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Chunking consists in grouping items of a sequence into small clusters, named chunks,

with the assumed goal of lessening working memory load. Despite extensive research,

the current methods used to detect chunks, and to identify different chunking strategies,

remain discordant and difficult to implement. Here, we propose a simple and reliable

method to identify chunks in a sequence and to determine their stability across blocks.

This algorithm is based on a ranking method and its major novelty is that it provides

concomitantly both the features of individual chunk in a given sequence, and an

overall index that quantifies the chunking pattern consistency across sequences. The

analysis of simulated data confirmed the validity of our method in different conditions of

noise, chunk lengths and chunk numbers; moreover, we found that this algorithm was

particularly efficient in the noise range observed in real data, provided that at least 4

sequence repetitions were included in each experimental block. Furthermore, we applied

this algorithm to actual reaction time series gathered from 3 published experiments and

were able to confirm the findings obtained in the original reports. In conclusion, this

novel algorithm is easy to implement, is robust to outliers and provides concurrent and

reliable estimation of chunk position and chunking dynamics, making it useful to study

both sequence-specific and general chunking effects. The algorithm is available at:

https://github.com/artipago/Non-parametric-algorithm-to-isolate-chunks-in-response-

sequences.

Keywords: chunking, sequence learning, working memory, segmentation, concatenation

INTRODUCTION

Chunking refers to a strategy supposedly used to deal with the limitation of working memory
capacity (Miller, 1956; Ericsson et al., 1980; Gobet et al., 2001), which consists in grouping sequence
items together (Cowan, 2001, 2010), on the basis of their temporal contingency, feature similarity,
or spatial vicinity (Terrace, 1991; Verwey, 1996; Gobet and Simon, 1998; Gobet et al., 2001; Sakai
et al., 2003; Miyapuram et al., 2006; Bor and Seth, 2012; Mathy and Feldman, 2012; Wymbs et al.,
2012). Chunking has already been the subject of many studies, in particular in the context of
sequence learning (Sakai et al., 2003; Boyd et al., 2009; Perlman et al., 2010; Tremblay et al., 2010).
It is usually regarded as a mechanism that allows us to process sequences more efficiently (Sakai
et al., 2003; Perlman et al., 2010), although some studies have failed to find a correlation between
chunking and sequence learning or sequence performance (Clerget et al., 2012; Wymbs et al.,
2012). The formation of chunks has been seen as the result of two distinct processes occurring
sequentially (Wymbs et al., 2012). The first one is known as “segmentation” (Sakai et al., 2003; Bo
and Seidler, 2009), and consists in breaking the sequence into numerous small chunks. The second
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process, known as “concatenation,” is thought to occur at a later
stage during learning; it consists in assembling several short
chunks into longer segments (Verwey, 1996; Wymbs et al., 2012),
allowing to store a larger number of items at once.

Chunks are recognizable because they lead to a typical pattern
in reaction time (RT) series. Indeed, the retrieval of a chunk
comes at the cost of longer RT at chunk onset, suggesting that
all the elements of the chunks are retrieved prior to execution
of the first chunk element (Verwey, 1996; Clerget et al., 2012).
However, identifying chunks on the basis of this feature remains
a challenge because of the high variability of RT and because of
the dynamic nature of chunks, which fluctuate during training,
across block repetitions (Wymbs et al., 2012). Most of the
methods described so far in the literature provide only global
indexes that quantify how much of the RT variability can
be explained by the chunking patterns, but without reporting
the number or position of chunks within the sequence (see
Clerget et al., 2012 for an interesting exception, but with some
methodological limitations). Therefore, a statistically valid and
unbiased method allowing not only to track the overall chunking
dynamics but also to explore how chunking strategies affect
performance in sequence processing is currently lacking. Here
we propose a novel algorithm that naturally combines the
capacity to detect chunk positions and to quantify overall chunk
consistency, in response sequences including at least 4 repetitions
per block. This algorithm was first validated on simulated data,
and then on 3 datasets previously acquired in the laboratory
(Clerget et al., 2012; Alamia et al., 2016; Solopchuk et al.,
2016).

METHODS

The Ranking Algorithm
We implemented a non-parametric algorithm designed to
disclose chunks by uncovering specific patterns in RT series. This
algorithm is based on a ranking method that assigns a score to
each item of a sequence of length N and repeated k times in
a block; this score is subsequently used to detect chunks at the
block level. Overall, the algorithm could be summarized in five
steps (see Figure 1):

1. For each sequence of length N, the RTs of each sequence items
are ranked in ascending order, such that a value of 1 is assigned
to the item associated with the shortest RT and a value of N to
the item associated with the largest one (Figure 1A). Missing
values in the dataset, e.g., due to time-out constrains or lack
of response, are replaced with the average RT obtained from
the same items in the remaining sequences of the block. In
the very unlikely case in which the same RT was obtained in
several items, the algorithm ranks them in order of appearance
(i.e., highest rank to the first item).

2. Then, we sum the rank values of each item gathered for the k
sequences of the block, leading to a total of N summed rank
values (Figure 1B).

3. The difference between the summed rank values of each pair of
consecutive items is then computed: a negative value indicates
that the first item of the pair has a higher rank and, therefore,

an overall larger RT than the second one; a positive value
reveals the opposite relationship between RTs (Figure 1C).

4. Pairwise rank differences falling below a given threshold θ

(i.e., overall larger RTs, see below for the details of threshold
computation) indicate heads of chunks (Figure 1D).

5. Finally, when one item is identified as a chunk head, the
subsequent items in the sequence are considered as belonging
to the same chunk (chunk “body”) provided the 2 following
conditions are fulfilled: 1) the difference between the rank
of the chunk head and that of each subsequent item of
the sequence is below the threshold θ and 2) the absolute
difference in ranks between all pairs of successive items
(excluding the head) is smaller than the median of the
absolute rank differences in the block (Figure 1E). This second
criterion was included so as to ensure that all items within a
chunk had comparable ranks.

The θ threshold is estimated by computing, for each block, the
theoretical distribution of the pairwise rank differences. The
threshold is estimated for each set of time series (see Figure
S1A) depending on the number of items in the sequence (n),
and the number of sequences in a block (k). Given that the
probability of getting a given rank is the same for all sequence
items, the probability mass function of item ranks follows a
uniform distribution:

F(x) = U {1, n} (1)

The probability distribution of the summed rank values was
obtained by convolving the uniform distribution k times
(Equations 2, 3).

F1(x) = U {1, n} ∗ U {1, n} (2)

Fk(x) = Fk−1(x) ∗ U {1, n} (3)

Then, to determine the distribution of the difference of successive
sums of ranks, we convolved the obtained distribution F k(x)with
itself and centered it on zero (Equations 4, 5).

G (x) = Fk(x) ∗ Fk(x) (4)

D (x− E[G]) = G (x) (5)

Finally, the theoretical distribution of the difference of rank sums,
and therefore the threshold for determining the significance level
given a type-I error rate α, is as follows:

θ = max (x) :

∑

xi≤x

D (xi) ≤ α (6)

A Matlab script performing these computations is provided
at: https://github.com/artipago/Non-parametric-algorithm-to-
isolate-chunks-in-response-sequences.

However, in order to simplify the procedure, we also devised
a rule of thumb that can be used to compute the threshold, given
N and k. We fitted the thresholds obtained with the theoretical
approach described above, for a range of k (from 2 to 20) and
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FIGURE 1 | Overview of the algorithm steps. (A) Simulated RT series, with the corresponding rank of each of the 16 items of the sequence, illustrated for several

sequence repetitions. (B) Sum of the ranks gathered for all sequences of the block. (C) Pairwise differences between rank sums, with the threshold used to identify

the heads of the chunks. (D) Sum of the ranks of each item in the sequence, with identified head of chunks highlighted in red; (E) same as in (D) with the body of

chunks highlighted in green.
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N values (from 2 to 64) and for an α of 0.05. This led to the
following formula:

θ = −0.5− 0.70647 ∗
√
(N) ∗ k (7)

This fitting procedure is also provided as a Matlab script in
https://github.com/artipago/Non-parametric-algorithm-to-
isolate-chunks-in-response-sequences.

This algorithm is quite robust to outliers, since it is non-
parametric and considers the data block-wise, thus reducing the
influence of outliers occurring randomly in one sequence. The
algorithm is also robust, in principle, to type I error, avoiding
the identification of false chunks: the threshold, set by default
to α = 0.05, could be tuned to increase or reduce the sensitivity
of the algorithm in detecting chunks, depending on the desired
degree of accuracy and false discovery rate.

Furthermore, a chi-square test was performed on the summed
rank values computed at the block-level (Figure 1B) to assess
how much these differed from a uniform distribution. The
obtained chi-square index (referenced later as the chi2-index)
provides us with a quantitative evaluation of the chunking
pattern for each block, and can be interpreted as an index of the
chunking consistency: the bigger the distance from the uniform
distribution, the more consistent the chunking pattern within the
blocks.

Simulated Datasets
To test the validity of our algorithm, we generated 5 different
structured datasets composed of sequences of 16 items (N =
16) repeated 5 times in each block (k = 5). The different
chunking patterns were obtained by embedding in the sequence
either 2 (few) or 4 (many) chunks composed of either 2 (short)
or 4 (long) items each. There was no chunking pattern in
the fifth condition, which was used as a control condition.
The number of sequences per block played an important role
in the efficacy of the algorithm (see the Results section for
details). Indeed, since chunks are detected block by block, the
higher the number of sequence repetitions, the smaller the
influence of outliers. In contrast, the length of the sequence
had little influence on the outcome of the algorithm, and the
value of 16 was chosen to fit the experimental datasets (see
below).

Specifically, each sequence was built according to the
following formula:

1) rt= rt0 + noise.
2) noise= (rt0 ∗ slope+ intercept) ∗ N(0,1).

where rt0 represents the baseline level of the RT, and could take
three possible values:

a) 760ms for the non-chunk items,
b) 810ms for the heads of chunks,
c) 495ms for the body of chunks.

Those values were estimated by averaging, from the actual dataset
#1 (see below), the RT of a naïve (non-chunk items) and a non-
naïve participant (head and body of chunks) performing a known
hierarchically structured sequence (Solopchuk et al., 2016). For
all simulated datasets, the chunks were distributed randomly in

the sequences, avoiding overlaps between chunks, or pieces of
chunks at the end of the sequence. The chunk positions were kept
constant in all the sequences of each block.

The noise added in the simulated data (see formula 3)
was normally distributed. This choice of noise distribution is
conservative since it leads to larger overlaps between the RT
distributions of the different chunk categories than would, for
instance, a log-normal distribution of equal variance and mean.
In the experimental dataset #1 (see below), we found a strong
correlation for each subject between the standard deviation (SD)
andmean (µ) of each block. To account for this fact, we estimated
the coefficients of the linear regression between SD and µ and
we applied a similar linear relation between SD and µ in our
simulated dataset, as shown in the formula. Therefore, the range
of slope and intercept parameters included in the simulated
dataset were estimated from dataset #1, because it comprises the
largest sample and did not involve experimental manipulation
(i.e., TMS). The slope values in this dataset ranged between−0.1
and 0.8, and the intercept from −12 to 12. We sampled these
ranges of values such that we included 9 bins for the intercept
(steps of 0.1) and 24 bins for the slope (steps of 1), yielding
a 9 × 24 (slopes × intercept) matrix. The slope and intercept
parameters estimated from datasets #2 and #3 provided similar
values as those of dataset #1. Moreover, in the experimental data,
high intercepts were associated with low slope values, and large
slopes to low intercept values; therefore, low values of both slope
and intercept (i.e., very small noise level) or high values of both
slope and intercept (i.e., very high noise level) are theoretical
conditions useful to evaluate the algorithm, but exceptional in
experimental datasets.

Experimental Datasets
As already mentioned, we also tested our algorithm on three
“real” datasets (Clerget et al., 2012; Alamia et al., 2016; Solopchuk
et al., 2016).

Dataset #1 was gathered from 26 participants (16 women,
mean age= 27 years, SD= 4) who were asked to learn explicitly a
16-digit sequence. Participants had to choose between two digits
displayed simultaneously on a computer screen by pressing on
the left or right mouse button; one digit was the “target” i.e., the
digit belonging to the sequence, the other one was a distractor
(Kühn, 2011). The position (left or right) of the “target” was
pseudo-randomized, ensuring that the sequence of digits was not
associated with any systematic sequence of motor responses. The
experiment comprised 8 blocks, each of which being composed
of 6 sequence repetitions. The sequence, organized in distinct
hierarchical levels, was 3232232341411414 (see Figure 1; Alamia
et al., 2016). Moreover, before the task, all the subjects underwent
a set of working memory tasks for around 30min (Solopchuk
et al., 2016).

The dataset #2 was gathered from 24 participants (12 women,
mean age = 23 years SD = 4) who performed the same task
as aforementioned, but with each block being composed of 5
sequence repetitions. The participants received a continuous
theta-burst TMS (cTBS) before the experiment either over the
vertex (control group) or over Broca’s area in order to determine
the role of this cortical area in high-level chunking (Alamia et al.,
2016).
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Dataset #3 was gathered in an experiment performed on 17
participants (9 women, mean age= 27, SD= 4), who performed
8 blocks of a Serial Reaction Time Task (SRTT), in which a
sequence of 20 items was learnt implicitly. The sequence was
31422413424131321234, in which the numbers correspond to
fixed finger-response key mappings, from index (1) to pinkie
(4). In block 7 the sequence was shuffled, in order to test
the sequence-specific learning (Clerget et al., 2012). All the
participants received cTBS before learning the sequence: in one
group, cTBS was delivered over the caudal part of the Broca’s area
(left BA44), while in the other group, it was applied, as a control,
over the vertex (Clerget et al., 2012).

Analysis
We first evaluated the performance of our algorithm on the
simulated datasets, and then on the 3 experimental datasets.

Simulated Dataset

A Monte Carlo approach (1000 iterations) was performed in
order to test our algorithm in a supervised way, as the number
of chunks, their position and length were known. Specifically, we
simulated different RT series for each condition (i.e., no chunks,
two 2-item chunks, four 2-item chunks, two 4-item chunks, and
four 4-item long chunks) and for different values of noise, i.e.,
intercept and slope (see above). The outcome measures were
the number of chunks identified by our algorithm, their length
and their position in the sequence. For each of these outcomes,
we tested whether the estimated confidence intervals included
the known chunk parameters. Furthermore, we computed the
confidence intervals of the chi2-values obtained in each condition
for each combination of noise parameters, and determined
whether they overlapped with those obtained with the random
dataset (i.e., the dataset that included no structure in the RT
sequences).

In order to analyze how the results of the algorithm varied
according to the number of sequences per block (k), we
performed the same Monte Carlo analysis (n = 1000) while
varying k (2, 4, 5, 6, 8, or 10), and we assessed the number of
chunks identified, their length and the error of the identified
position by means of confidence intervals. The aim of this
analysis was to test the reliability of the algorithm for different
sequence numbers. It was performed considering only one point
in the slope/intercept space, which was the mean value of all the
subjects from the experimental dataset #1.

Experimental Datasets

In the second series of analyses, we tested the algorithm on
three datasets gathered during different experimental sessions
described above. For each dataset we compared the results
obtained with our algorithm and those obtained in the original
studies. Moreover, for each dataset we ran three GLMM
(Generalized Linear Mixed Model), considering as dependent
variable either the number of the chunks, the length of the
chunks, or the chi2-index. The BLOCK number factor was
included as a fixed effect. When appropriate, we included the
factor GROUP to discern those who received TMS pulses over
BA44 or the vertex (i.e., dataset #2 and #3). The random model

was implemented considering all the factors included in the
fixed model. In case of a lack of significant effect of the factor
BLOCK, the Bayes Factor was computed by comparing the
models with and without the BLOCK factor. We also performed
Spearman correlations between the chi2-index and response
accuracy or RT, in order to unveil a possible effect of chunking
on performance.

All the analyses regarding the GLMM were performed in
SAS 9.3 (SAS Institute, Cary NC), whereas the other analyses
were performed in Matlab 7.5 (The MathWorks, Natick,
Massachusetts, USA).

RESULTS

Simulated Datasets
We first examined the performance of the non-parametric
chunking algorithm on 1000 iterations of simulated data,
generated randomly for each combination of the noise
parameters (i.e., the slope and the intercept). Figure 3 reports
the results for the simulated dataset with few and short chunks;
similar results were obtained for the other datasets (few and
long, many and long or many, and short chunks) and were
therefore not illustrated. A complete representation of all the
results is reported in supplementary materials (see Figures S2,
S3). Figure 2 shows examples of results from the algorithm
for 3 different noise levels in RT, whereas Figure 3 shows
the global capacity of our algorithm to detect the number of
chunks, their length and position, as a function of noise level.
The noise level was computed from a large range of slope
and intercept values (see Methods). When the noise remained
confined to the range observed in actual experimental datasets
(green shaded area in Figure 3), the estimated chunk number
was unbiased (the average outcome of the 1000 iterations
was equal to the real number of chunks). Similarly, regarding
chunk lengths, our algorithm detected the correct lengths
in a wide range of noise level, and particularly for noise
parameters corresponding to the actual values measured in
dataset #1.

Regarding the errors in determining the correct chunk
position (Figure 3C), we averaged the sequence-wise error rate,
i.e., the number of times the algorithm detected a non-existing
chunk (type I error), or missed an actual chunk in a sequence
(type II error). Within the range of noise parameters found in
the experimental datasets, the average error rate was very close
to zero, meaning that the algorithm committed few errors in all
simulated conditions.

Furthermore, we compared the chi2-values computed on the
dataset with no chunks and on the simulated data (Figure 3D):
a significant difference (i.e., a lack of overlap of the confidence
intervals), confirmed the reliability of the chi2-index in detecting
a pattern in our simulated data.

Eventually, we investigated how the performance of the
algorithm changes as a function of the number of sequences
in each block. Not surprisingly, the results revealed that the
higher the number of sequences per block, the better the results.
Indicatively, a series of 4 sequences per block would be the
minimum to have reliable results.
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FIGURE 2 | Example of RT data. (A–C) Example of RT data for different

noise levels in the simulated dataset (few and short chunks). The arrows point

to the “theoretical” chunks, while the red and green dots show the chunks

detected by our algorithm.

Experimental Dataset–Comparison with
Previous Methods
Different techniques have been used to analyze the data in the
previous studies: in Solopchuk et al. (2016) correlations between
RT series were used to estimate the chunking consistency across
blocks, in Alamia et al. (2016) a clustering analysis based on

FIGURE 3 | Results of simulated dataset analysis. Average number of

chunks identified by the algorithm in the simulated dataset (few and short

chunks). The x axis represents the noise level whereas the y axis represents

the number of identified chunks (A) the chunk length (B), the error rate (C) and

the chi2-index (D). The red lines indicate the standard error while the green

shaded zone designates the range of noise level observed in dataset #1

(mean ± 2 SD).

network modularity was used to estimate the chunking dynamics
during the experiment and finally in Clerget et al. (2012)
chunks were identified by means of an ANOVA. Since the main
advantage of the algorithm is that it provides both an estimation
of the chunks positions in the sequence and an index that tracks
the overall chunking strategy, we were able to compare our results
with those obtained with these various analysis approaches.
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Figure 4A shows the results of the comparative analysis of
dataset #1: in the original study chunking strategy was quantified
by means of the chunk carryover index, which represents the
consistency of the chunking strategy across blocks (Solopchuk
et al., 2016). We hypothesized that chunk carryover indexes
would be related to the block-wise averaged chi2-indexes, as
they both reflect chunking consistency. Indeed, we found them
to be highly correlated (r = 0.8123, p < 0.001, Spearman).
Furthermore, in the original study, chunk carryover was found
to be correlated with performance improvement (quantified as
decrease in the overall RT). In line with these results the chi2-
index also correlated significantly with the improvements in the
overall RT (r = −0.5316, p = 0.02, Spearman).

The second dataset was originally analyzed by means of a
community detection analysis, in which individual RT patterns
were organized in a network, characterized by the ϕ index,
computed as the inverse of the network modularity. As
reported in the first study that used this approach (Wymbs
et al., 2012), higher values of ϕ suggest the absence (or
concatenation) of chunks, whereas lower values of ϕ indicate
the presence of several small chunks (or chunk segmentation),
associated with higher RT variability. We predicted that
the ϕ index would be highly correlated with our chi2-
index, which tracks the consistency of the chunk strategy
within each block, as the low values of chi2 indicate few
and/or inconsistent chunks, whereas high values suggest many
and/or consistent chunking patterns. Not surprisingly, the
two indexes obtained from dataset #2 correlate significantly
with each other (see Figure 4B; r = −0.6824, p < 0.01,
Spearman).

Finally, Figure 4C shows the results of the comparative
analysis of dataset #3 (Clerget et al.). The left panel illustrates the
chunks identified by the Clerget approach, that is an ANOVA
on the last block of RTs, whereas the right panel shows the
chunks detected by our algorithm (represented as the number of
times a given sequence item was identified as a chunk head or
body). The comparison reveals that the general chunking pattern
identified by these different approaches is the same. Moreover,
our algorithm reveals considerable inter-subject variability of the
chunking strategies. This ability to detect individual chunking
patterns empowers an investigator to perform more sensitive
data analysis, as it does not rely on a critical assumption of
homogeneity of chunking strategies, thus, does not require large
sample sizes for robust chunk detection.

The detailed statistical analysis of the measures provided by
our algorithm (i.e., number and length of chunks, chi2-index)
on the 3 experimental datasets is provided in supplementary
materials.

DISCUSSION

The aim of this study was to develop a new method to identify
patterns in RT series. In the first part of this study, we evaluated
the performance of our algorithm by testing it on simulated
datasets that consisted of 16-item sequences with known chunk
features. The algorithm proved to be reliable to isolate chunks,

particularly when tested with additive noise that remained within
the range of magnitude observed in actual data. In the second
part of this study, we tested our algorithm on three real datasets
previously acquired in our lab (Clerget et al., 2012; Alamia et al.,
2016; Solopchuk et al., 2016).

Despite a considerable literature on chunking, there is still no
consensus on a gold standard method to analyze RT series in
sequence learning; rather, several different methods have been
used so far, often leading to results that are difficult to compare to
each other. The different methods proposed in the literature can
be classified into two main categories: those providing positions
and number of chunks in each block, analyzing the data in a
sequence-specific manner, and those providing, for each block,
an index reflecting the “strength” of the chunk strategy used
by the participants. Regarding the first group of methods, one
approach consists in comparing, for each pair of consecutive
items, the mean RT gathered for a given block, thus possibly
identifying a significant difference between itemRT that would be
indicative of a chunk (Bo and Seidler, 2009; Clerget et al., 2011,
2012, 2013). However, this straightforward approach has a few
drawbacks, mainly related to: (1) its sensitivity to outliers, (2) the
small sample size (i.e., the number of sequences per block) used
to perform the comparison between pair of items. The second
approach, providing a global index of chunking across blocks, can
be based on different methods. For example, Wymbs et al. (2012)
used a method originally designed to identify communities in
large networks, and which is based on the computation of a
modularity index, defined as the degree to which a network can
be divided into small clusters (Blondel et al., 2008; Mucha et al.,
2010). In the context of sequence learning, this approach provides
an index allowing us to determine how “modular” is a given
sequence, or in other words, how easily the items of that sequence
can be grouped into chunks. Recently, the same approach has
been used to investigate the consequence of a disruption of
Broca’s area performed with transcranial magnetic stimulation on
the chunking strategy (Alamia et al., 2016). The main advantage
of this approach derives from the use of a single feature of the
network (the index of modularity), which allows considering
all the data at once, reducing considerably the contribution of
the outliers. Nonetheless, this approach provides only an overall
index that estimates the modularity of the RT series, regardless
of the actual presence of chunks in the data; therefore this
approach cannot be used to estimate chunks length and number.
In particular, the modularity index is affected not only by the
number of chunks, but also by variations in the relative difference
between items in RT: for example, the same chunking pattern can
lead to different modularity index values just by having the first
item RT vary, without unveiling an actual change in the chunking
strategy.

Another method providing an index to assess the chunking
strategy has been proposed by Tremblay et al. (2010), and is
based on the variability of the RT data, estimated through the
Eta Squared index. As for the previous method, this approach
leads to a unique score reflecting the chunking strategy, without
providing any further information about the size, position and
number of chunks in the sequence. Another method based on
a single index has been recently used in two studies (Song
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FIGURE 4 | Results of experimental dataset analysis. (A) Correlation between the carry-over index and the chi2-index in the first experimental dataset. The two

measures correlate, and are both correlated with the performance during the task (i.e., improvement in RT). (B) Correlation between ϕ-index and chi2-index obtained

on the second experimental dataset. The two indexes are significantly correlated, confirming that both address the dynamics of the chunking strategy. (C)

Comparison of the chunk positions in Clerget et al. (2012), identified by the ANOVA of RT series (Clerget et al, left panel) and the ones obtained with our algorithm

(right panel). On both panels, chunk heads and bodies identified in Clerget et al., are denoted by red and blue colors, respectively.
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and Cohen, 2014; Solopchuk et al., 2016): this so-called “chunk
carryover” index, provides a measure of the coherence of
the chunking strategy across blocks, and is based on linear
correlations between RT series: the stronger the correlation
the more consistent the chunking pattern. Finally, a more
complicated model has been proposed recently (Acuna et al.,
2014) in which the RT series are modeled according to different
factors, ranging from practice effect to biomechanical factors, and
include the chunking structure. The advantage of this approach
is that it combines information on the RT and on the error rate.
However, in most sequence learning experiments, the training
reduces considerably the error rate after few blocks, making its
inclusion in the analyses less informative. Moreover, since this
method relies on an optimization procedure, its downside is to
require a large amount of data to grant optimal fits.

Crucially, the main novelty of our algorithm is to combine
the advantages of the two aforementioned approaches. Indeed, it
provides both individual chunk features, such as their position,
length and number, and an overall index—the chi2-index—
allowing to estimate the chunking “strength” across block
repetitions. However, the main drawback of this algorithm,
similarly to other methods used to analyze RT series, is its
sensitivity to the number of sequences per block: if a block
comprises less than 4 sequence repetitions, it is more likely to
have false positive chunk detection, because of a higher sensitivity
to outliers. Our findings suggest that 4 repetitions per block
provide the right tradeoff between time resolution (number of
sequences) and statistical reliability (false positive detection).

The results gathered by our new algorithm corroborate and
extend the findings reported in earlier publications from our
group (Clerget et al., 2012; Alamia et al., 2016; Solopchuk
et al., 2016). In the work of Solopchuk et al. (dataset #1),
chunking was shown to play a key role in improving sequence
processing (Solopchuk et al., 2016), and we confirmed that
conclusion by showing a correlation between the chi2-index
and performance (Figure 4A). However, whereas the chunk
carryover index, used as an estimate of chunking (Solopchuk
et al., 2016) conveys information about the reliability of the
chunking strategy during the whole experiment (being a mean
correlation coefficient between block-wise averaged RT patterns),
the chi2-index introduced in the present study provides a
block by block evaluation of chunking, and thus a better time
resolution to track chunking progression over block repetition.
The aim of the second study from which we reanalyzed the data
(Alamia et al., 2016) was to test the hypothesis that Brodmann
area 44 (BA44) plays a central role in processing high-level
chunking. To do so, Alamia et al. applied TMS over that cortical
area in order to alter its excitability, and investigated how
this manipulation affected sequence learning/processing; these
results were compared to those of a control group that received
TMS over a control area. The present study also supports the
conclusion that BA44 is involved in chunk processing by showing
a different chunking pattern in the two groups (Figure S1).
Finally, the analysis of the last dataset showed no difference
in the elementary chunking strategy between the two groups,
but a significant difference in learning, highlighted through an
interaction between BLOCK and GROUP on the number of

chunks, confirming the findings of the original study (Clerget
et al., 2012).

In addition to confirming our earlier findings, applying
the novel algorithm we developed on the previously acquired
datasets suggested two results of particular interest, namely, the
existence of a relationship between chunking and performance,
and a lack of decrease in chunk number across block repetitions.
Recent studies have suggested that the accuracy in sequence
performance and the decrease in RT are not affected by the
reliance on chunking, suggesting a lack of functional benefit
of chunking in sequence processing (Wymbs et al., 2012; Song
and Cohen, 2014). In contrast, our analysis of datasets #1 and
#2 provided strong evidence in favor of a positive correlation
between performance (number of correct responses in the task)
and the consistency of the chunking strategy (e.g., measured by
means of the chi2-index) while learning the perceptual sequence.
However, we failed to find a correlation in dataset #3, a finding
which was thus in accordance with earlier results (Wymbs et al.,
2012; Song and Cohen, 2014). This discrepancy could emerge
from the nature of the tasks, since datasets #1 and #2 relied
on an explicit symbolic sequence learning task, whereas dataset
#3, similarly to earlier studies, involved motor sequences learned
implicitly. Another important difference with the earlier studies
was the length of the training underwent by the participants:
in our dataset only 8 blocks of either 5 or 6 repetitions were
considered, whereas in the studies of Wymbs et al and Song and
Cohen, participants were usually trained to perform the sequence
for several days. It is possible that the chunking process affects
behavior mostly in the early stage of sequence learning, but not
on the long run, when the sequence is over-learnt and when the
performance has already reached a plateau.

The second interesting result that emerged from re-analyzing
our previous experimental datasets concerns the lack of evidence
in favor of any decrease in the number of chunks across block
repetition, in contradiction with the view that concatenation of
chunks should occur progressively during repeated execution of
the sequences (Klapp, 1995; Verwey, 1996; Wymbs et al., 2012).
In our experiments, and in line with the results of (Song and
Cohen, 2014), no evidence emerged in favor of the concatenation
hypothesis. Instead, the number of chunks and their length
remained remarkably constant during the whole experiment,
pointing rather toward a stability of the chunking strategy used by
the participants. As suggested above, the discrepancy with earlier
results (Wymbs et al., 2012) could be explained by the training
duration. Another potential explanation for the difference in
results could be the actual sequence that the participants had to
learn: if the sequence length is not demanding (only 16 or 20
items, with a relatively easy sequence structure to memorize) the
number of chunks could remain stable, and the initial chunking
strategy could be already optimal in alleviating the working
memory load, making the concatenation process not necessary.

In conclusion, we propose an original and reliable method to
detect the position and length of chunks, and an index to track the
chunking strategy of the participants during sequence learning
tasks. Interestingly, analyzing three experimental datasets we
reported a correlation between the chunking strategy and the
task performance, and, notably, we found no evidence supporting
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chunk concatenation in the actual datasets we analyzed with this
new algorithm.
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