.27 0.5 0.13 0.64 1.13 1.27
O 1.57 4.84 0.84 15 2.04 1.54 0.41 0.09 0.50 1.41 1.19
D> 314 8.58 054 23 230 273 047 037 0.25 2.00 1.87
Q 3.14 6.28 1.00 13 3.14 2.00 0.32 0.00 1.00 2.00 1.00
‘ 75.12 53.38 0.33 37 22 43 179 0.74 0.42 25 3.02
83.20 44.49 0.53 23 30 36 501 0.38 0.58 26 1.89
L]
:‘}
g 84.55 61.51 0.28 44 22 50 92 0.89 0.40 26 3.56
92.93 47.19 0.52 23 31 38 581 0.38 0.42 28 1.91
%«‘ 94.57 50.68 0.46 27 30 41 1294 0.47 0.73 28 2.16
I 139.16 50.68 0.68 18 44 41 490 0.21 0.73 34 1.47
. I 145.90 61.12 0.49 25 38 50 316 0.43 0.68 35 2.04
"E. 184.06 74.66 0.41 30 40 61 176 0.55 0.37 39 2.41
! A 237.03 76.59 0.51 24 50 63 1168 0.40 0.58 44 1.97
! > 257.98 120.30 0.22 56 34 98 423 1.11 0.27 46 4.46
Ellipse Fit - chooses the best fitted ellipse that can be ~ Case Study

inscribed in the object. The major and minor axes corre-
spond to those of the ellipse. Moreover, the centroid can
be recalculated to overlap the ellipse center point.

Feret — a shape feature parameter that computes the rela-
tion between the two longest and perpendicular dimen-
sions of an object. Principal component analysis (PCA)
is exploited to gather the results. The major axis corre-
sponds to the direction of the first eigenvector; the minor
axis is related to the second one.

In both cases, the reference angle is computed as the angle
between the object’s major axis and the image’s x-axis. This
is used to position objects better in the input data.

Data Processing Example

Comprehensive investigation of cell populations is espe-
cially needed in sophisticated structures in which charac-
teristics of neurons are dependent upon their location. A
good example is the LGN of cats; this is the visual thalamic
nucleus, which provides the main transmission of informa-
tion from the retina to the primary visual cortex. The LGN
has a 6-layered structure in which the principal ones, A, Al,
and Cy receive input from different eyes: the ipsilateral side
(A1) and the contralateral side (A, Cy) (Payne and Peters,
2002, pp. 5-9). Moreover, the retinal afferents from different
parts of the visual space project to the LGN, thus forming a
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Fig. 9 The scheme of the 1°
frontal slice of the LGN with
aligned visuotopic coordinates
(Sanderson 1971). A, Al, Cym
layers of the LGN. The
visuotopic coordinates assigned
in degrees are on the top of the
figure

G

highly ordered map—the so-called visuotopic map (Sander-
son 1971)—which is depicted in Fig. 9. There is a lot of
information in the literature about the non-uniform distribu-
tion of neurons in LGN layers according to their functional
features (Bowling and Wieniawa-Narkiewicz 1986; LeVay
1977; Mitzdorf and Singer 1977). For example, particular
types of LGN relay cells—so-called Y cells (Burnat et al.
2002; Kaplan 2014; Schiller 2010)—tend to be located close
to the interlaminar borders of layers A and Al (Bickford
et al. 1998; Bowling and Wieniawa-Narkiewicz 1986; Mitz-
dorf and Singer 1977); in general, they tend to be located
in the representation of the visual field periphery (Hoff-
mann et al. 1972; LeVay 1977). Herein, we used LGN slices
labeled with a specific Y cell marker for demonstration
of CAS: SMI-32 antibodies (labeling nonphosphorylated
heavy-chain neurofilament proteins) (Bickford et al. 1998;
Carden et al. 2000). These antibodies visualize the cell soma
and proximal dendrites of immunopositive cells. They are
complex to detect because the cell soma is often labeled
unevenly and the unvisualized nucleus disturbs the outline
of the soma.

Histology and Image Acquisition

All experimental procedures were approved by the Ethics
Commission of the Pavlov Institute of Physiology. Exper-
iments were performed in strong accordance with the
requirements of Council Directive (2010/63/EU) of the
European Parliament on the protection of animals used for
experimental and other scientific purposes.

All presented research exploits images of the LGN of
123-day-old cats. The animals were perfused transcardially
with 0.9% NaCl (0.6L) and 4% paraformaldehyde (1.0L,
0.1M PBS at pH = 7.4) under deep anesthesia (zoletil
and xylazine mixture (1:3)). After perfusion, the brain was
stored in 20 and 30% sucrose until it sank. The visual tha-
lamus was cut on a freezing microtome into 50um frontal
sections. Sections were collected in 0.1M PBS, pH = 7.4.
Immunohistochemical staining was performed with Vectas-
tain reagents (Vector Laboratories, Peterborough, United
Kingdom) in accordance with the manufacturer’s recom-
mendations. One of three primary antibodies was applied
for antigen labeling:

— monoclonal mouse primary antibodies to NeuN (Milli-
pore, MAB377, in 1:5000 dilution);

— monoclonal mouse primary antibodies to non-
phosphorylated Neurofilament H (NF-H) (Covance,
SMI-32, in 1:3000 dilution);

— polyclonal rabbit primary antibodies to the parvalbumin
(Abcam, ab11427, in 1:10000 dilution).

The primary antibodies were labeled with:

— Biotinylated secondary antibodies (goat anti-rabbit IgG,
BA-1000, or horse anti-mouse IgG, BA-9200; Vec-
tor Laboratories, Peterborough, United Kingdom) for
further DAB/Ni staining protocol for light microscopy.

—  Fluorochrome-conjugated secondary antibodies (Alexa
Fluor488 goat anti-mouse IgG or Alexa Fluor568 goat
anti-rabbit IgG, Thermo Fisher Scientific, Waltham,

Table 4 Description how data

preparation staps are performed Action Previous approach Cell annotation software
with and without CAS
1 Manual Manual
2 Manual Automatic
3 Manual Semi-manual (needs parameter setting)
4 Manual (Excel) Automatic (allows parameter selection)
5 Manual (Excel) Automatic (uses data generated by user)
6 Automatic (SPSS) Automatic (user sets the normalization coefficients)
7 Automatic (SPSS) Automatic (user sets the reference region)
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1000 pm

(a) Original LGN image.

(c) Automatically computed sub-layers and cells. (d) Schema of slice with cell distribution.

(e) Cells labelling.
Fig. 10 The stages of slice processing with CAS
MA, USA) for cell detection with a fluorescence micro- Corporation, Tokyo, Japan). Fluorescent slices were ana-
scope. lyzed with a Leica DMI6000 inverted fluorescence micro-

scope (at the Center for Molecular and Cell Technologies,

DAB- li 1 i 1 .
reacted slices were analyzed with an Olympus Research Park, St. Petersburg State University).

microscope (Olympus Corporation, Tokyo, Japan, a 10x
magnification lens) using a Nikon photo camera (Nikon The image data preparation procedure:

Fig. 11 The stages of slice
processing
100 um
(a) Original image. (b) Automatically detected objects.
(c) Cells chosen by the operator. (d) Cells with cutted dendrites.
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Fig. 12 The examples of cell
detection with CAS. The
samples of tissue with
parvalbumin positive cells
acquired under light (a, b) and
fluorescent (¢, d) microscopes.
The original images are on the
left and the processed ones on
the right

Fig. 13 The examples of cell
detection with CAS. The
samples of tissue with NeuN
positive cells acquired under
light (a, ¢, e) and fluorescent (b,
d, f) microscopes. The original
images are on the top and the
processed ones on the bottom.
The middle shows the operation
applied for object detection: red
— automatic cell detection; cyan
— cell division line; yellow —
removed objects (when placed
next to red line, the division line
(cyan) was omitted for clarity);
green — manually drawn
elements
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100 pm

(a) Light — original image. (b) Light — detected objects.

100 pm

(C) Fluorescent — original image. (d) Fluorescent — detected objects.

100 pm 100 pm

(a) Light — original image. (b) Fluorescent — original image.

(c) Light — object processing.

(e) Light — detected objects. (f) Fluorescent — detected objects.
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1. Mark the layer borders.
Mark the sub-layer parts of layers.

3. Outline all labelled cells with appropriate parameters
one-by-one.

4. Measure data and copy the results to an external file.

5. Complete the measurement file with additional infor-
mation about the layer, sublayer, cell location, etc.

6. Perform cell distribution normalization on the X axis.

7. Perform cell brightness normalization using a reference
region.

Table 4 compares how the analyses of input data were
performed before and after the dedicated software was
implemented. Actually, in CAS the order of steps is slightly
different due to its automatic character. Firstly, parameters
necessary for correct cell soma segmentation are sought,
followed by manual annotation of layers A, Al and Cym
(see Fig. 10b). Next, the automatic procedures compute
the three sub-layers and detect cells (see Fig. 10c). Man-
ual correction is sometimes necessary when several cells
are detected as one. In such cases, the software supports
division of the object and deletion of unsuitably selected
objects and artifacts. It is worth noting that at the end of
the selection, the cutting of dendrites can be performed in

Fig. 14 Comparison between
manual annotation (a) and
automatic segmentation with
CAS (b). (¢) Red stands for
manual annotation, blue for
automatic, and black is shown
when the contour overlaps

CAS; therefore, the soma is selected in all cells using uni-
form parameters. Although, there are solutions which may
need to preserve dendrites for visualization of the LGN
network (Morgan et al. 2016). In the case of manual out-
lining, the cell soma was detected by an operator for each
cell in the delineation process. The automatic cell detec-
tion procedure, manual correction, and dendrite cutting are
shown in Fig. 11. Next, the reference brightness region and
points for spatial normalization are selected. Finally, all
prepared data can be saved for further processing. The sum-
mary table contains the number and location marks of each
cell soma, chosen measurement parameters, and additional
normalized data. In addition, the current status of the pro-
cessed image (with region borders and chosen objects) can
be saved in a CSV file for subsequent correction of mea-
surements. Also, the processed image can be saved in two
additional forms. The first form has labeled cells with their
serial numbers (similar to those in the text file) (Fig. 10a)
and is used for an experimental protocol. The second, depicted
in Fig. 10d, has bordered regions of interest and color dots
in the place of labeled cells, which significantly facilitates
the primary assessment of cell distribution and subsequent
data presentation.

.

(c) Comparison.
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Table S Comparison of

performance when manual

outlining and semi-automated
solution accessible in CAS
were exploited

Action Minimal Maximal Average
Manual outlining 540 1380 873
Automatic segmentation 10 30 19
Manual corrections 180 600 378

Cell segmentation speed-up - - 55.3 times
Cell segmentation with corrections speed-up - - 2.29 times

SMI-32 antibodies are just one of many markers used to
study the LGN and other neuronal structures. To demon-
strate the abilities of the software, we would like to addi-
tionally show the detection of small inhibitory interneurons
labeled with antibodies against parvalbumin (Stichel et al.
1988) and all neurons within the LGN labeled with NeuN
antibodies (Mullen et al. 1992). We examined cell detection
in images obtained with light and fluorescent microscopes.
The original images are shown in Figs. 12a,c and 13a,c;
the results of detection are shown in Figs. 12b,d and 13b,d.
The same quality of detection could be achieved in slices
prepared for light as for fluorescent microscopy. The par-
valbumin positive cells (see Fig. 12) were easy to detect and
manual correction was almost not needed. In the case of
NeuN-positive cells (Fig. 13), the difficulties of cell detec-
tion can be seen. The cell borders are detected correctly,
but their density does not allow each cell to be recognized
separately. This was due to the high neuronal density in
the examined nucleus and the use of 50um thick slices
containing several layers of cells that overlap each other in
the resulting image. This was overcome with manual cor-
rection tools and the program can still be used to measure
restricted sample areas in structures of interest.

The application of CAS in research on the distribution of
neuronal populations in the LGN considerably reduced the
workload needed in data analysis. Two of the most time-
consuming procedures— outlining cell borders and primary
data preparation (adding of slice/region marks in the result
table, spatial and brightness normalization)—are done auto-
matically, thus shortening the analysis. In order to obtain
some measurable data, 10 samples of spinal cord, LGN,
and cortex were prepared. In the experimental group, var-
ious types of immunohistochemical staining were applied:
parvalbumin, calretinin, NeuN, and SMI-32. The number
of cells varied from 84 to 210 (with average equal to
142.9). Manual outlining (depending on complexity) took
from 540 to 1380 seconds (average 873), while CAS needed
from 10 to 30 seconds (average 19 seconds) for automatic
cell segmentation. The computation was performed on a
personal computer running Windows 10 with a 3.2GHz
Intel CPU and 16GB of RAM. Additional manual cell
improvement was applied to some slices: the operator
checked the correctness of automatic selection and removal
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or cutting of some cells, which took from 180 to 600 sec-
onds (average 378). In the results, we can see that 55
times speed-up was achieved for automatic cell selection,
which is the most tiresome work. Of course, to improve
the result, some additional semi-automatic action was nec-
essary, which resulted in achieving a final speed-up of 2.29
times. Figure 14 presents an example of manual and auto-
matic location of cell borders while Table 5 summarises the
performance.

In addition, the software has convenient instruments for
data presentation and re-examination. It is also worth point-
ing out that if changes are made (e.g. removing or adding
cells, etc.), the results are recomputed automatically without
operator intervention, which makes corrections and changes
easy to apply. As aresult, we have a convenient tool to detect
specific changes of the LGN under experimental conditions
or as a consequence of age-related development.

Conclusions

This work addresses the problem of automatic cell soma
or nucleus segmentation and annotation in microscopic
images. A detailed comparison of the standard image pro-
cessing method against a novel approach exploiting SDA
was presented. The research shows that the method used in
CAS enables object border detection with comparable qual-
ity to standard methods. In difficult cases in which there
are more types of object to be recognized, it outperforms
the current leading techniques. In addition, shape features
were introduced for description of object characteristics and
specific analysis and interpretation were performed. Addi-
tional features implemented in CAS which enable data scale
changes, data division into layers, and other functional-
ity were presented with a case study of semi-automatic
annotation of the LGN of cats.

Cell Annotation Software was designed to meet the
need for a system which combines the various functional-
ities necessary for segmentation and analysis of objects in
neural specimens. The presented approach proved to ful-
fill all demands and allows: saving topological information
about cell distribution by region definition; comparative
analysis of different slices and investigation of changes in
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the neuronal population due to x-axis normalization; and
quantitative comparison of the degree of histological or
immunohistological staining of tissues in slices when a
change in the production quantity of a particular substance
due to the influence of experimental factors is investigated.
Moreover, simple recalculation of results and storage in
open-format files make this software easy to incorporate in
research pipelines.

The practical application of CAS in research conducted
at the Pavlov Institute of Physiology proved to be a great
culmination of this research, but a new development frontier
has also arisen. In future work, we plan to address the prob-
lem of multiple labeling, working with tissues with various
cell types and 3D reconstruction.

Information Sharing Statement

In the article we worked with data from the following
data sources:

1. Dataset provided for the Nucleus Counting Challenge
(Fig. 3, 6¢) (Maric 2015).

2. BrainMaps: An Interactive Multiresolution Brain Atlas
(BrainMaps 2005) decribed by Mikula et al. (2007)
(Figs. 5 and 7)

3. Data acquired by A. Mikhalkin (other figures).

The presented Cell Annotation Software can be down-
loaded from http://home.agh.edu.pl/pioro/cas/.

Acknowledgements The authors thank Shkorbatova P. for NeuN
primary antibody, prof. Musienko P. for microscopic equipment, and
the Center for Molecular and Cell Technologies, Research Park, St.
Petersburg State University.

K. Nurzynska was supported by statutory funds for young
researchers (BKM/507/RAU2/2016) from the Institute of Informatics,
Silesian University of Technology, Poland.

A. Piorkowski was supported by AGH University of Science
and Technology, Faculty of Geology, Geophysics and Environmental
Protection as a part of a statutory project.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

Baecker, V. (2010). Workshop: Image processing and analysis with
ImageJ and MRI Cell Image Analyzer.

Bickford, M.E., Guido, W., & Godwin, D.W. (1998). Neurofilament
proteins in Y-cells of the cat lateral geniculate nucleus: Normal
expression and alteration with visual deprivation. The Journal of
neuroscience, 18(16), 6549-57.

Bowling, D.B., & Wieniawa-Narkiewicz, E. (1986). The distribution
of on- and off-centre X- and Y-like cells in the A layers of the
cat’s lateral geniculate nucleus. The Journal of Physiology, 375,
561-72.

BrainMaps (2005). BrainMaps: An Interactive Multiresolution Brain
Atlas. http://brainmaps.org.

Burnat, K., Vandenbussche, E., & Ernicki, B. (2002). Global motion
detection is impaired in cats deprived early of pattern vision.
Behavioural Brain Research, 134(1-2), 59-65.

Carden, W.B., Guido, W., Ziburkus, J., Datskovskaia, A., Godwin,
D.W., & Bickford, M.E. (2000). A novel means of Y cell iden-
tification in the developing lateral geniculate nucleus of the cat.
Neuroscience Letters, 295, 5-8.

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang,
I. H., Friman, O., Guertin, D. A., Chang, J. H., Lindquist, R. A.,
Moffat, J., et al. (2006). Cellprofiler: image analysis software
for identifying and quantifying cell phenotypes. Genome Biology,
7(10), R100.

Cheng, J., Rajapakse, J.C., et al. (2009). Segmentation of clustered
nuclei with shape markers and marking function. /EEE Transac-
tions on Biomedical Engineering, 56(3), 741-748.

Collins, T.J., et al. (2007). Imagej for microscopy. Biotechniques, 43(1
Suppl), 25-30.

Dice, L.R. (1945). Measures of the amount of ecologic association
between species. Ecology, 26(3), 297-302.

Dyck, R.H., & Cynader, M.S. (1993). An interdigitated columnar
mosaic of cytochrome oxidase, zinc, and neurotransmitter-related
molecules in cat and monkey visual cortex. Proceedings of the
National Academy of Sciences of the United States of America,
90(19), 9066-9069.

Ekstrom, A., Suvanto, R.W,, Yang, T., Ye, B., & Zhou, J. (2016).
Robust neuron counting based on fusion of shape map and multi-
cue learning. In International conference on brain and health
informatics (pp. 313). Springer.

Forero, M.G., Pennack, J.A., & Hidalgo, A. (2010). Deadeasy neu-
rons: automatic counting of hb9 neuronal nuclei in drosophila.
Cytometry Part A, 77(4), 371-378.

Gertych, A., Joseph, A.O., Walts, A.E., & Bose, S. (2012). Automated
detection of dual pl16/ki67 nuclear immunoreactivity in liquid-
based pap tests for improved cervical cancer risk stratification.
Annals of Biomedical Engineering, 40(5), 1192—-1204.

Gertych, A., Ma, Z., Tajbakhsh, J., Velasquez-Vacca, A., & Knudsen,
B.S. (2016). Rapid 3-d delineation of cell nuclei for high-content
screening platforms. Computers in Biology and Medicine, 69,
328-338.

Gonzalez, R.C., & Woods, R.E. (2001). Digital image processing, 2nd
Edn. MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Gulyas, M., Bencsik, N., Pusztai, S., Liliom, H., & Schlett, K. (2016).
Animaltracker: An imagej-based tracking api to create a cus-
tomized behaviour analyser program. Neuroinformatics, 14(4),
479-481.

Hartig, S.M. (2001). Basic image analysis and manipulation in
Imagel. In Current protocols in molecular biology. Wiley. ISBN
9780471142720. https://doi.org/10.1002/0471142727.mb1415s102.

Hoffmann, K., Stone, J., & Sherman, S.M. (1972). Relay of receptive-
field properties in dorsal lateral geniculate nucleus of the cat.
Journal Neurophysiology, 35(5), 518-531.

Ing, N., Salman, S., Ma, Z., Walts, A., Knudsen, B., & Ger-
tych, A. (2016). Machine learning can reliably distinguish his-
tological patterns of micropapillary and solid lung adenocar-
cinomas. In Information technologies in medicine, advances
in intelligent systems and computing (Vol. 471, pp. 193-206).
Springer.

Irshad, H., Veillard, A., Roux, L., & Racoceanu, D. (2014). Meth-
ods for nuclei detection, segmentation, and classification in digital

@ Springer


http://home.agh.edu.pl/pioro/cas/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://brainmaps.org
https://doi.org/10.1002/0471142727.mb1415s102

382

Neuroinform (2017) 15:365-382

histopathology: A review—current status and future potential.
IEEE Reviews in Biomedical Engineering, 7, 97-114.

Jahne, B. (2002). Digital image processing: Concepts, algorithms and
scientific applications, 5th Edn. NJ, USA: Springer-Verlag New
York, Inc., Secaucus.

Jung, C., & Kim, C. (2010). Segmenting clustered nuclei using H-
minima transform-based marker extraction and contour parame-
terization. IEEE Transactions on Biomedical Engineering, 57(10),
2600-2604.

Kaas, J.H. (2012). Evolution of columns, modules, and domains in
the neocortex of primates. Proceedings of the National Academy
of Sciences of the United States of America, 109(Suppl), 10,655—
10,660.

Kamentsky, L., Jones, T.R., Fraser, A., Bray, M.A., Logan, D.J., Mad-
den, K.L., Ljosa, V., Rueden, C., Eliceiri, K.W., & Carpenter,
A.E. (2011). Improved structure, function and compatibility for
cellprofiler: Modular high-throughput image analysis software.
Bioinformatics, 27(8), 1179-1180.

Kaplan, E. (2014). The new visual neurosciences. In Werner, J.S., &
Chalupa, L.M. (Eds.) The M, P, and K pathways of the primate
visual system revisited (pp. 215-227). Cambridge: MIT Press.

Kolodziejczyk, A., Ladniak, M., & Piorkowski, A. (2014). Construct-
ing software for analysis of neuron, glial and endothelial cell num-
bers and density in histological nissl-stained rodent brain tissue.
Journal of Medical Informatics and Technologies, 23, T7-86.

Kopacz, B., & Piorkowski, A. (2017). A Review of the Efficient Algo-
rithm Implementation for Image Processing in the ImageJ and
Matlab Environments (Przeglad mozliwosci wydajnej implemen-
tacji algorytmow przetwarzania obrazéw w Srodowisku Matlab).
Studia Informatica, 38(132), 177-190.

Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., & Monczak,
R. (2013). Computer-aided diagnosis of breast cancer based on
fine needle biopsy microscopic images. Computers in Biology and
Medicine, 43(10), 1563-1572.

Koyuncu, C.F.,, Akhan, E., Ersahin, T., Cetin-Atalay, R., & Gunduz-
Demir, C. (2016). Iterative H-minima-based marker-controlled
watershed for cell nucleus segmentation. Cyfometry Part A, 89,
338-349.

La Torre, A., Alonso Nanclares, L., Muelas Pascual, S., Pefia Sanchez,
J.M., Oroquieta, F., et al. (2013). 3d segmentations of neuronal
nuclei from confocal microscope image stacks. Frontiers in neu-
roanatomy, 7, 1-10.

LeVay, S., Ferster, D. (1977). Relay cell classes in the lateral genic-
ulate nucleus of the cat and the effects of visual deprivation. The
Journal of Comparative Neurology, 172(4), 563-84.

Maric, D. (2015). 2015 Biolmage Informatics Conference: Nucleus
Counting Challenge. https://isg.nist.gov/BII_2015/webPages/pages/
nucleusCounting/NucleusCounting.html.

Mazurek, P., & Oszutowska-Mazurek, D. (2014). From the slit-island
method to the ising model: Analysis of irregular grayscale objects.
International Journal of Applied Mathematics and Computer Sci-
ence, 24(1), 49-63.

Merkulyeva, N., Veshchitskii, A., Makarov, F., Gerasimenko, Y.,
& Musienko, P. (2016). Distribution of 28 kDa calbindin-
immunopositive neurons in the cat spinal cord. Frontiers in
Neuroanatomy, 9, 166.

Mikula, S., Trotts, 1., Stone, J.M., & Jones, E.G. (2007). Internet-
enabled high-resolution brain mapping and virtual microscopy.
Neuroimage, 35(1), 9-15.

Mitzdorf, U., & Singer, W. (1977). Laminar segregation of afferents to
lateral geniculate nucleus of the cat: an analysis of current source
density. Journal of Neurophysiology, 40(6), 1227-44.

Morgan, J.L., Berger, D.R., Wetzel, A.W., & Lichtman, J.W. (2016).
The fuzzy logic of network connectivity in mouse visual thalamus.
Cell, 165(1), 192-206.

@ Springer

Mullen, R.J., Buck, C.R., & Smith, A.M. (1992). NeuN, a neuronal
specific nuclear protein in vertebrates. Development, 116, 201—
211.

Nurzynska, K., & Piorkowski, A. (2016). The correlation analysis of
the shape parameters for endothelial image characterisation. Image
Analysis and Stereology, 35(3), 149-158.

Nurzynska, K., Kubo, M., & Muramoto, K. (2013). Shape parameters
for automatic classification of snow particles into snowflake and
graupel. Meteorological Applications, 20(3), 257-265.

Ohki, K., Chung, S., Ch’ng, Y.H., Kara, P, & Reid, R.C. (2005).
Functional imaging with cellular resolution reveals precise micro-
architecture in visual cortex. Nature, 433(7026), 597-603.

Otsu, N. (1975). A threshold selection method from gray-level his-
tograms. Automatica, 11(285-296), 23-27.

Papadopulos, F., Spinelli, M., Valente, S., Foroni, L., Orrico, C.,
Alviano, F., & Pasquinelli, G. (2007). Common tasks in micro-
scopic and ultrastructural image analysis using imagej. Ultrastruc-
tural Pathology, 31(6), 401-407.

Payne, B.R., & Peters, A. (2002). The cat primary visual cortex.
In Payne, B.R. & Peters, A. (Eds.) The concept of cat primary
visual cortex (pp. 1-129). San Diego, London, Boston, New York,
Sydney, Tokyo, Toronto: Academic Press.

Piorkowski, A. (2016). A statistical dominance algorithm for edge
detection and segmentation of medical images. In Information
technologies in medicine, advances in intelligent systems and
computing (Vol. 471, pp. 3—14). Springer.

Piorkowski, A., Nurzynska, K., Gronkowska-Serafin, J., Selig, B.,
Boldak, C., & Reska, D. (2017). Influence of applied corneal
endothelium image segmentation techniques on the clinical para-
meters. Computerized Medical Imaging and Graphics, 55, 13-217.

Pool, M., Thiemann, J., Bar-Or, A., & Fournier, A.E. (2008). Neu-
ritetracer: a novel imagej plugin for automated quantification
of neurite outgrowth. Journal of Neuroscience Methods, 168(1),
134-139.

Russ, J. (1998). The image processing handbook, 3rd Edn. Springer,
and IEEE Press: CRC Press.

Sanderson, K.J. (1971). The projection of the visual field to the lateral
geniculate and medial interlaminar nuclei in the cat. The Journal
of Comparative Neurology, 143(1), 101-108.

Schiller, PH. (2010). Parallel information processing channels created
in the retina. Proceedings of the National Academy of Sciences of
the United States of America, 107(40), 17,087-17,094.

Schindelin, J., Arganda-Carreras, ., Frise, E., Kaynig, V., Longair, M.,
Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., & Schmid, B.
et al. (2012). Fiji: an open-source platform for biological-image
analysis. Nature Methods, 9(7), 676—682.

Schneider, C.A., Rasband, W.S., Eliceiri, K.W., et al. (2012). NIH
Image to Imagel: 25 years of image analysis. Nature Methods,
97), 671-675.

Selinummi, J., Seppala, J., Yli-Harja, O., & Puhakka, J.A. (2005).
Software for quantification of labeled bacteria from digital micro-
scope images by automated image analysis. Biotechniques, 39(6),
859-862.

Skobel, M., Kowal, M., & Korbicz, J. (2017). Nuclei recognition using
iterated conditional modes approach. In International conference
on computer recognition systems (pp. 326-335). Springer.

Soille, P. (1999). Morphological Image Analysis: Principles and
Applications. NJ, USA: Springer-Verlag New York, Inc. Secaucus.

Sternberg, S.R. (1983). Biomedical image processing. Computer,
16(1), 22-34.

Stichel, C.C., Singer, W., & Heizmann, C.W. (1988). Light and elec-
tron microscopic immunocytochemical localization of parvalbu-
min in the dorsal lateral geniculate nucleus of the cat: evidence for
coexistence with GABA. The Journal of Comparative Neurology,
268(1), 29-37.


https://isg.nist.gov/BII_2015/webPages/pages/nucleusCounting/NucleusCounting.html
https://isg.nist.gov/BII_2015/webPages/pages/nucleusCounting/NucleusCounting.html

	CAS: Cell Annotation Software
	Abstract
	Introduction
	Object Segmentation
	Adjusting Color space
	Standard approach to image binarization
	Extended H-minima Technique
	Statistical Dominance Algorithm
	Comparison of Object Detection Methods
	Discussion

	Shape Parameters
	General Features
	Circularity Measures
	Other

	Case Study
	Data Processing Example
	Histology and Image Acquisition

	Conclusions
	Information Sharing Statement
	Acknowledgements
	Open Access
	References


