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Sympathetic overactivation is one of the main contributors to development and progress of hypertension. Renal denervation
(RDN) has been evidenced by series of clinical trials for its efficacy and safety to treat overactivated sympathetic nervous system
induced diseases. However, the results were inconsistent and not all patients benefited from RDN. Appropriate patient selection
and intraoperative factors to improve the efficacy of RDN need to be solved urgently. Over the decade, research studies on the
correlations between indicators and the antihypertensive effects have been conducted and made a fairly well progress. Herein, we
comprehensively reviewed the research studies on how to make RDN more predictable or improve the efficacy of RDN and
summarized these potential indicators or devices which might be applied in clinical settings.

1. Introduction

Sympathetic overactivity is a major drive of initiation and
development of many cardiovascular diseases [1]. However,
therapeutic options to reduce sympathetic nervous activity
are still very limited. From macroscope [2], laparoscope [3],
to intervention [4, 5], renal denervation (RDN) has emerged
as a novel nonpharmacological approach to effectively im-
prove cardiovascular diseases by attenuation of sympathetic
activities, such as heart failure [6], cardiac hypertrophy [7],
arrythmias [8, 9], and, especially, resistant hypertension
[4, 5, 10–14]. Although the negative results of blood pres-
sure-lowering effects between the denervated and sham
group by radiofrequency [15] and ultrasound [16] dampened
the enthusiasm of researchers, growing evidence has
recertified the efficacy of catheter-based renal denervation
subsequently using either radiofrequency [10–13], ultra-
sound [14], or chemical ablations [17], which brought it back
to the center of hypertension-therapeutic arena.

As reported in the previous clinical trials above, although
the responders received a significant reduction of blood
pressure after RDN and the efficacy exists persistently
[18, 19] (up to 9-year follow-up [20]), there were about

25–30% nonresponders manifesting unchanged or elevated
blood pressure postoperatively, which runs counter to our
therapeutic purpose and burdens the patients. *erefore,
indicators before/during RDN procedure become particu-
larly important and indispensable to screen susceptible
subjects, especially those with high sympathetic tone, leading
to more predictable results and avoiding harm to patients.
Herein, a comprehensive review was made to retrospect
existing evidence on predicting the effectiveness of RDN.

2. Patient Selection

2.1. RenalArteryAnatomy. Sufficient diameter and length of
renal arteries have been considered to be technically eligible
for catheter-based renal denervation. Previous clinical
studies [4, 5, 13, 15] have excluded patients with multiple
renal arteries, while subsequent trials [10–12] reserved these
patients. For those patients, Verloop et al. performed RDN
on patients with accessory renal arteries [21] and concluded
that the blood pressure-lowering effect of RDN in patients
with multiple renal arteries (both main and accessory ar-
teries were eligible for ablation) was similar to those with
solitary renal arteries, but patients whose accessory arteries
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were less than 20mm length or 4mm diameter (unable to
perform RDN) showed a trend to a less pronounced effect of
RDN. As is reported by Sato et al. [22], there were con-
siderable quantity of nerve bundles around accessory renal
arteries in man with closer distance to adventitia and the
number of renal nerves was dependent on the diameters of
accessory artery/percentage of blood supply, although the
number was less than that of dominant renal artery. *is
work could provide a better understanding to improve the
operation of RDN.

Also, Uei Pua et al. [23] reported two cases with insuf-
ficient renal artery length (defined as less than 20mm length),
both of who manifested a 20–30mmHg reduction of office
blood pressure after RDN without addition of antihyper-
tensive medications. Although the sample size was small,
these studies might somehow relax the exclusion criteria.

2.2. Race. Since HTN-3 reported the differential effects of
renal denervation on Americans versus African-Americans,
several studies have examined the importance of race on the
response to renal denervation. In the HTN-3 trial, the
change of office SBP at 6-month follow-up in the RDN
group, compared to the sham group, was 2.25mmHg (95%
confidence interval, CI, −7.27∼11.78; p � 0.64) in African-
Americans versus −6.63mmHg (95% CI: −11.81∼−1.44;
p � 0.01) in non-African-Americans [15], indicating that
the black race has a lower RDN response rate than the white.
Although there were similar trends in 24-hour ambulatory
SBP of these two subgroups, the difference did not reach the
significance [24]. *is might be partly explained by genetic
factors, antihypertensive medications, especially vasodila-
tors, and poor drug adherence in African-Americans
[24, 25]. Notably, the change in office SBP in “nonre-
sponder” African-Americans was −15.5mmHg in the RDN
group and −17.8mmHg in the sham group (p � 0.64), while
the “responder” Caucasian manifested −15.2mmHg in the
RDN group and −8.6mmHg in sham group (p � 0.01) at 6
months [24]. Nevertheless, another post hoc analysis con-
ducted by Flack et al. [25] concluded that African-American
race itself was not an independent indicator associated with
the decreases in (office) SBP. It was the improvedmedication
adherence and/or medication regimen that decreased the
office SBP in black race at 6-month. Hence, it should
revaluate the difference in ethnics susceptible to renal
denervation.

In addition, limited and small sample size as it was, the
results of comparison between Asians and Americans from
subgroup (Koreans) analysis of the Global SYMPLICITY
Registry indicated that SBP reductions were greater in Ko-
reans versus whites (−27.2± 18.1mmHg versus
−20.1± 23.9mmHg; p � 0.002 (adjusted)) at the 12-month
follow-up [26], implying a potential difference between
Asians and Americans, which needs more data and trials to
lift the veil. Noteworthily, the recent published REQUIRE trial
[16], conducted in Japan and South Korea, reported a negative
result between the RDN group by ultrasound and the sham
group at 3 months (24-h ABPM: −6.6mmHg for the RDN
group versus −6.5mmHg for the sham group). Satisfying

though the BP reduction is (while less than RADIOSOUND-
HTN [14] and RADIANCE SOLO [12] or TRIO [27] in the
USA and Europe), such unexpected reduction in the sham
group might be attributed to medical adherence or single
blindness, which would be addressed in the future, as they
reported.

2.3. Obesity. Obesity is characterized by the overactivated
sympathetic nervous system, especially in the kidneys and
skeletal muscular vessels [28]. *us, obese patients with
resistant hypertension are potentially ideal subjects for renal
denervation treatment, which has been proposed in clinical
trials [4, 12], especially in obese females [29, 30]. However,
Id et al. found that the BP-lowering effect in patients with
obesity was less pronounced after RDN [31] while HTN-3
reported no significant difference of BP reduction in patients
with or without obesity [15]. To summarize, these correla-
tions were performed between the patients’ BMI and effi-
cacy, while only BMI fail to distinguish muscle and fat, as
well as fat tissue distribution. Hence, more detailed pa-
rameters of obesity are needed to recalculate the correlations
between obesity and efficacy.

2.4. Age. Age is also a nonnegligible factor in patient se-
lection. Apart from the vascular alterations by aging (see
Vascular Stiffness and Isolated Systolic Hypertension sec-
tion), sympathetic nerve activity varies between the young
and the old. Esler et al. [32] revealed the relationship be-
tween age and renal sympathetic nerve activity by measuring
the rate of spillover of norepinephrine from the kidney in
hypertensive patients and elucidating that renal norepi-
nephrine spillover is greater increased in the young patients
(aged from 20 to 39, Figure 1) compared with the middle age
(aged from 40 to 59) and the old (aged from 60 to 79), while
there was no significant difference in the sympathetic nerve
activity across the age spectrum of the normotensive sub-
jects. Such studies provided evidence for the young to un-
dergoing RDN for more superior BP-lowering effect, which
was consistent with some clinical trials [29, 33]. On the
contrary, the difference did not reach the significance, while
the trend was observed in HTN-3 (−5.73mmHg for the
young and 0.09mmHg for the old, p � 0.27) and in RA-
DIANCE-HTN SOLO appendix.

2.5. Blood Pressure. Baseline characteristics of blood pres-
sure were widely analyzed by correlations with the anti-
hypertensive effect after RDN. As is shown in post hoc
analyses, higher baselines of office SBP in HTN-3 [24] and
the Greek Renal Denervation Registry [29], nighttime SBP in
DENERHTN [34] and RADIANCE-HTN SOLO [35], as
well as 24 h-DBP [36] predicted the BP-lowering effect after
renal denervation. Notably, in the control group of
DENERHTN, nighttime BP failed to predict the response to
standardized antihypertensive drugs, eliminating the con-
founding factor of medication.

Also, Smith et al. [37] showed that, in essential hyper-
tension, the magnitude of the overactivated sympathetic
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nervous system varies with its severity and complications
and revealed that a greater increase in sympathetic activity
occurred in borderline hypertension (intermittently over
140/90mmHg), essential hypertension stage 1 (140–159/
90–99mmHg), relative to essential hypertension stage 2/3
(over 160/100mmHg), compared with normotension and
high normotension (Figure 2). Such results suggested po-
tential candidates for renal sympathetic denervation. In
other words, patients with early staged hypertension might
be more suitable for RDN [37, 38]. However, the reason why
the muscle sympathetic activity of patients with hyperten-
sion at stage 2/3 was less than that at the early stage may be
the multidimensional regulation of blood pressure, e.g.,
baroreflex, which masked the real relationship between
blood pressure and sympathetic activity.

2.6.HeartRate. *ough disputed, heart rate might be served
as a sympathetic biomarker [39]. Michael Böhm et al. [40]
revealed that patients from SPYRAL HTN-OFF MED with
baseline 24-hour heart rate (HR) over the median 73.5 beat
per minute (bpm) showed a significant reduction in average
ambulatory SBP (−10.7mmHg) at 3-month follow-up after
RDN, comparing to those with below-median HR, whose
BP-lowering effect was not significant. Similarly, in their
another analysis [41], they reported office HR≥ 70 bpm was
associated with BP reduction (24 h-SBP: −6.2mmHg,
p< 0.001), but reduction of −0.1mmHg for baseline office
HR <70 bpm (p � 0.97). Notably, in SPYRAL HTN-OFF
MED study, reduction of 24 h HR at 3 months reached the
significant difference (−2.5 bpm), while it did not in the
sham group (−0.2 bpm) [40]. Without confounder of

β-receptor blockers in the OFF MED study, increased heart
rate seems to be a reliable and readily attainable indicator for
sympathetic hyperactivity. Similarly, Hoogerwaard et al. [42]
proposed that decreased heart rate variability induced by
renal nerve stimulation before and after RDN indicates a
lower sympathetic activity after ablation, which was more
pronounced in β-blocker naı̈ve patients.

2.7. Antihypertensive Medication. Kandzari et al. [25] re-
ported that the estimated change of SBP at 6 months was
−6.39mmHg (95% CI: −11.24∼−1.54, p � 0.010) in HTN-3
pooled patients with administration of aldosterone antag-
onists versus +5.49mmHg (95% CI: +1.26∼+9.72,
p � 0.011) in those with vasodilators, and both of them were
more pronounced in the RDN group (−9.77mmHg (95% CI:
−15.83∼−3.72, p � 0.002) of aldosterone antagonists versus
+7.55mmHg (95% CI: +2.38∼+12.72, p � 0.005) of
vasodilators).

2.8. Renin-Angiotensin System. *e renin-angiotensin sys-
tem (RAS) has been considered to be associated with
sympathetic nerve activity and played a critical role in
systematic blood pressure regulation [43]. In preclinical
experiments and clinical trials, several studies have
demonstrated the decreased RAS activity in the kidney
(experimental, as well as upregulated ACE2/Ang (1–7)/Mas
axis [44]) and plasma (experimental and clinical) after
renal denervation [45–47]. Subsequently, Felix Mahfoud
et al. [47] demonstrated higher baseline plasma renin
activity (PRA≥ 0.65 ng/mL/hour, compare with those
PRA< 0.65 ng/mL/hour) was associated with a significantly
greater reduction in office and 24 h-SBP at 3-month follow-
up in patients with similar baseline blood pressure and
absence of antihypertensive drugs.

2.9. Vascular Stiffness and Isolated Systolic Hypertension.
Vascular function plays an important role in blood pressure
regulation, and vascular stiffening is a major contributor to
isolated systolic hypertension (ISH) and strongly associated
with age [48], making it seemingly unsatisfactory to reduce
blood pressure by denervation therapy. Although some trials
excluded the patients with ISH for RDN studies, a study with
large sample size of 1103 patients from SYMPLICITYHTN-3
and Global SYMPLICITY Registry showed a less pronounced
office SBP reduction in the ISH group (−10.9± 21.7mmHg)
than the combined systodiastolic hypertension (CH) group
(−18.7± 23.7mmHg) at 6 months after RDN [49]. Notably,
in patients with ISH, there was no significant difference
observed between older (>65 years) and younger (<65 years)
patients based on office SBP, indicating that the efficacy of
RDN are more likely to associated with vascular stiffness
rather than physiological changes by aging. *is correlation
has been further evidenced by Sata et al. [50]. *ey applied
ambulatory arterial stiffness index (AASI, calculated as 1-
regression slope of 24 h-DBP on 24 h-SBP [51]) to represent
arterial stiffness and demonstrated that a lower AASI (<0.51)
is an independent predictor of BP response to RDN, while
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Figure 1: Influence of age (20–39, 40–59, and 60–79 years old) on
renal norepinephrine spillover (ng/min) in normotensive and
hypertensive patients. Note.∗p< 0.05; ∗∗p< 0.01. Reproduced from
reference [32].

International Journal of Hypertension 3



patients with AASI over 0.51 showed no change in 24 h-SBP
at 6-month follow-up. Besides, patients with the highest
quartile AASI (>0.60) had a lower muscle sympathetic nerve
activity than the other three quartiles. In summary, these
studies imply that the BP-lowering effect of RDN in patients
with ISH is more likely caused by neurogenic rather than
biomechanical modulation.

Additionally, arterial stiffness could be represented by
other parameters from RDN trials. Lurz and his colleagues
[52] reported that invasive aortic pulse wave velocity, the
gold standard for arterial stiffness [53], measured intra-
operatively before ablation and was significantly higher in
nonresponders (<5mmHg in systolic daytime 24 h blood
pressure) than that in responders (17.7± 4.7m/s versus
14.4± 4.4/s, p � 0.009). Furthermore, they reported non-
invasive indicators of ascending aortic distensibility and
(total) arterial compliance for measurements of stiffness by
cardiac magnetic resonance to select potential responders
[54]. Another study suggested that patients with lower
central pulse pressure (below the median 55mmHg) man-
ifested a significantly greater BP reduction assessed by either
office BP or 24 h-ABPM after RDN compared to those with
higher central pulse pressure, indicating a lower degree of
damage of the arterial vasculature [55]. Other biomarkers,
such as galectin-3 [56], intercellular cell adhesionmolecule-1
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1),
and soluble receptor fms-like tyrosine kinase-1 (sFLT-1)
[57], leading to stiffness or endothelial dysfunction, are also

proposed to be predictive indicators of responders for RDN
at baseline.

2.10. Baroreflex. Baroreflex is mainly involved in short-term
regulation of blood pressure and associated with sponta-
neous fluctuations of arterial blood pressure and heart rate
and baroreflex sensitivity (BRS) correlated closely with
sympathetic activity [58, 59]. Zuern et al. [59] reported that
attenuated cardiac baroreflex sensitivity, calculated by
progressive elevation of SBP during ≥3 heart beats where
R-R intervals simultaneously prolong, could identify those
patients who are responders to RDN for treatment of re-
sistant hypertension. Of note, although impaired BRS could
distinguish the responders, it did not correlate with the
magnitude of BP reduction after RDN.

2.11. Renal Artery Vasodilation. After complete renal de-
nervation, reviewing postprocedural renal artery might
predict the antihypertensive effect of RDN by sufficient
destruction of renal sympathetic nerves which mediate
vascular resistance, renin release, and sodium reabsorption
[60]. Doltra et al. [61] and Chen et al. [62] demonstrated
that renal artery vasodilation was observed after inter-
vention in human and canine, and Chen further revealed
that vasodilation was correlated with blood pressure re-
duction and plasma norepinephrine at 3-month follow-up.
On the other hand, it is reported that transvascular pacing
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of aorticorenal ganglion in sheep produced ipsilateral renal
arterial vasoconstriction without contralateral renal vaso-
constriction [63], which might also provide a predictive
indicator for successful RDN and procedural endpoint if
vasoconstriction effect vanishes. *ey believed that aorti-
corenal ganglion pacing may elicit the hypertensive effect
by afferents and the renal vasoconstrictive effect by efferent
nerves. Combined these two experiments, renal vasodila-
tion after RDN seems appropriate for prediction of suc-
cessful RDN.

3. Procedural Factors

3.1. Ablation Sites. As is reported in previous studies, the
number of ablation sites in each renal artery has been
considered as a major influence factor for prediction of
office SBP [24, 64], rather than 24 h-ABPM [13, 64, 65] after
RDN. Furthermore, ablations at different segments of renal
artery are also confounding factors affecting the outcome of
RDN. Accumulating evidence suggests the more superi-
ority of ablation at sites in the distal segment or branches
(combined with main arteries) than that in proximal or
main renal arteries alone by radiofrequency energy
[66–68]. Inconsistent to these clinical studies, RADIO-
SOUND-HTN [14] failed to show the significance of
radiofrequency denervation between main renal artery
ablation and combined main artery and branch ablation.
Another trial [69] indicated that denervation in proximal
segments has similar efficacy and safety profile compared
with full-length denervation.

Postmortem study suggested that despite fewer nerves
surrounding the distal segment of renal arteries, the distance
from nerves to the lumen was shorter than proximal seg-
ment [70], providing the rationale that in the same condition
of ablation parameters, renal nerves traversing distal seg-
ments and branches would be destroyed more sufficiently.
Hence, a higher energy is believed for a more complete
denervation in proximal segments under the premise of
safety because, theoretically, destruction of proximal nerves
could consequently cut off the convergent pathway.
*erefore, compared with limited penetration depth of
4–6.5mm [71, 72], a deeper penetration of 7.5mm [73] by
ultrasound may explain the more superiority of ultrasound-
based RDN in main arteries than radiofrequency in main
stem from RADIOSOUND-HTN study. Despite this su-
periority, reduction of impedance during radiofrequency
delivery could help the interventionist confirm the proce-
dural success [72], which could partly address the insuffi-
cient ablation aroused by HTN-3.

However, Garćıa-Touchard et al. [74] revealed that in
cadavers, more than half of the renal nerves reached the
kidney by passing the main stem; in other words, these
nerves ran tangentially and joined the distal segments or
branches of renal arteries, called “late arriving nerves,”
emphasizing the importance of ablation at distal arteries and
branches. In conclusion, more rigorous-designed studies/
experiments need to be performed to compare the strategies
of device or energy-specific renal denervation on different
segments of renal arteries.

3.2.RenalNerve Stimulation. Renal nerve stimulation (RNS)
has emerged as a feasible and promising method for
mapping renal innervation to guide renal denervation since
2013, when Chinushi et al. [75] first introduced electrical
stimulation into the renal artery for feasible exploration of
renal autonomic nerve’s functional location in canine.
Subsequent animal studies [76, 77] also found elevated blood
pressure response to RNS, while the increase in blood
pressure response to RNS would be dramatically attenuated
after ablation with one catheter for both stimulation and
ablation, implying a success in destruction of renal nerves
(Figure 3). Another study [78] proposed that the elevated
blood pressure response during radiofrequency energy de-
livery in patients might be an intraprocedural predictor for
the antihypertensive effect of RDN. *e authors believed
that renal sympathoexcitatory afferents were stimulated by
radiofrequency energy, inducing an increase in blood
pressure and implying successful location of renal nerves.

Consistent with animal experiments, preliminary
clinical trials [79, 80] have evidenced the feasibility and
safety in hypertensive patients on medication treatment,
with far less number of ablation sites (4–6 sites per artery
[79] versus 45.9 ± 13.7 sites per patients [10]) but more
superior BP-lowering effects compared to SPYRAL HTN-
ON MED (24 h-ABPM reduction from 153.3 ± 12.9/
89.0 ± 3.5 to 135.0 ± 9.4/73.6 ± 13.5 mmHg [79] versus
reduction of 9.0 ± 11/6 ± 7.4 mmHg with a mean baseline
of 152.1 ± 7.0/97.2 ± 6.9mmHg [10]). Furthermore, the
amplitude of BP-elevation response to RNS [77, 81] and
the magnitude of blunted response after RDN [77] were
correlated with the antihypertensive effect postprocedure
in both, suggesting that selective ablation at sites of
greater elevated BP response could make RDN more
predictable and efficacious. In summary, RNS could not
only help to locate ideal ablation sites but also to assess
whether renal nerves are completely denervated by re-
peated RNS at identical sites for prediction of the out-
comes of RDN.

Although the detailed mechanism of about how electrical
stimulation elicit blood pressure response is not fully un-
derstood, activation of renal afferents has been generally
considered as the main contributor to immediate elevated
BP response to RNS by projecting to the central nervous
system down to peripheral sympathetic efferent nerves. *e
anatomy and physiological basis of renal innervation still
remain limited and controversial. Sakakura et al. [70]
revealed two nerve components in cadavers, efferent (stained
by tyrosine hydroxylase, TH) and afferent (stained by cal-
citonin gene-related peptide, CGRP) fibers, and efferent
nerve fibers were predominant (TH/CGRP ratio 25.1± 33.4).
While van Amsterdam et al. [82] reported sympathetic
nerves (73.5%, stained by TH), parasympathetic nerves
(17.9%, stained by neuronal nitric oxide synthase, nNOS),
and afferent nerves (8.7%, stained by CGRP) in cadavers,
even though nNOS might not be the best candidate for
labeling vagal nerves. Reasonably, Kiuchi et al. [83] cate-
gorized renal nerves as “pressor” or “depressor” based on the
nerve functions regulating blood pressure in response to
RNS, in accordance with the present studies that, apart from
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elevation response, reduced blood pressure during RNS was
also observed in experimental and clinical studies [84, 85].

Similar to the “late arrival nerves” discussed above, even
if there might not be parasympathetic innervation of the
kidney, they may bypass renal artery and be activated by
electrical stimulation, or denervated by ablation energy.
Excessive ablation at sites of reduced blood pressure re-
sponse might be one of the factors leading to an increase in
blood pressure at follow-up postprocedurally, which needs
well-designed animal experiments to validate. *erefore,
renal nerve stimulation becomes a vital auxiliary technique
to locate sympathetic-excitatory sites to ablate and sympa-
thetic-inhibitory sites to avoid.

Not surprisingly, there are also some limitations of RNS-
guided RDN. Firstly, RNS may cause pain to patients under
conscious state to maintain afferent and autonomic func-
tion. Secondly, a sufficient duration of RNS for targeted
ablation sites greatly prolongs the operation time compared
to the conventional RDN procedure.*irdly, plausible blood
pressure response needs to be preciously identified by ex-
perienced operators, especially in patients who manifest few
responsive sites and are not appropriate for RDN.

3.3. Denervation Devices. Symplicity Flex catheter
(Figure 4(a)), the first generation RDN system, is a mono-
electrode radiofrequency device used in SYMPLICITYHTN-
1–3 and DENERHTN [4, 5, 13, 15], with inconsistent
conclusion about the efficacy of RDN, even though subop-
timal patient selection, medication adherence, and technical
failure were blamed for its unexpected neutral results in
HTN-3 [86]. To address the shortcoming in HTN-3, the
second generation device Symplicity Spyral catheter system
emerged with 4 gold electrodes in four quadrants for cir-
cumferential ablation (Figure 4(b)). *e SPYRAL HTN-ON
MED [10] and OFF MED pivotal [11] were designed to
compare patients with or without medication in the RDN

group and the sham group, and patients with antihyper-
tensive drugs manifested more reduction in 24 h-ABPM than
OFFMED study, indicating that patients would benefit more
when medications and renal denervation are combined.

*e Paradise system (Figure 4(c)) utilizes ultrasound
energy emitted to the arterial wall circumferentially by a
cylinder-shaped energy-emission probe housed in an in-
flatable balloon without direct contact with the endarterium.
2–4 sites recommended in each artery and 7-second energy
delivery in each site shorten the procedure time. As is shown
in RADIOSOUND-HTN [14], reduction in daytime SBPwas
greater in ultrasound ablation of the main artery than
radiofrequency ablation of the main artery, revealing the
superiority of ultrasound-based RDN. Interestingly, similar
magnitude of reduction in ambulatory SBP was observed in
patients undergoing RDN in the “on med” group
(−8.0mmHg in RADIANCE-HTN TRIO) [27] and “off
med” group (−8.5mmHg in RADIANCE-HTN SOLO) [12],
while patients in the sham group with standardized triple
fixed dose combination pills (TRIO) showed a more de-
creased daytime SBP than patients without medication
(SOLO), implying that renal denervation by ultrasound
could lead to an analogous antihypertensive effect regardless
of medications or not.

*e Peregrine catheter (Figure 4(d)) is designed for
chemical ablation by injection of absolute ethanol at a low
dose, a potent neuritis and neurolysis agent [87], to ad-
ventitia and periadventitial tissue for renal denervation
[17, 87]. Peregrine contains three microneedles (220 μm)
which are placed in the body of the catheter and could be
deployed into renal arteries by the control handle for alcohol
delivery. Both the preclinical experiment [87] and clinical
trials [17, 88] have evidenced the efficacy in a dose-de-
pendent manner with safety profile. Moreover, another
multicenter, sham-controlled, randomized trial in the ab-
sence (TARGET BP OFF MED, NCT03503773) and pres-
ence (TARGET BP I, NCT02910414) is ongoing, using the

Figure 3: (a) An example of renal nerve stimulation evoking elevation of blood pressure before renal denervation; (b) the same stimulated
site of (a) that elevation of blood pressure has been attenuated after renal denervation, implying a success in destruction of renal nerves.
Reproduced from reference [76].
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Peregrine system kit, which would extend the scale of sample
size and further validate its safety and efficacy in a more
rigorous-designed way.

*e laparoscopic renal denervation system (Figure 5)
[3, 89] combined laparoscopy and radiofrequency catheter
which was characterized by flexible electrodes at the tip head
and controlled by the actuator to curve and wrap the

adventitia of renal arteries for 360-degree direct ablation
(instead of energy transmission from intima). Although the
proof-of-concept study in the porcine model showed the
validity of laparoscopic RDN in main, branch and accessory
arteries via the retroperitoneal route, the sample size is too
small, and they did not report device-related surgical events.
Hence, more preclinical studies are needed to probe to the

A

Flex

Paradise Peregrine

B

Spyral

C D

Figure 4: Different catheter-based renal denervation devices for reduction of sympathetic nerve activity and blood pressure.

(A)

(B1) (B2) (B3) (B4)

Figure 5: Flowchart of laparoscopic renal denervation. (a) Modified prone position for laparoscopic RDN. (b) Schematic to show the steps
of laparoscopic RDN; (B1) dissection between psoas muscle and Gerota’s fascia; (B2) removal of fat tissues around the renal hilum and
identification of connective tissues surrounding the renal artery including renal sympathetic nerves; (B3) removal of periarterial connective
tissue using a laparoscopic monopolar hook electrode; (B4) securing space to insert the laparoscopic ablation instrument using right angle
dissector. Reproduced from reference [3].
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effects and safety of laparoscopic-based RDN and provide
strong rationale for clinical trials.

*e ConfidenHT system (Pythagoras Medical Ltd,
Israel), using RNS for mapping renal nerves, contains a
console and a dedicated catheter which consists of a
flexible multielectrode in a basket shape. Notably, the pre-
programmed stimulation is performed at 2mA, followed by
4mA for 2min without causing discomfort to the patients
under conscious condition. However, only a few participants
were enrolled for assessment of feasibility without ablation
[90]. On the other hand, a multicenter RCT of RNS-guided
renal denervation using the SyMapCath I catheter and
SYMPIONEER S1 Stimulator/Generator (SyMap Medical
Ltd., China) is expected to be presented in late 2022, which
has enrolled all the patients with medication to investigate
the effects of RNS-guided renal denervation (SMART Trial,
NCT02761811).

4. Discussion

Renal denervation has been validated in a number of clinical
trials for its safety and efficacy and not only confined to
treatment of resistant hypertension. However, such benefits
are not shared by all subjects, some of which even manifest
more severe hypertension after RDN. *ough many indi-
cators have been listed, the leading clinical need to be met is
the patient selection, which is critical for clinicians to bring
benefit for ideal candidates, especially in younger and early
staged primary hypertensive patients with better vascular
function, especially those with obesity, higher baseline blood
pressure and/or heart rate, and avoid to burden nonre-
sponders. Moreover, patient preference seems to be an in-
stant and readily information for patient selection and even
may influence the outcomes of the efficacy of renal dener-
vation. From the survey of the patient preference for renal
denervation conducted in Europe and Asia [91–93], the
patients characterized by younger, males, higher blood
pressure, presence of heart failure, or other side effects of
medications, and, most importantly, poor antihypertensive
drug adherence are more likely to choose device therapy for
management of hypertension.

Correlations between baseline blood pressure and effi-
cacy after RDN are complicated and various, while blood
pressure responses to renal nerve stimulation and radio-
frequency energy seem promising, and another shot of RNS
after renal denervation at the same site could confirm a
successful ablation if the blood pressure remains relatively
stable. Last but not the least, improvement of devices and
strategies is expected to be more direct and sufficient to
overcome such limitations.

Patients would benefit more from RDN when compli-
cated with chronic obstructive pulmonary disease [94],
chronic kidney disease [94, 95], and especially obstructive
sleep apnea-hypopnea syndrome [96]. Obstructive sleep
apnea is highly correlated with increased sympathetic tone
and renin-angiotensin system mainly by hypoxia/hyper-
capnia [97]. Continuous positive airway pressure is the most
common therapy for these patients, but has little effect on
controlling blood pressure and cardiovascular event. Hence,

patients suffering from both hypertension and obstructive
sleep apnea become more suited for renal denervation.

Besides the predictors mentioned above, other studies
have also proposed some fragmented markers for re-
sponders: patients with lower absolute values of activated
double negative T cells and lower but more stable values of
total CD8+, CD4+, and naı̈ve T CD8+ cells [98], increased
serum vitamin D concentrations [99], reduced serum brain-
derived neurotrophic factor levels [100], serum IL-6 levels
[101], decreased plasma midregional proadrenomedullin
[102], and intraprocedural reduced venoarterial norepi-
nephrine gradient [103].

Many as the indicators are, there is lack of an actual gold
standard or prediction model for inclusion of responders,
the threshold of which remains to be addressed by a larger
sample size and racial difference. Renal nerve stimulation
seems much promising, while RNS needs to be further
verified by large randomized controlled clinical trials. Also, a
dedicated algorithm could be built in the ablation system to
help interventionalists for decisions on ablation or avoid-
ance. Nevertheless, above predictors should be further
evidenced, and new indicators or treatment devices might be
necessary.
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