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Abstract: Influenza A virus (IAV) requires the host cellular machinery for many aspects of its life
cycle. Knowledge of these host cell requirements not only reveals molecular pathways exploited
by the virus or triggered by the immune system but also provides further targets for antiviral
drug development. To uncover critical pathways and potential targets of influenza infection, we
assembled a large amount of data from 8 RNA sequencing studies of IAV infection for integrative
network analysis. Weighted gene co-expression network analysis (WGCNA) was performed to
investigate modules and genes correlated with the time course of infection and/or multiplicity of
infection (MOI). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed to explore the biological functions and pathways of the genes
in 5 significant modules. Top hub genes were identified using the cytoHubba plugin in the protein
interaction network. The correlation between expression levels of 7 top hub genes and time course or
MOI was displayed and validated, including BCL2L13, PLSCR1, ARID5A, LMO2, NDRG4, HAP1,
and CARD10. Dysregulated expression of these genes potently impacted the development of IAV
infection through modulating IAV-related biological processes and pathways. This study provides
further insights into the underlying molecular mechanisms and potential targets in IAV infection.

Keywords: influenza A virus; hub gene; bioinformatics; weighted gene co-expression network
analysis; protein interaction

1. Introduction

The influenza A virus (IAV), a member of the Orthomyxoviridae family, is the causal
agent of an acute respiratory tract infection suffered annually by 5–20% of the human
population [1]. IAV can cause high mortality in humans, with 250,000–500,000 deaths per
year worldwide [2]. Current treatments are focused on vaccines and drugs that target
viral proteins. However, both of these approaches have limitations as vaccines require
annual development to match the antigenic strains circulating, while viral proteins have an
impressive capacity to evolve resistance against anti-viral agents [3]. With the expression of
14 functional proteins for viral replication and virulence, the repertoire of gene products on
the pathogen side is limited. The viral life cycle and the replication of the IAV are dependent
on hijacking host-cell biological processes to facilitate entry, replication, assembly, and
budding. The recognition that a suite of mammalian host proteins is required for IAV
infection and replication presents additional targeting strategies that may be less prone to
deflections by the quickly mutating viral genome.
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Influenza infection activates a number of host pathways, including the innate and
adaptive immune responses, the induction of cytokines, and the activation of apoptosis [4].
The detection of viral particles (in particular nuclear acids) by toll-like receptors (TLR7)
of the MyD88, NF-kB pathway [5], as well as cytosolic proteins such as RIG-I (DDX58) of
the MDAF/MAVS pathway and their trigger of interferon expression via the activation of
transcription factors including IRF3 and IRF7 [6,7], have been well studied. Unfortunately,
much less is known about downstream host factors and pathways.

In recent years, the amount of biological data for research has dramatically increased
with the development of transcriptome analysis, providing new viewpoints for exploring
the pathogenesis and novel targets for clinical treatment [8–11]. Previous studies primarily
tested individual genes in diseased conditions. However, genes with similar expression
patterns are likely to be tightly co-regulated in vivo with closely related functions, expressed
in the same signaling pathways or processes [12]. Identifying these genes will provide a
further understanding of biological pathways in the host’s response to IAV infection.

In the present study, multiple bioinformatics methods were used to search for top hub
genes in the biological pathways that were significantly correlated with the time course
and multiplicity of infection (MOI) for IAV infection. These correlations have also been
validated in a dataset from another independent experiment. This work will provide
further insights into the underlying molecular mechanisms of the host response to IAV
infection and potential molecular targets for developing novel interventional strategies.

2. Materials and Methods
2.1. Dataset and Preprocessing

In this study, eight RNA sequencing files for IAV infection containing GSE165340,
GSE97672, GSE104168, GSE156152, GSE163959, GSE193164, GSE186908, and GSE89008
were obtained from the Gene Expression Omnibus (GEO) repository (https://www.ncbi.
nlm.nih.gov/geo/, accessed on 5 May 2022). The main features of these 8 datasets were
shown in Table 1 (Supplementary Table S1). These profiles consisted of gene expression
matrices and experiment design. Subsequent analyses were conducted on these datasets.

Table 1. The main features of 8 selected datasets in this analysis.

GEO Datasets Size Cell Type Hours MOI Abbreviations of Experiment Design

GSE165340 6 A549 9 5 AC9-5; AN9-5
GSE97672 16 MDM 3; 6; 12; 18 2 M3-2; M6-2; M12-2; M18-2
GSE104168 18 A549WT; A549KO 24 0.5 AW24-0.5; AK24-0.5
GSE156152 6 293T 6 1 T6-1
GSE163959 64 Turbinate; Lung 24 1 TN24-1; TR24-1; LN24-1; LR24-1
GSE193164 6 HBEC 48 0.01 HB48-0.01
GSE186908 162 HAE 4; 18 0.1 A4-0.1; H4-0.1; A18-0.1; H18-0.1; AP18-0.1; HP18-0.1
GSE89008 20 HTBE 3; 6; 12; 18; 24 5 HT3-5; HT6-5; HT12-5; HT18-5; HT24-5

All of the raw data of GSE165340, GSE97672, GSE104168, GSE156152, GSE163959,
GSE193164, and GSE186908 were merged and normalized into the training group through
a unified ENCODE RNA-seq processing pipeline, followed by removing the batch effect
using the Limma package of R [13]. The boxplot was used to estimate whether the batch
effect was removed (Supplementary Figure S1). The validation group was the dataset
from GSE89008.

2.2. Identification of Significant Modules Using the Weighted Gene Co-Expression
Network Analysis

The WGCNA package [14] was used to determine key genes significantly associated
with IAV infection in the training and validation groups. The best soft threshold power
was set to identify the module–trait relationship, module membership (MM), and gene
significance (GS). In brief, a weighted adjacency matrix was first constructed based on
the selected soft threshold power. Subsequently, the connectivity per gene was deduced
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through calculating connection strengths with other genes. After validating the module
structure preservation using the module preservation R function, the gene expression
profile of each module was summarized by the module eigengene on whom the designated
traits were regressed in the Limma R package [15]. The IAV-related module was selected
with the p-value < 0.05.

2.3. Function Enrichment Analysis

An online tool (https://david.ncifcrf.gov/, accessed on 5 May 2022) was employed
to perform a Function Enrichment Analysis of the genes in the significant modules [16].
The Gene Ontology (GO) [17] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [18]
analysis was conducted for the exploration of the involved biological functions and path-
ways of the above genes. The items ranked within the top 10 according to p-value were
selected and visualization was conducted using the barplot function in R software.

2.4. Protein–Protein Interaction Network Analysis

The Search Tool for the Retrieval of Interacting Genes (The Human Reference In-
teractome and Literature Benchmark, HuRI, http://interactome-atlas.org, accessed on
5 May 2022) [19] was used to identify interactions between the products of the genes in the
modules. The protein–protein interaction (PPI) network was constructed using HuRI by
adopting the default threshold and visualized using Cytoscape 3.8.2. The connection degree
(number) of each node was calculated using the cytoHubba plugin [20] within Cytoscape.

2.5. The Correlation between Expression Levels of Hub Genes and Traits

The ggcorrpolt and the ggthemes of the R package were used to determine the correla-
tion between expression levels of hub genes and time course or MOI in the training and
validation groups, respectively. p-value < 0.05 was considered statistically significant.

3. Results
3.1. Identification of IAV-Associated Modules

A total of 278 samples and 12,103 genes retrieved from the training group were used
for the co-expression network analysis (Figure 1). An eigengene correlation coefficient
square and a soft threshold power of 4 (Supplementary Figure S2) were set to identify
gene modules. In order to resolve computational challenges caused by constructing and
analyzing networks with such large numbers of nodes, function blockwiseModules in
the WGCNA package was used to split into two blocks for hierarchical clustering. The
hierarchical clustering trees were constructed following a dynamic hybrid cut (Figure 1A,B).
Thirty-four were identified when the DissThres was set as 0.25 after merging dynamic mod-
ules, as shown in the clustering dendrograms (Figure 1C). The eigengene dendrogram and
heatmap were used to quantify module similarity by eigengene correlation (Figure 1C,D).

The distribution of module eigengene change in each experiment design of the training
group showed that the module eigengene change was an upward trend along with the value
of time or MOI (Figure 2), suggesting that there was a correlation between time and/or MOI
and modules. Among the 7 studies in the training group, all of the IAV strains and most of
the cell types were different (Table 1). A noticeable feature was not displayed between time
and/or MOI and modules in Figure 2. Further analysis confirmed that 5 gene modules
were significantly correlated with the time course and/or MOI (Figure 3, Supplementary
Figure S3). The salmon module was positively correlated with time course (cor = 0.14,
p = 0.01) (Figure 3A,C, Supplementary Figure S3), but the greenyellow module showed a
negative correlation (cor = −0.36, p = 0.003) (Figure 3A,D, Supplementary Figure S3). The
salmon (cor = 0.15, p = 0.01), purple (cor = 0.19, p = 0.001), skyblue (cor = 0.15, p = 0.008),
and orange (cor = 0.14, p = 0.01) modules exhibited a significantly positive correlation with
MOI (Figure 3B,E–H, Supplementary Figure S3).
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Figure 1. Module detection and network heatmap plot construction using WGCNA in the training
group. Each colored row represents a color-coded module that contains a group of highly connected
genes. (A,B) Dendrogram obtained by hierarchical clustering of genes based on their topological
overlap is shown at the top; (C) Dendrogram of module eigengenes obtained from WGCNA on the
correlation; (D) Module eigengene adjacency heatmap (each colored row in x- or y-axis represents a
color-coded module).
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Figure 2. Distribution of module eigengene change in each experiment design of training group. The
red graduates with –log (p-value), which the maximum is limited to 2. X label: module eigengene
and number of p < 0.05. Y label: cell type, time point, and MOI (Table 1).

3.2. Biological Functions and Pathways Involved in the Significant Modules

The genes in the salmon module were exactly enriched for influenza A, innate immune
response, interferon signaling pathway, and NF-kappa B signaling pathway (Figure 4A,B).
Similarly, the genes in the purple module were also enriched for influenza A and NF-kappa
B signaling pathways, but involved in inflammatory response (Figure 4C,D).

Viruses 2022, 14, x FOR PEER REVIEW 5 of 12 
 

 

overlap is shown at the top; (C) Dendrogram of module eigengenes obtained from WGCNA on the 
correlation; (D) Module eigengene adjacency heatmap (each colored row in x- or y-axis represents 
a color-coded module). 

 
Figure 2. Distribution of module eigengene change in each experiment design of training group. 
The red graduates with –log (p-value), which the maximum is limited to 2. X label: module 
eigengene and number of p < 0.05. Y label: cell type, time point, and MOI (Table 1). 

 

A B 

Figure 3. Cont.



Viruses 2022, 14, 1625 6 of 12Viruses 2022, 14, x FOR PEER REVIEW 6 of 12 
 

 

Figure 3. The relationships between module eigengenes and traits. The colors represent modules. 
(A) Correlation of module eigengenes with time course (height: coefficients × 100); (B) Correlation 
of module eigengenes with MOI (height: coefficients × 100); (C) Scatter plots of module eigengenes 
in the salmon module (for Time); (D) Scatter plots of module eigengenes in the greenyellow module; 
(E) Scatter plots of module eigengenes in the skyblue module; (F) Scatter plots of module eigengenes 
in the salmon module (for MOI); (G) Scatter plots of module eigengenes in the purple module; (H) 
Scatter plots of module eigengenes in the orange module. 

3.2. Biological Functions and Pathways Involved in the Significant Modules 
The genes in the salmon module were exactly enriched for influenza A, innate im-

mune response, interferon signaling pathway, and NF-kappa B signaling pathway (Figure 
4A,B). Similarly, the genes in the purple module were also enriched for influenza A and 
NF-kappa B signaling pathways, but involved in inflammatory response (Figure 4C,D). 

The skyblue, orange, and greenyellow modules are related to neurotransmitter 
transport, transmembrane transport, and microbial infection, respectively (Figure 4E–J). 

D E 

F 

C 

G H 

Figure 3. The relationships between module eigengenes and traits. The colors represent modules.
(A) Correlation of module eigengenes with time course (height: coefficients × 100); (B) Correlation
of module eigengenes with MOI (height: coefficients × 100); (C) Scatter plots of module eigengenes
in the salmon module (for Time); (D) Scatter plots of module eigengenes in the greenyellow module;
(E) Scatter plots of module eigengenes in the skyblue module; (F) Scatter plots of module eigengenes
in the salmon module (for MOI); (G) Scatter plots of module eigengenes in the purple module;
(H) Scatter plots of module eigengenes in the orange module.

The skyblue, orange, and greenyellow modules are related to neurotransmitter trans-
port, transmembrane transport, and microbial infection, respectively (Figure 4E–J).

3.3. Identification of Critical Genes

To explore hub genes, the PPI network analysis and cytoHubba plugin within Cy-
toscape were performed based on the rank of the connection degree (number) of each gene.
As shown in Figure 5, the top 3 ranked nodes with connection degrees in the PPI network
of 5 modules were identified serving as top hub genes. Of the 15 top hub genes, the expres-
sion of 13 genes was correlated with the time course and/or MOI in the training group
(Figure 6A). In the validation group, the expression of 7 genes has a confirmed correlation
with the time course and/or MOI, including BCL2L13 and PLSCR1 in the salmon module,
ARID5A and LMO2 in the purple module, NDRG4 in the skyblue module, HAP1 in the
orange module, and CARD10 in the greenyellow module (Figure 6B).
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Figure 4. GO and KEGG enrichment analysis of module genes in the training group. The length of
red bars displays –log10(p-value). (A) Salmon module: GO; (B) Salmon module: KEGG; (C) Purple
module: GO; (D) Purple module: KEGG; (E) Skyblue module: GO; (F) Skyblue module: KEGG; (G)
Orange module: GO; (H) Orange module: KEGG; (I) Greenyellow module: GO; (J) Greenyellow
module: KEGG.
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4. Discussion

In this study, we systematically analyzed a large amount of RNA sequencing data
from 8 molecular studies of IAV infection covering test time points between 3 h and 48 h
as well as MOI between 0.01 and 5 (see Table 1). We first performed gene co-ex-pression
analysis to identify 34 modules. Then, module eigengene change in each experiment design
of these independent studies was analyzed using the Limma R package, which was able to
avoid bias caused by different experiment conditions. Distribution of the module eigengene
change showed that time course and/or MOI guided a correlation with several modules.
Further analysis confirmed that five gene modules were significantly correlated with the
time course and/or MOI. The genes in two of them were exactly enriched for the influenza
A pathway. Thereout, obtaining the above results was absolutely not an accidental event.

The salmon module, one of the two modules, was positively correlated with either
time course or MOI. The genes in this module were directly enriched for influenza A,
interferon signaling pathway, and innate immune response. Several studies demonstrated
that IAV PB1-F2 protein translocated to mitochondria via its interaction with TUFM, and
subsequently mediated the engulfment of mitochondria into autophagosome by binding to
LC3B, thereby promoting the clearance of MAVS protein, thus negatively modulating the
MAVS-mediated antiviral innate immune signaling [21,22].

The LC3B mediates the engulfment of mitochondria into autophagosome through their
association with mitophagy effectors, such as the receptors BCL2L13 in mammals [18]. In
this study, BCL2L13 was a top hub gene in the salmon module and its expression was posi-
tively correlated with the time course and MOI, confirmed in the validation group. In the
PPI network of a module, the more neighbors a node has, the more important it is [23,24].
Therefore, BCL2L13 certainly plays a critical role when IAV PB1-F2 protein induces mi-
tophagy to impair innate immunity. On the contrary, another top hub gene, PLSCR1, as a
natural antiviral regulator, has been shown to inhibit influenza virus replication in infected
cells through interacting with NP of IAV [25,26].

Similarly, the genes in the purple module were also enriched for influenza A and
NF-kappa B signaling pathways, but involved in an inflammatory response. Top hub gene
ARID5A is able to selectively stabilize STAT3 mRNA to direct naive cells to differentiate
into inflammatory cells [27]. Another top hub gene LMO2 transcription start site is located
approximately 25 kb downstream from the 11p13 T-cell translocation cluster (11p13 etc.),
where a number of T-cell acute lymphoblastic leukemia-specific translocations occur. It was
reported that LMO2 took part in an immune response [25]. Several studies indicated that
the expression of the two genes was significantly increased in virus-infected cells [28–30].
In our study, their expression was only positively correlated with MOI. These suggested
that the two genes were highly important in the inflammatory response to IAV.

The genes in the skyblue module were enriched for neurotransmitter transport, in-
cluding histamine, serotonin, dopamine, etc. It has been shown that host cells can be
directly activated in response to IAV, releasing mediators such as histamine, serotonin, and
dopamine, which participate in the excessive inflammatory and pathological response ob-
served during IAV infections [31]. N-myc downstream-regulated gene 4 (NDRG4) belongs
to the NDRG family, the members of which are expressed in a variety of human organs, and
are associated with a wide range of biological processes, such as organ development, tumor
inhibition, angiogenesis, and growth regulation [32]. Recently, it was reported that NDRG4
involved in inflammatory mediators release [33]. In the present study, the expression of
NDRG4 as a top hub gene in the skyblue module was negatively correlated with MOI. It
was believed that NDRG4 was a critical gene in IAV-infected cells releasing mediators.

The virus enters the host cell via transmembrane transport, such as endocytosis and
vesicle trafficking. HAP1 gene encoding a protein interacting with cytoskeletal proteins
and kinase substrates indicates that the protein plays a role in endocytosis and vesicle
trafficking [34]. In the present study, the genes in the orange module were enriched
for transmembrane transport. HAP1, as a top hub gene in this module, was positively
correlated with MOI. Thus, this gene was bound to play a pivotal role in IAV entry.
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The genes in the greenyellow module were enriched for microbial infection. Host
response to microbial infection is sensed by sensors such as RIG-I, which induces MAVS-
mediated NF-κB and IRF3 activation to promote inflammatory and antiviral responses,
respectively [35]. CARMA3, a CARD10 coding scaffold protein, either positively regulates
MAVS-induced NF-κB activation or sequesters MAVS from forming high-molecular-weight
aggregates, thereby suppressing TBK1/IRF3 activation [36]. When challenged with IAV,
CARMA3-deficient mice showed reduced disease symptoms compared to those of wild-
type mice due to less inflammation and a stronger ability to clear the infected virus [36].
In our study, the expression of CARD10 as a top hub gene in this module was nega-
tively correlated with time course. This suggested that the expression of CARD10 was
initially increased to promote inflammatory responses and was then decreased to unfreeze
antiviral responses.

5. Conclusions

By a variety of bioinformatics methods (WGCNA, different analysis, PPI, correlation
analysis, etc.), this study uncovered and validated fundamental patterns of molecular
responses, intrinsic structures of gene co-regulation, and potential targets in influenza A
virus infection. Our findings provided further insights into functional investigations to
identify potential therapeutic targets against influenza A virus infection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14081625/s1, Figure S1: The boxplot of batch-corrected data;
Figure S2: Determination of soft-thresholding power; Figure S3: The heatmap of relationships
between module eigengenes and traits; Table S1: The selected samples from 8 GEO datasets in
this analysis.
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