
Citation: Arévalo-Cortés, A.;

Granada, Y.; Torres, D.;

Triana-Chavez, O. Differential

Hatching, Development, Oviposition,

and Longevity Patterns among

Colombian Aedes aegypti Populations.

Insects 2022, 13, 536. https://

doi.org/10.3390/insects13060536

Received: 17 May 2022

Accepted: 8 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

insects

Article

Differential Hatching, Development, Oviposition,
and Longevity Patterns among Colombian
Aedes aegypti Populations
Andrea Arévalo-Cortés *, Yurany Granada, David Torres and Omar Triana-Chavez

Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia—UdeA, Calle 70 No. 52-21,
Medellín 050010, Colombia; eresbey2@gmail.com (Y.G.); david.torresh@udea.edu.co (D.T.);
omar.triana@udea.edu.co (O.T.-C.)
* Correspondence: aarevalocortes@gmail.com

Simple Summary: Aedes aegypti is a mosquito that transmits viruses responsible for several diseases
in humans, such as dengue, Zika, and chikungunya. It is crucial to study mosquito populations
from different countries and regions because control of disease transmission with insecticides can
be more effective if adjusted to each population’s characteristics. For this reason, we determined
several features of mosquitoes captured in different cities of Colombia: Neiva, Bello, Itagüí, and
Riohacha. These included the length of their lifespan, the number of eggs they lay, and the stages in
which they die. We found specific patterns for each population. This knowledge will help control
programs determine the optimal times to apply insecticides and make surveillance, as well as the
type of insecticide used.

Abstract: Dengue, Zika, and chikungunya are arboviral diseases for which there are no effective
therapies or vaccines. The only way to avoid their transmission is by controlling the vector Aedes
aegypti, but insecticide resistance limits this strategy. To generate relevant information for surveillance
and control mechanisms, we determined life cycle parameters, including longevity, fecundity, and
mortality, of Colombian Ae. aegypti populations from four different geographical regions: Neiva, Bello,
Itagüí, and Riohacha. When reared at 28 ◦C, Bello had the shortest development time, and Riohacha
had the longest. Each mosquito population had its own characteristic fecundity pattern during
four gonotrophic cycles. The survival curves of each population were significantly different, with
Riohacha having the longest survival in both males and females and Bello the shortest. High mortality
was observed in mosquitoes from Neiva in the egg stage and for Bello in the pupae stage. Finally,
when mosquitoes from Neiva and Bello were reared at 35 ◦C, development times and mortality were
severely affected. In conclusion, each population has a unique development pattern with an innate
trace in their biological characteristics that confers vulnerability in specific stages of development.

Keywords: Aedes aegypti; hatching; development time; longevity; survivorship curve; fecundity; mortality

1. Introduction

Aedes aegypti is the principal vector of several arboviruses such as dengue [1,2],
Zika [3,4], and chikungunya [5,6]. Dengue affects 390 million people worldwide, with
an estimated 96 million infections per year associated with any level of disease severity [7].
In 2019, the Americas reported more than 3 million dengue cases, the most significant
number recorded in the region [8,9]. For Zika, over 2 billion people live in areas conducive
to its transmission, and in 2015 the infection spread rapidly in the American continent, with
26 countries reporting active transmission and significant outbreaks observed in Brazil
and Colombia [3,10–12]. In the latter, the epidemic peaked in early 2016, with an incidence
of 377.7 cases per 100,000 inhabitants [11,12]. Chikungunya originated in Africa and has
caused epidemics in Asia, the Indian subcontinent, Europe, the Americas, and the Pacific
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Islands [5]. With no vaccine or treatment available, the only accessible strategy is vector
control. Insecticides are the primary tool for this purpose, but resistance to this chemical
control has been observed in mosquito populations [13–17].

The biological characteristics of vector insects, such as the life cycle, longevity, ovipo-
sition, and stages more susceptible to mortality, are fundamental knowledge for their
surveillance and control. They can help determine the most vulnerable stage in which the
vector population is less able to face environmental stress and control measures [18–21].
The study of these characteristics has been relevant not only in mosquitoes [19,20,22–26]
but also in other insects of medical importance, such as blood-feeding bugs [27,28], tsetse
flies [29,30], and sandflies [31,32]. These data have also been used in predictive mod-
els for insect population density, contributing to operational strategies to control these
species effectively [30,33–35]. Enrichment of data concerning disease vectors’ biological
characteristics can ensure reliable model predictions of insect population dynamics [35].

Aedes aegypti is a holometabolous insect with immature stages (egg, four larval stages,
and pupa) that develop in water and adults that live in terrestrial habitats [36]. The abil-
ity of Ae. aegypti to vary its biology and adapt to different environmental conditions
can influence population densities, favoring its permanence in areas with virus transmis-
sion [37,38]. Thus, Ae. aegypti populations from different regions may present diverse
growth and reproduction patterns [38]. In pathogen vectors, there are biological patterns
inherent to each population, such as development, survival, mortality, longevity, and fer-
tility, influenced by intrinsic and extrinsic factors specific to the region of origin [38–42].
Examples of intrinsic population factors are genetics [43–45], larval density [46,47] and
microbiota composition [48–51], while extrinsic factors include temperature [47,52–54],
water pH [55,56], presence of insecticides [57–60], and availability of food and biological
resources [46,47,61,62].

This study aimed to compare the hatching, development time, eggs per female,
longevity, survivorship curve, and mortality patterns of Ae. aegypti from different re-
gions of Colombia to try to understand the population dynamics of each area. More-
over, we determined the effects of temperature on specific developmental stages in two
mosquito populations, which showed different mortality and life expectancy patterns. The
results will contribute to assessing and reducing the risk of Ae. aegypti infestation by local
control strategies.

2. Materials and Methods
2.1. Study Site and Mosquito Collections

Immature stages and Ae. aegypti adults were collected between 2016–2018 in four
Colombian cities (Figure 1) with assistance from staff involved in vector-borne disease
programs from each municipality. Mosquitoes were sampled in 10–20 randomized houses
from four neighborhoods in each city.

These cities were selected because they have had dengue epidemics within the last
ten years. Riohacha is the capital of the La Guajira department and lies in the northern
Caribbean coast, in the natural Guajira Peninsula subregion, within Ranchería river’s delta.
It has an altitude of 2 m above sea level (m.a.s.l.) with an average temperature of 28 ◦C
(minimum of 21 ◦C and maximum of 35 ◦C), considered a hot arid climate with average
annual rainfall between 500–1000 mm [63]. From 1999 to 2010, La Guajira has presented
seasonal dengue outbreaks every four years. Riohacha has concentrated 34.7% of these
cases [64], with an incidence between 45.3 to 206.8 cases per 100,000 inhabitants [44]. Bello
has an altitude of 1250 m.a.s.l. with an average temperature of 23 ◦C (minimum of 16 ◦C
and maximum of 33 ◦C), classified as a warm semi-humid climate with an annual rainfall of
1500 to 2000 mm [63,65]. In this locality, between 2013 and 2019, there was an incidence of
dengue cases per 100,000 inhabitants between 16.3 and 381.4, the highest being registered
in 2016 [66]. Itagüí has an elevation of 1550 m.a.s.l. with a warm wet climate. It has an
average temperature of 19.6 ◦C (minimum of 16 ◦C and maximum of 22 ◦C) and an annual
rainfall of 2000 to 2500 mm [63,65]. In this city, the dengue cases per 100,000 inhabitants
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between 2013 and 2019 were 19.9 to 1063.5, with 2016 being the year with the highest
incidence [66]. Neiva lies between the Central and Eastern Andes Cordilleras, in the natural
Alto Magdalena valley subregion. It has an altitude of 442 m.a.s.l., an average temperature
of 28 ◦C (minimum of 22 ◦C and maximum of 33 ◦C), and an annual rainfall of 1000 to
1500 mm, which is classified as a warm semi-arid climate [63]. The incidence of dengue
between 2013 and 2019 was 164.3 to 1530.5 cases per 100,000 inhabitants; 2014 and 2019 were
considered to be epidemic years with incidences of 1081 and 1530.5 per 100,000 inhabitants,
respectively [67].
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Figure 1. Map of Colombia showing cities where samples of Aedes aegypti mosquitoes were collected.

The Rockefeller strain was used as a control because it is considered a strain of vigor
control for Aedes aegypti. It has been used as a reference strain in studies of insecticide resis-
tance, microbiota and fitness cost under a genetic background with kdr mutations [68–70].

2.2. Rearing and Maintenance of Ae. aegypti Populations

Collections were reared under controlled conditions: temperature (28 ± 1 ◦C), relative
humidity (80 ± 5%), and photoperiod (12 h light: 12 h dark). Mosquitoes were identified
by the patterns of typical white lyre-shaped markings scales on the thorax [71]. For
the identification of the larval stages of Ae. aegypti we followed the recognition method
of Christophers [72], which is based in distinguishing changes in chaetotaxy and other
external characters, such as greater branching of the hairs, greater number and branching
of the spines and greater complexity of the respiratory siphon, the anal segment and the
mouth parts. This was complemented with specific characteristics for each stage of larval
development, such as the presence of the egg-breaker for L1, a transverse diameter of
the head of approximately 0.3, 0.45, 0.65 and 0.95 mm for L1, L2, L3 and L4, respectively,
a dark head for L3 (the head should never go completely dark for other instars), and
the rudiments of the pupal respiratory trumpets for L4 [72]. F2 eggs were used after a
storage time between 2 and 3 weeks. One hundred eggs were submerged in 50 mL of
distilled and sterile water with 0.03 mg per larva of Tetramin® fish food (Tetra, Melle,
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Germany), in a cup of 5 cm in diameter and 3 cm in height, until hatching. Larvae were
subsequently reared in dechlorinated tap water in a plastic pan (8.5 cm in diameter and
11 cm in height) covered with muslin cloth at a density of 1 larva/mL, within the range
used to optimize rearing of Ae. aegypti (0.6–2.8 larvae/mL) [73–75]. The pans were checked
daily at the same hour of the day. Debris was removed using plastic pipettes, and water
lost through evaporation was replaced to maintain constant levels. Four to six replicates
were performed. All stages of larvae were subsequently fed daily with finely ground
Tetramin® fish food until pupation, with an increasing feeding regime for each stage per
day consisting of 0.06 to 0.12 mg per larva in L1-L2, 0.24 mg in L3, and 0.48 mg in L4,
following the strategy described by Araújo et al. [76]. All cohort individuals were sexed
after emergence (passing through pupae to adult, male or female) and introduced into
rearing cages (20 cm × 20 cm × 20 cm). Adults were provided with a 10% sterile sugar
solution dispensed through a sterile cotton ball in a petri dish. Starting seven days after
emergence, every week females were fed after 18 h of starvation with human O-positive
blood through a piece of desalted porcine intestine used as a membrane for 60 min using
water-jacketed glass feeders with a circulating system that maintained the blood at 37 ◦C.
After each feeding, the engorged females were counted. Seventy-two hours after blood
feeding, females were provided with an oviposition container (7.5 cm in diameter and 9 cm
in height) with filter paper as substrate and 100 mL of water. They were allowed to oviposit
for 72 h. The number of eggs laid per female during four gonotrophic cycles (GCs) was
counted under a dissecting microscope. Gonotrophic cycle (GC) duration was determined
as the time elapsed from blood feeding to oviposition [77]. The mortality of males and
females was recorded daily until the death of all mosquitoes.

2.3. Effects of Temperature on Immature Stage Mortality

Because we observed changes in mortality and life expectancy associated with the
pupal and egg stages in the Bello and Neiva populations, respectively, we wanted to know
if this observation could be explained by temperature, which is one of the most critical
variables that can modify these biological features in insect populations [47,78]. Thus, we
submerged a cohort of 100 eggs at 21 ± 1 ◦C, 28 ± 1 ◦C and 35 ± 1 ◦C in controlled rearing
conditions, as described above. The mortality of eggs, larvae (L1-L2, L3, L4), and pupae
were registered daily. Four to six replicates were performed.

2.4. Biological Features and Statistical Analysis

Development periods, survivorship and mortality for eggs, larvae (L1-L2, L3, L4), and
pupae were reported daily. The egg hatch rate was calculated by dividing the number of
L1-L2 by the number of eggs at the beginning (cohort of 100 eggs per replicate) [56,79].
The development time for immature stages is shown as eclosion (egg), L1-L2 to L3, L3
to L4, and L4 to pupae. The time to pupation is the mean development time from L4 to
pupae. The pupation rate was calculated by dividing the number of pupae by the number
of eggs [80,81].

For adults, time of emergence (period during which the pupa matures into an adult),
emergence rate (calculated by dividing the number of emerging adults by the initial number
of eggs) [80], longevity, survivorship curves, and fecundity were also registered.

Both longevity and survival are related to mortality but reflect two completely different
aspects. The mean longevity of a population indicates the average age that an individual
can reach at death [82], while survival evaluates the average longevity of a population
based on the number of individuals that have survived at different ages. Age-specific
survivorship (lx) represents the proportion of individuals alive at a certain age from the
starting number; see Equation (1). The survival curve graphs the values of lx as a function
of age [83].

Fecundity was estimated based on the average number of eggs laid per female [21,40].
The sex ratio was determined by dividing the number of adult females by the number of
adult males [42].
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Various attributes of a horizontal life table were calculated applying the following
equations [22,42,77,83–86]:

lx = Nx− N0 (1)

where Nx is the number of survivors registered at the beginning of the age interval (x), and
N0 is the starting number of mosquitoes in the population.

The proportion of individuals who die during the age interval (x) to (x + 1), defined
as (dx) is calculated as:

dx = lx− lx + 1 (2)

where lx + 1 is the proportion of surviving organisms registered at the beginning of the
following age interval.

Age-specific mortality rate (qx), calculated as follows:

qx = dx / lx (3)

Killing power (kx), is calculated as:

kx = Log Nx− Log Nx + 1 (4)

where Nx + 1 is defined as the number of survivors registered at the beginning of the
following age interval.

The average of the probability of survival between two successive ages (Lx) is recorded as:

Lx = (lx− lx + 1) / 2 (5)

The total number of days remaining to live for survivors of the cohort (Tx), when it
reaches age x until the last member dies at age m, is estimated as:

Tx =
x

∑
m

Lx (6)

where “m” represents the maximum age reached
Life expectancy (ex) is defined as the mean number of days remaining to the survivors

at age x:
ex = Tx /lx (7)

Descriptive statistics were performed for all variables. To obtain multiple comparisons
of the groups, an analysis of variance (One-way ANOVA) was conducted, and a Bonferroni
post-hoc test (p < 0.05) was used to determine whether groups were significantly different.
Additionally, a Student’s t-test was used (p < 0.05). These analyses were carried out using
IBM SPSS Statistics Software (version 25.0 for Windows, SPSS Statistics Software, Armonk,
NY, USA, IBM Corporation).

Adult survivorship was analyzed using the Kaplan–Meier survival analysis, and
survivorship curves were generated. The Log-rank (Mantel–Cox) test was performed
to compare the survival curves and establish statistically significant differences between
mosquito populations. There were different levels of comparison between the populations
and the Rockefeller control strain: overall pooled, overall strata (by sex: males and females)
and pairwise strata were analyzed. All these analyses were performed using GraphPad
Prism Software (version 5.1 for Windows, GraphPad Software, La Jolla, CA, USA, www.
graphpad.com) and IBM SPSS Statistics Software (version 25.0 for Windows, SPSS Statistics
Software, Armonk, NY, USA, IBM Corporation).

www.graphpad.com
www.graphpad.com
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3. Results
3.1. Differences in Immature Stage Development Times, Egg Hatching, Pupation, and Emergence
Rates in Ae. aegypti Populations

The mean hatching period was 1.22 ± 0.61, 1.39 ± 1.49, 1.93 ± 1.81, 2.49 ± 3.3, and
2.19 ± 2.33 days for Bello, Neiva, Itagüí, Riohacha, and Rockefeller, respectively (Figure 2A
and Table S1). The eclosion times between Ae. aegypti populations from Bello and Neiva
were not statistically different, but both were significantly shorter than those from Itagüí
and Riohacha (p < 0.05) (Figure 2A and Table S1). In addition, these last two mosquito
populations were different (p < 0.05) (Figure 2A and Table S1).
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Figure 2. (A) Developmental time (days) of each immature instar, (B) egg hatch rate and (C) pupation
rate of Colombian Ae. aegypti populations reared at 28± 1 ◦C temperature, 80± 5% relative humidity,
and 12 h light: 12 h dark photoperiod. The mean and standard error of the mean were plotted. Each
point represents a replicate from a cohort of 100 eggs. The total number of replicates were: Bello and
Neiva (4); Itagüí and Riohacha (5), and control Rockefeller (6). L: larvae. The time to pupation is the
mean development time from L4 to pupae. One-way analysis of variance (ANOVA) was conducted,
followed by a Bonferroni post-hoc test to account for multiple comparisons between Ae. aegypti
populations and the control (Rockefeller). Populations sharing the same letters are not significantly
different (p > 0.05).

The egg hatching rate for Neiva (89.75 ± 2.22) was significantly lower than for the
other Ae. aegypti populations (Figure 2B).

The development time to reach L3 from L1 + L2 was different for each population
(p < 0.05) (Figure 2A and Table S1). The populations with the lowest and highest develop-
ment times to reach this immature instar were Bello and Riohacha, respectively (Figure 2A
and Table S1).

There were statistically significant differences between all populations in the days
necessary to pass from L3 to L4 (p < 0.05) (Figure 2A and Table S1). The shortest time was
recorded for Bello and the highest for Riohacha (Figure 2A and Table S1).

Overall, the total larval development time was significantly different among all studied
populations (p < 0.05), with the lowest for Bello (3.17 ± 1.03 days) and the longest for
Riohacha (10.40 ± 6.03 days) (Table S1).

The time to pupation was different between all mosquito populations, including the
control Rockefeller (p < 0.05) (Figure 2A and Table S1). In this stage, Neiva took significantly
longer than Bello, Riohacha, and Itagüí (Figure 2A and Table S1). The pupation rate from
the initial number of eggs was considerably lower in mosquitoes from Neiva (85.50 ± 1.73)
compared to those from Riohacha and Rockefeller (p < 0.05) (Figure 2C).
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The male and female emergence times for mosquitos from Bello were significantly
shorter than those from other populations (p < 0.05) (Figure 3A and Table S1). Furthermore,
Neiva males took a substantially higher time to reach adulthood than Bello and Itagüí, but
not Riohacha (p < 0.05) (Figure 3A and Table S1). This same population had significantly
higher times for emergence of female adults than all others (p < 0.05) (Figure 3A and
Table S1). Additionally, for Bello, Neiva, Itagüí, and Rockefeller, within each population,
males took significantly fewer days to emerge than females (these differences are not
marked in Figure 3A). In contrast, for Riohacha, males and females needed similar times
(Table S1). The latter population had a significantly higher emergence rate than the others
(Figure 3B).
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and Neiva (4); Itagüí and Riohacha (5), and control Rockefeller (6). A one-way analysis of variance
(ANOVA) was conducted, followed by a Bonferroni post-hoc test to account for multiple comparisons
between Ae. aegypti populations. Populations sharing the same letters are not significantly different
(p > 0.05).

The average period in days from egg to adult of the studied mosquito populations is
shown in Table S1, where Bello had the lowest life cycle duration for males and females. In
contrast, Riohacha had the highest for both (Table S1).

3.2. Life Table Attributes of Immature Stages in Ae. aegypti Populations

The horizontal life table of immature stages is shown in Table S2. The highest mortality,
represented by qx and kx, occurred in eggs, in which Neiva mosquitoes had a significant
difference with the populations from Bello, Itagüí, Riohacha, and Rockefeller (Figure 4A,B
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and Table S2). The other significant difference in qx occurred in pupae between Bello and
the control (Figure 4A and Table S2). The mortality found in these stages is consistent
with the low life expectancy (ex) observed in eggs and pupae in the same two populations
(Figure 4C and Table S2). Life expectancy gradually decreased throughout development for
all populations of Ae. aegypti (Figure 4C and Table S2). Although Bello had a significantly
lower life expectancy than other populations in the larval stages, this was not mainly
reflected in the corresponding mortality (Figure 4A–C and Table S2).
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Figure 4. (A) Age-specific mortality rate (qx), (B) killing power (kx), and (C) age-specific life ex-
pectancy (ex) of Colombian Ae. aegypti populations reared at 28 ± 1 ◦C temperature, 80 ± 5% relative
humidity, and 12 h light: 12 h dark photoperiod. Mean and standard deviation (SD) are shown. The
total number of replicates were: Bello and Neiva (4); Itagüí and Riohacha (5), and Rockefeller control
(6). Each replicate started from a cohort of 100 eggs. One-way analysis of variance (ANOVA) was
conducted (* p < 0.05). A Bonferroni post-hoc test to account for multiple comparisons between
populations of Ae. aegypti is presented in Table S2.

3.3. Sex Ratio, Longevity, and Survivorship of Adult Ae. aegypti Populations

The life table attributes of adult populations obtained in this study are shown in
Tables S4 and S5. There were no statistically significant differences between the sex ratios
of any of the populations (Table S3) but significant differences in longevity of females and
males were observed in all of them (p < 0.05) (Table S6). Riohacha had the most extended
longevity in both genders, and Bello had the shortest (Table S6). Likewise, the female adult
longevity of all populations was significantly more extended than that of males (* p < 0.05)
(Table S6).

The survival for males was significantly shorter than for females when analyzing
overall pooled populations Chi-square (X2): 1073.63 df: 4 (p < 0.05). In males, Riohacha had
the most prolonged survival and Bello the shortest. Bello’s male survival curve showed a
rapid decrease on day 11, while Riohacha’s showed a gradual decline until day 58, and the
curve dropped on day 73 (Figure 5A). Bello had the shortest survivorship curve in females,
which decreased rapidly on day 15. In contrast, Riohacha had a more stable survival
curve, which descended gradually on day 71 and then fell on day 85 (Figure 5B). Table S7
shows the significantly different values of the survival curves when pairwise strata (sex)
comparison is made between the populations using a Log-rank (Mantel–Cox) test.
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Figure 5. Percentage of survival for (A) males and (B) females of Colombian Ae. aegypti populations
reared at 28 ± 1 ◦C temperature, 80 ± 5% relative humidity, and 12 h light: 12 h dark photoperiod.
Kaplan–Meier plots were generated in GraphPad Prism. The mean and standard error (SE) are shown.
The total number of replicates were: Bello and Neiva (4); Itagüí and Riohacha (5), and Rockefeller
control (6). Each replicate started from a cohort of 100 eggs. Statistical differences were calculated by
Log-rank (Mantel–Cox) test. Males: Chi square (X2): 499.9 df: 4 (p < 0.05). Females: X2: 620.0 df: 4
(p < 0.05). The dotted line represents the day at median survival for each population.

The life expectancy of adult Ae. aegypti females was higher than males and gradually
decreased for both sexes with increasing age (Tables S4 and S5).

3.4. Fecundity Profile of Ae. aegypti Populations

The fecundity of the first four female gonotrophic cycles (GCs) displayed significant
differences among the populations studied, showing a specific profile for each one (Figure 6).
This variability in fecundity between populations occurred during the GCs, even though
females had the same age. The number of eggs laid by mosquitoes from Neiva was low
and remained constant throughout the four GCs, with 20.05 to 23.30 eggs per female. This
resulted in significant differences to at least one population in each GC (Figure 6). Bello
had a range of eggs per female between 30.57 and 51.73. Its fecundity was significantly
higher than the other populations in the first GC; the number of eggs per female remained
high in the second and third GCs with no significant differences to Itagüí and Riohacha
and dropped in the fourth (Figure 6). Itagüí had GCs alternating between low and high
fecundity, with a range of 17.10 to 44.84 eggs per female (Figure 6). For Riohacha, the first
GC was low, like Neiva and Itagüí, but from the second to fourth GCs, the fecundity was
stable, and the mean eggs laid per female were ≥42.21 (Figure 6).
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Figure 6. Fecundity per gonotrophic cycle of Colombian Ae. aegypti populations reared at 28 ± 1 ◦C
temperature, 80 ± 5% relative humidity, and 12 h light: 12 h dark photoperiod. The mean and
standard error of the mean were plotted. Each point represents a replicate that started from a cohort
of 100 eggs. The total number of replicates were: Bello and Neiva (4); Itagüí and Riohacha (5),
and control Rockefeller (6). One-way analysis of variance (ANOVA) was conducted, followed by
a Bonferroni post-hoc test to account for multiple comparisons between Ae. aegypti populations.
Populations sharing the same letters are not significantly different (p > 0.05).
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3.5. Effect of Temperature on Immature Stage Development Times, Egg Hatching, Pupation, and
Emergence Rates for Bello and Neiva

To assess the effect of temperature on immature stages of mosquito development, we
reared Ae. aegypti from Bello, Neiva, and the control Rockefeller at 21, 28, and 35 ◦C. For
Bello, we found that the times for eclosion and development from L1 + L2 to L3 and L3 to
L4 were significantly shorter at 28 ◦C than at 35 ◦C and 21 ◦C and that these times were
significantly longer at 35 ◦C than at 21 ◦C (Figure 7A–C and Table S8). For Neiva and
Rockefeller, we also found these times considerably shorter at 28 ◦C. At 35 ◦C, mosquitoes
from Neiva had longer times substantially only in eclosion and L1 + L2 to L3, while no
significant differences were observed in L3 to L4 compared with 21 ◦C (Figure 7A–C and
Table S8).
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The hatching and pupation rates for Bello, Neiva, and Rockefeller showed similar 
patterns. Within the same population, both features were higher at 21 °C and 28 °C, with-
out significant differences, while the lowest rates were observed at 35 °C. This effect was 
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Figure 7. Developmental time (days) of each immature instar of two Colombian Ae. aegypti popula-
tions reared at 21 ± 1 ◦C, 28 ± 1 ◦C and 35 ± 1 ◦C temperatures, 80 ± 5% relative humidity, and 12
h light: 12 h dark photoperiod. (A) Eclosion, (B) L1 + L2 to L3, (C) L3 to L4, and (D) L4 to Pupae.
The mean and standard error of the mean were plotted. Each point represents a replicate that started
from a cohort of 100 eggs in each. The total number of replicates were: Bello and Neiva 28 ± 1 ◦C (4);
control Rockefeller 28 ± 1 ◦C (6); Bello, Neiva and control Rockefeller 21 ± 1 ◦C and 35 ± 1 ◦C (5). L:
larvae. The time to pupation is the mean development time from L4 to pupae. One-way analysis of
variance (ANOVA) was conducted, followed by a Bonferroni post-hoc test to account for multiple
comparisons between Ae. aegypti populations at the same temperature by age. Populations sharing
the same letters are not significantly different (p > 0.05).

As for pupation time (L4 to pupae), we found significant differences for Bello and
Rockefeller in the three temperatures evaluated, with 28 ◦C showing the shortest pupation
time, followed by 35 ◦C and 21 ◦C. Meanwhile, Neiva showed no differences between 28 ◦C
and the other temperatures and only had a significantly longer time at 21 ◦C in relation to
35 ◦C (Figure 7D and Table S8).

The hatching and pupation rates for Bello, Neiva, and Rockefeller showed similar
patterns. Within the same population, both features were higher at 21 ◦C and 28 ◦C, without
significant differences, while the lowest rates were observed at 35 ◦C. This effect was more
significant in the Neiva population (Figure 8 and Table S9).

Male and female emergence times for Bello and Rockefeller were significantly lower
at 28 ◦C than at 21 ◦C and 35 ◦C. Meanwhile, for Neiva, there were no differences between
the temperatures evaluated (Figure 9A,B and Table S8). For all populations, the emergence
rate was not different between 21 ◦C and 28 ◦C, but was significantly lower at 35 ◦C, with
Neiva showing a pronounced drop (Figure 9C and Table S9).
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Figure 8. (A) Egg hatch rate and (B) pupation rate of two Colombian Ae. aegypti populations reared
at 21 ± 1 ◦C, 28 ± 1 ◦C and 35 ± 1 ◦C temperatures, 80 ± 5% relative humidity, and 12 h light: 12 h
dark photoperiod. The mean and standard error of the mean were plotted. Each point represents
a replicate that started from a cohort of 100 eggs. The total number of replicates were: Bello and
Neiva 28 ± 1 ◦C (4); control Rockefeller 28 ± 1 ◦C (6); Bello, Neiva and control Rockefeller 21 ± 1 ◦C
and 35 ± 1 ◦C (5). One-way analysis of variance (ANOVA) was conducted, followed by a Bonferroni
post-hoc test to account for multiple comparisons between Ae. aegypti populations at the same
temperature. Populations sharing the same letters are not significantly different (p > 0.05).
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Figure 9. Emergence time, days to develop from pupae to male (A) or female (B) and emergence
rate (C) of two Colombian Ae. aegypti populations reared at 21 ± 1 ◦C, 28 ± 1 ◦C and 35 ± 1 ◦C
temperatures, 80 ± 5% relative humidity, and 12 h light: 12 h dark photoperiod. The mean and
standard error of the mean were plotted. Each point represents a replicate that started from a cohort
of 100 eggs. The total number of replicates were: Bello and Neiva 28 ± 1 ◦C (4); control Rockefeller
28 ± 1 ◦C (6); Bello, Neiva and control Rockefeller 21 ± 1 ◦C and 35 ± 1 ◦C (5). One-way analysis of
variance (ANOVA) was conducted, followed by a Bonferroni post-hoc test to account for multiple
comparisons between Ae. aegypti populations at the same temperature. Populations sharing the same
letters are not significantly different (p > 0.05).
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3.6. Effect of Temperature on Mortality in Immature Stages from Bello and Neiva

The horizontal life tables of the immature stages for Bello and Neiva reared at 21,
28, and 35 ◦C are shown in Tables S2, S10 and S11. Temperature significantly altered the
mosquito mortality rate (qx) of egg and L1 + L2 stages (Figure 10 and Table S12). At 35 ◦C,
these stages had a significantly higher mortality rate than at 28 ◦C and 21 ◦C for Bello,
Neiva, and Rockefeller (Figure 10A–C and Table S12). Previously, we observed that at
28 ◦C, mortality was associated with the egg stage in Neiva (Figure 4A). However, when
we increased the temperature to 35 ◦C, we observed that the mortality rate at the egg stage
for Neiva had a significant increase up to 0.83 on average, more than double that of the
other populations. This indicates that the most vulnerable stage for Neiva is affected by
temperature increases (Figure 10B and Table S12). We also observed at 28 ◦C that mortality
rate was associated with the pupae stage in Bello (Figure 4A). However, for this case, the
increment in temperature to 35 ◦C did not affect the mortality significantly (Figure 10A and
Table S12). Additionally, at 35 ◦C, life expectancy (ex) was lower in the stages with higher
mortality rates in all populations (Table S12).
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Figure 10. Age-specific mortality rate (qx) at 21, 28, and 35 ◦C, 80 ± 5% relative humidity, and 12 h
light: 12 h dark photoperiod. (A) Bello, (B) Neiva and (C) Rockefeller. Mean and standard deviation
(SD) are shown. One-way analysis of variance (ANOVA) was conducted (* p < 0.05). A Bonferroni
post-hoc test to account for multiple comparisons between temperatures for qx within the same
population and developmental stage is presented in Table S12.

4. Discussion

Egg and early stages of insect development are the most vulnerable to biotic and
abiotic factors in the field, and they show high mortality rates [18,83]. In this study, egg
development times ranged from 1.22 to 2.49 days, with the populations from Bello and
Neiva being the fastest to hatch (Table 1). In addition, high mortality was associated with
the egg stage in Neiva, and as a result, its hatching rate was significantly lower (Table 1). A
plethora of studies from different geographic regions carried out under conditions similar to
ours reveals variability in egg parameters. In Brazil, Ae. aegypti populations from different
bioclimatic regions differed significantly in the duration of embryonic development and egg
viability, with means ranging between 3.8 and 4.4 days and 58% to 84%, respectively [38].
In an Ae. aegypti population from Peru, egg development of one day on average was
reported with a qx range between zero and 0.08, while a population from Saudi Arabia had
an egg development of 5.3 days and a hatching rate of 72% [22,77]. In other species such as
Culex quinquefasciatus, populations from different climatic regions of India had significant
differences in egg hatching period (range 1.7–2.4 days), hatching rate (range 80.5–95.6%),
and mortality rate (range of 4.4–19.5%) [42]. These studies show that egg development and
mortality can vary according to geographical origin.
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Table 1. Summary of the results from four populations reared at 28 ± 1 ◦C temperature, 80 ± 5%
relative humidity, and 12 h light: 12 h dark photoperiod. For each trait, only populations with extreme
values that are significantly different are shown.

Trait Lowest Value Highest Value

Eclosion time Bello and Neiva Riohacha
Time from L1 + L2 to L4 Bello Riohacha
Pupation time Bello Neiva
Female emergence time Bello Neiva
Male emergence time Bello Neiva and Riohacha
Egg hatching rate Neiva
Pupation rate Neiva
Emergence rate Riohacha
Female longevity Bello Riohacha
Male longevity Bello Riohacha
Egg mortality Neiva
Pupae mortality Bello
Fecundity Neiva

Regarding fecundity, the population from Neiva had the least number of eggs oviposited
per female throughout the four gonotrophic cycles (Table 1). Mosquitoes from Bello
showed a fecundity curve, highest in the second and third gonotrophic cycles. Moreover,
mosquitoes from Itagüí were characterized by the alternation of low and high fecundity
cycles, while Riohacha′s fecundity was high and stable from the second gonotrophic cycle
onwards. We used type O human blood as a food source, which has been shown to have
an essential effect on fecundity [87,88]. The number of eggs per female is more significant
when they are fed human blood [88], and type O blood has the best digestibility and is
preferred by Ae. aegypti females [89,90]. Our work contributes for the first time that Ae.
aegypti Colombian populations from different geographical origins fed with O-positive
human blood present a characteristic pattern in fecundity. Another aspect to consider
is the possibility that populations meet and cross in nature [91], which could impact
their fecundity. Thus, future trials will be conducted by crossing the vigor control strain
Rockefeller with Neiva to verify if this could have an impact on egg fecundity and mortality.

Larval and pupal development times were also different between the Ae. aegypti
populations studied (Table 1). Larvae from Neiva, Itagüí, and Riohacha had prolonged
development in relation to Bello, while time to pupation was longer for Riohacha, Itagüí,
and Neiva, in ascending order. Mortality at the larval stage was low in all populations.
Bello had significantly higher mortality than the control at the pupae stage (Table 1). Similar
differences have been reported in Ae. aegypti populations from different geographic regions
of Brazil, with a larval development time of 6.3–8.3 days with a viability of 92–100%,
and a pupation time of 2–2.5 days with a viability of 63–94.5% [38]. Additionally, in Cx.
quinquefasciatus there were differences in larval and pupal development and mortality
among populations of different climatic sources [42]. Our finding of prolonged times in
both larvae and pupae development in three populations is not rare since, for example,
larval development times in populations of Ae. aegypti with ranges from 9.15 to 10.89 days
have been reported, similar to what we found for Riohacha [37]. These long development
times may represent a disadvantage since larvae and pupae are exposed longer to predators
and other factors that can eliminate them and, therefore, may influence the behavior of
these populations in the field [92–94].

The survival in mosquitoes from Bello was the shortest both in males and females, while
Riohacha was the longest-lived population. Female survival was shortest in Bello, followed by
Neiva, Itagüí, and Riohacha. The longevity times we observed were longer than those reported
for Ae. aegypti strains from other geographical regions, such as those from Argentina (males:
7.3–8.8 days; females: 11.5–58 days), Saudi Arabia (males: 9.59 days; females 17.14 days),
and Brazil (males: 14.22 to 32.06 days; females: 13.81–30.08 days) [41,52,77,95]. Our results
indicate that there are factors that negatively affect the survival of mosquitoes from Bello,
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Neiva and Itagüí. The composition of the gut microbiota may be one of these factors,
as we have previously described specific patterns for these populations [96]. For the
Neiva population, insecticide resistance is another factor that may be involved in this
phenomenon [96]. Conversely, the Riohacha population showed higher survival, especially
in males, indicating adaptation to this region’s hot climate [97]. Further studies should
analyze this population’s fitness in order to discern which factors are most important for
mosquito survival.

Prolonged longevity in females may represent a risk factor for dengue virus spread [95]
because transmission will only happen if the mosquito lives longer than the viral extrinsic
incubation period [98–100]. Furthermore, longevity can influence fecundity, as it is ex-
pected that during a female’s lifespan they will be able to complete at least two gonotrophic
cycles [95,101–103]. In our study, the population with the lowest longevity (Bello, with
39.9 days) had a fall in fecundity in the fourth gonotrophic cycle. Fecundity tends to
decrease in females close to their decline in life [101,102]. During long lifespans, oviposi-
tion patterns may show several peaks as we saw in the populations from Riohacha and
Itagui. Fecundity peaks during a female’s lifespan have been reported in Aedes spp. and
other arthropods, indicating that both longevity and fecundity are important in mosquito
population dynamics [101,104–107].

Several of our findings may be partly explained by differences in the microbiota [96],
as bacteria associated with mosquitoes can influence development in several ways. For
example, bacteria present in breeding sites and the metabolites they produce are essential for
Ae. aegypti egg hatching [108,109] and eggs infected with Wolbachia show delayed embryo
development, delayed eggshell formation, and a diminished egg hatch rate [110–112]. It
has also been determined that gut-associated bacteria are necessary for egg production in
Ae. aegypti and Ae. atropalpus [113] and that Anopheles coluzzii infected with Chromobacterium
violaceum lays significantly less eggs [114]. Although Ae. aegypti larvae can develop in
axenic (bacteria free) conditions, the time to pupation is longer and pupal development is
stunted compared with populations reared in the presence of all bacterial communities or a
single microorganism, suggesting that bacteria′s main role is nutritional [115]. Furthermore,
Ae. aegypti has plasticity to adapt to the microorganisms present in the diet, which in turn
affects mosquito development. For example, when Asaia and Escherichia coli were used as
diet, time to pupation decreased and larvae had a high survival span [116]. Additionally,
the data obtained in this study provides relevant information for the release of Ae. aegypti
populations infected with Wolbachia, especially in Bello and Itagüí, where such a vector
control program is now running [117].

Our previous works have established that the Neiva and Riohacha populations have a
lambda-cyhalothrin resistant phenotype associated to knock-down resistance (kdr) mutations
in the voltage-gated sodium channel gene [13,96,118]. Meanwhile, the Bello and Itagüí
populations have a very low frequency for the mutant alleles and are susceptible to lambda-
cyhalothrin [13,96,118]. The insecticide resistance status of each population is a factor
that may influence the life cycle parameters analyzed in this study. For example, field
and laboratory Ae. aegypti populations resistant to pyrethroids show a decreased egg
hatching rate and resistance to desiccation under continuous insecticide exposure or even
in the absence of insecticide pressure [59,119,120]. This effect is more evident when the
time in contact with the insecticides is longer and increases through generations [59,120].
Furthermore, prolonged larval development times have been reported in Ae. aegypti
populations that carry the V1016G/S989P genotype and show high resistance to lambda-
cyhalothrin and low-level resistance to deltamethrin [121], as well as in organophosphate-
resistant Ae. aegypti populations [122]. In agreement with these findings, we found that
the Neiva population, which has the highest allelic frequency rate for kdr mutations, has
high mortality at the egg stage, low hatching rate and prolonged larval development
and pupation times. The phenotypic and genotypic variability associated with insecticide
resistance in Colombian Ae. aegypti populations [118] may be generating this wide spectrum
of biological characteristics; future studies will be required to support this.
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Temperature has been described as one of the main extrinsic factors that influences
Ae. aegypti life cycle parameters [47,78] because it plays a fundamental role not only in the
biology of the vector, such as its development time and population density [47,52,123,124],
but also in geographical dispersion [78,125] and arboviral transmission [97,126,127]. In
Aedes aegypti, it has been described that the optimal development rates lie between 22 to
32 ◦C, with high mortality rates at the extremes (18 ◦C and 34 ◦C) [39,41]. The variability
between mosquito populations concerning temperature is complex since the mosquito
can have plasticity in the way it adapts to environmental conditions [128]. We found that
28 ◦C was the optimal temperature for all parameters evaluated (Table 2), although the
egg hatching rate was significantly decreased for Neiva at this temperature (Table 1). Our
results indicate that temperature affected our populations, raising mortality in specific
developmental stages (Table 2). For the Neiva population, we identified a pattern associated
with the egg stage as more vulnerable (Table 2). In that sense, mosquitoes from this locality
may have an innate trace in their biological characteristics, making some stages more
vulnerable to extrinsic factors such as temperature.

Table 2. Summary of the results from two populations reared at 21 ± 1 ◦C, 28 ± 1 ◦C and 35 ± 1 ◦C
temperatures, 80 ± 5% relative humidity, and 12 h light: 12 h dark photoperiod. For each trait, only
populations with extreme values that are significantly different are shown.

Trait Lowest Value Highest Value

Eclosion time Bello and Neiva 28 ◦C Bello and Neiva 35 ◦C

Time from L1 + L2 to L4 Bello and Neiva 28 ◦C Bello and Neiva 35 ◦C
Neiva (L3 to L4) 21 ◦C

Pupation time Bello 28 ◦C
Neiva 35 ◦C Bello and Neiva 21 ◦C

Female emergence time Bello 28 ◦C

Male emergence time Bello 28 ◦C

Egg hatching rate Bello and Neiva 35 ◦C Bello and Neiva 21 and 28 ◦C

Pupation rate Bello and Neiva 35 ◦C Bello and Neiva 21 and 28 ◦C

Emergence rate Bello and Neiva 35 ◦C Bello and Neiva 21 and 28 ◦C

Egg mortality Neiva 21, 28 and 35 ◦C
Bello 35 ◦C

L1 + L2 mortality Bello and Neiva 35 ◦C

Pupae mortality Bello 28 ◦C

Several other studies have provided evidence that temperature can affect the life cycle
of specific Ae. aegypti populations. For example, in Brazil, a significant interaction was
observed between population origin and temperature effects on Ae. aegypti immature
development times, as it was longer at 16 ◦C to 22 ◦C and decreased at higher temperatures
(28 ◦C to 36 ◦C), in contrast to what was observed in our work at 35 ◦C [52]. Another study
with an Ae. aegypti population from Paraná, Brazil, showed that the egg hatching rate can
be close to 50% at temperatures of 5 ◦C and 25 ◦C, verifying that the mosquito can have
adaptations at the local level, tolerating low temperatures [129]. Furthermore, in an Ae.
aegypti population from Trinidad, West Indies, it was seen that the egg hatching rate was
low (1.6%) at 35 ◦C, improved to 57% at 27 ◦C, and reached 98% at 25 ◦C [54]. In a similar
fashion, Farnesi et al. studied the egg hatching rate between 16 and 36 ◦C and found the
highest rates between 22 and 28 ◦C (range 93.3% to 96%), a lower rate at 35 ◦C (48.5%), and
no hatching at 36 ◦C [123], comparable to this work. The above indicates that temperature
and geographical origin interact to influence Ae. aegypti development time, mortality, and
hatching rate.
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5. Conclusions

Finally, another aspect to be considered is recent reporting of an Aedes albopictus
increase in Colombia, since this species is an important competitor of Ae. aegypti [130].
Likewise, the release of mosquitoes infected with Wolbachia could be affecting the life
tables of these mosquitoes. In conclusion, the data contained here is a contribution to
fundamental knowledge that local vector control entities can consider for improving
strategies by determining specific times for larvicide and adulticide application and Ae.
aegypti monitoring.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/insects13060536/s1, Table S1: Life cycle (days) from egg
to adult (male and female) of Colombian Ae. aegypti from different regions reared at 28 ± 1 ◦C
temperature, 80 ± 5% relative humidity, and 12 h light: 12 h dark photoperiod. Table S2: Age
specific life table of 100 cohort eggs in each Ae. aegypti population. Mosquitoes were reared at
28 ± 1 ◦C temperature, 80 ± 5% relative humidity, and 12 h light: 12 h dark photoperiod. Table S3:
Sex frequency and ratio in Ae. aegypti populations reared at 28 ± 1 ◦C temperature, 80 ± 5% relative
humidity, and 12 h light: 12 h dark photoperiod. Table S4: Male life tables of Ae. aegypti populations.
Mosquitoes were reared at 28 ± 1 ◦C temperature, 80 ± 5% relative humidity, and 12 h light: 12 h
dark photoperiod. Table S5: Female life tables of Ae. aegypti populations. Mosquitoes were reared at
28 ± 1 ◦C temperature, 80 ± 5% relative humidity, and 12 h light: 12 h dark photoperiod. Table S6:
Adult longevity for both sexes in Ae. aegypti populations reared at 28 ± 1 ◦C temperature, 80 ± 5%
relative humidity, and 12 h light: 12 h dark photoperiod. Table S7: Pairwise strata comparisons
between populations by sex was performed using the Log-rank (Mantel–Cox) test. Males and females
of each Ae. aegypti population and the control Rockefeller were reared at 28 ± 1 ◦C temperature, 80 ±
5% relative humidity, and 12 h light: 12 h dark photoperiod. Table S8: Life cycle (days) from egg to
adult (male and female) of Colombian Ae. aegypti from two regions, reared at 21 ± 1 ◦C, 28 ± 1 ◦C
and 35 ± 1 ◦C temperatures (Temp), 80 ± 5% relative humidity, and 12 h light: 12 h dark photoperiod.
Table S9: Egg hatch rate; pupation rate and emergence rate of two Colombian Ae. aegypti populations
reared at 21 ± 1 ◦C, 28 ± 1 ◦C and 35 ± 1 ◦C temperatures, 80 ± 5% relative humidity, and 12 h
light: 12 h dark photoperiod. Table S10: Age specific life table of 100 cohort eggs in each Ae. aegypti
population. Mosquitoes were reared at 21 ± 1 ◦C temperature, 80 ± 5% relative humidity, and 12 h
light: 12 h dark photoperiod. Table S11: Age specific life table of 100 cohort eggs in each Ae. aegypti
population. Mosquitoes were reared at 35 ± 1 ◦C temperature, 80 ± 5% relative humidity, and 12 h
light: 12 h dark photoperiod. Table S12: Age-specific mortality rate (qx) and life expectancy (ex) of 100
eggs for each Ae. aegypti population. Mosquitoes were reared at 21 ± 1 ◦C, 28 ± 1 ◦C and 35 ± 1 ◦C
temperatures, 80 ± 5% relative humidity, and 12 h light: 12 h dark photoperiod.
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