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Objective: Studies of the effects of estrogens on the male reproductive system have emphasized the role of these hormones in male fertility. 
Sesame oil has many phytoestrogenic compounds and may improve male fertility. This study investigated the effects of sesame oil and differ-
ent concentrations of estrogen on sperm parameters and DNA integrity in male mice. 
Methods: Twenty old NMRI (The Naval Medical Research Institute) male mice (40 weeks; weight, 30–35 g) were treated with sesame oil or 
different concentrations of estrogen (estradiol, 1 and 10 μL/kg/ day) or received no treatment (controls). After 35 days, sperm parameters and 
DNA integrity were assessed and analyzed. 
Results: Sperm count, progressive motility, and morphology were decreased in the group that received 10 μL/kg of estradiol. A remarkably 
lower percentage of DNA fragmentation and protamine deficiency were detected in the group that received 1 μL/kg of estradiol. In the 
groups that received sesame oil and 1 μL/kg of estradiol, the numbers of spermatogonia and Leydig cells were higher than in controls. The 
combination of sesame oil and 1 μL/kg of estradiol led to improved sperm parameters and chromatin and testicular structure. 
Conclusion: Based on this study, consumption of sesame oil and a low concentration of estradiol may improve testicular function in older 
mice. 
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Introduction 

Spermatogenesis is an essential process in the male reproductive 
system [1]. Associations of sex hormones with spermatogenesis, 
sperm survival, and DNA fragmentation have been demonstrated in 
previous research [2,3]. Sesame oil is an antioxidant agent containing 
large amounts of polyunsaturated fatty acids, lignin, and vitamin E. It 
has been proven that sesame oil can prevent DNA oxidative damage 
in an in vivo system [4]. The phytoestrogenic properties of sesame oil, 
similar to those of estradiol, may have additional effects on the im-
provement of sperm parameters and improve spermatogenesis 
through increasing epithelial proliferation and tubular thickening 
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[5,6]. Aging has significant effects on sperm quality through the re-
duction of semen quality and an increase in DNA damage [7]. It has 
been observed that the increase in age has a detrimental effect on 
sperm DNA [8]. The production of reactive oxygen species (ROS) in-
creases significantly in response to reduced production of ste-
roidogenic enzymes. An increase in ROS also affects testicular mor-
phology and reduces sperm parameters such as motility, concentra-
tion, and morphology [9,10]. These events may be associated with 
decreasing levels of estrogen and antioxidant agents associated with 
aging [11]. Estrogen affects the proliferation and arrangement of 
Sertoli cells, and it is also important for regulating the expression of 
the genes associated with cell adhesion [3,9,12]. The proteins that 
form adherent junctions include β-catenin and E-cadherin, which 
modulate intercellular junctions and stimulate hormones [13]. Fur-
thermore, cadherins and catenins have effects on biological process-
es including intracellular messengers, signal transmission, and gene 
transcription. These actions may be associated with the regulatory 
function of steroids in reproductive tissues [14]. In addition, cadher-
ins comprise a family of calcium-dependent glycoproteins that me-
diate cell-cell adhesion and sperm-oocyte interactions [15]. The 
presence of β-catenin is important for the adhesion of Sertoli cells, 
attachment to spermatids, and testicular-brain barrier function 
[16,17]. Many studies have been performed separately on the effect 
of sesame oil or estradiol on the testis; however, no study has yet 
compared the estrogenic effects of sesame or different concentra-
tions of estradiol in old male mice. The aim of this study was to com-
pare the estrogenic effects of sesame oil and different concentrations 
of estradiol on testicular structure, sperm parameters, chromatin/
DNA integrity, and expression of E-cadherin and β-catenin genes in 
old mouse testis. 

Methods 

The study was approved by the Animal Ethics Committee of the 
Yazd Reproductive Sciences Institute, Shahid Sadoughi University of 
Medical Sciences, Yazd, Iran (IR.SSU.RSI. REC.1394.5). All protocols 
were performed according to the National Institute of Health Guide-
lines for the Care and Use of Laboratory Animals (NIH Publications 
No. 8023, revised 1978). 

1. Sample collection  
Twenty old NMRI (The Naval Medical Research Institute) male mice 

(mean age, 40 weeks; weight, 30–35 g) were purchased from the Re-
search and Clinical Center for Infertility, Shahid Sadoughi University 
of Medical Sciences, Yazd, Iran. All animals were kept in optimal 
housing and feeding conditions with a controlled temperature 
(22°C ± 2°C) and a 12-hour light/dark cycle. The mice were divided 

into four groups (n = 5): the E2-1 group (1 μL/kg/day of estradiol was 
intraperitoneally injected for 35 days), the E2-10 group (10 μL/kg/
day of estradiol was intraperitoneally injected for 35 days), the sesa-
me oil group (10 μL/kg/day of sesame oil was intraperitoneally in-
jected for 35 days), and the control group (no treatment was done). 

After 35 days (one cycle of spermatogenesis in mice), animals were 
sacrificed by cervical dislocation. The left cauda epididymis was re-
moved and cut with a pair of syringes to transferred into Ham's F10 
medium for the analysis of sperm parameters and DNA integrity. The 
left testicular tissue samples were used for the analysis of E-cadherin 
and β-catenin expression by molecular assays. To evaluate histologi-
cal changes, the right testes were fixed in 4% paraformaldehyde 
solution. 

2. Sperm parameters  
After 30 minutes of incubation, sperm count, motility, and mor-

phology were analyzed. A Makler chamber was used for the sperm 
count. Sperm motility was categorized as progressive, nonprogres-
sive, and immotile spermatozoa. The percentage of sperm cells with 
normal morphology in the head, neck/mid-piece, and tail were ob-
tained by Diff-Quik staining using light microscopy ( × 1,000 magnifi-
cation) (Figure 1A) [18]. 

3. Sperm chromatin integrity  
Aniline blue (AB) staining was applied to evaluate sperm chroma-

tin integrity based on the residual histones in the chromatin struc-
ture. Briefly, slides were prepared by smearing, air-drying, and fixing 
a sperm sample. Then, the sample was incubated for 30 minutes in 
3% glutaraldehyde in phosphate-buffered saline (PBS) at room tem-
perature. The smears were stained in 5% aqueous AB solution (pH 
3.5) for 10 minutes. Afterward, the slides were rinsed and evaluated 
at × 1,000 magnification. Immature and/or abnormal spermatozoa 
with additional histones were seen in dark blue and mature nuclei 
were detected as light blue (Figure 1B) [19]. 

4. Sperm DNA fragmentation  
The percentage of sperm apoptosis was determined by terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay 
using a commercially available kit (In Situ Cell Death Detection Kit, 
fluorescein, Roche, USA). Spermatozoa with normal DNA show the 
background fluorescent color, while sperm with high DNA fragmen-
tation has many 3-OH ends, resulting in a strong fluorescent color. 
Firstly, the smears were fixed in methanol solution for 4 minutes. The 
slides were washed with PBS for 5 minutes three times. Later, they 
were incubated with blocking solution for 15–20 minutes at 15°C– 
25°C in a dark room. Samples were incubated with 0.1% (v/v) Triton 
X-100 containing 0.1% (w/v) sodium citrate for 10 minutes on ice. 
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Slides were again washed three times with PBS for 5 minutes and 
were stained with 50 μL of TUNEL reaction mixture for 1 hour at 37°C 
in a dark and humidified atmosphere. Then, they were examined un-
der a fluorescent microscope at × 1,000 magnification (BX51; Olym-
pus, Tokyo, Japan) (Figure 1C) [20]. 

5. Sperm protamine deficiency  
Protamine deficiency in sperm was analyzed by chromomycin 

A3 (CMA3), which is bright yellow. The smears were fixed imme-
diately with Carnoy solution for 10 minutes at 4°C. Each slide was 
treated with 100 μL of CMA3 solution for 10 minutes in a dark 
room (Sigma-Aldrich, St. Louis, MO, USA). The slides were rinsed 
in McIrvin buffer and air-dried. The slides were analyzed using 
fluorescent microscopy with suitable filters ( × 1,000 magnifica-
tion) (Figure 1D) [20]. 

6. Gene expression  
The testis tissue of each mouse was used for RNA extraction. Total 

RNA was extracted by the QuantiTect, RNeasy Micro kit (Qiagen, 
Hilden, Germany), following a slight modification of the manufactur-
er’s protocol in a total volume of 14 μL. Concentrations of extracted 
RNA were measured by a Nanodrop spectrophotometer (Thermo 

Scientific, Waltham, MA, USA). Subsequently, 1,000 ng/μL of extract-
ed total RNA was reverse-transcribed using the Revert Aid First 
Strand cDNA synthesis kit (Thermo Fisher Scientific Inc., Waltham, 
MA, USA) according to the manufacturer’s instructions. For negative 
control samples, the reverse transcriptase enzyme or the RNA tem-
plate was removed from the reactions. Synthetic cDNA was stored at 
–80°C until quantitative real-time polymerase chain reaction was 
performed to assess the relative gene expression levels of the genes 
encoding E-cadherin and β-catenin in testis tissue from all groups, 
and the β-actin gene was considered as a reference gene for normal-
ization. Relative expression of the genes was calculated using the 
QuantiTect SYBER Green RT-PCR kit (Applied Biosystems, Foster City, 
CA, USA) by an RT-PCR thermocycler (ABI 7500 Step One, Applied 
Biosystems). Primer sequences for genes are listed in Table 1. Ampli-
fication of all runs was performed in duplicate by an expert laborato-
ry assistant blinded to the study design.  

7. Testicular histology  
Testicular sections were prepared with a 5-μm thickness. Further-

more, hematoxylin and eosin staining was performed to analyze the 
diameter of seminiferous tubules using an optical microscope (BX51, 
Olympus). In each section, three fields and at least 20 tubules were 

TUNEL+

TUNEL−

CMA3+

AB+

AB–

CMA3−

Figure 1. (A) Sperm morphology determined using Diff-Quik staining (×1,000). (B) AB staining assessing sperm chromatin status. Sperm 
heads with immature nuclear chromatin were shown as dark blue (AB+) and those with mature nuclei (AB–) were detected as light blue 
(×1,000). (C) TUNEL assay: apoptosis-positive cells are brilliant fluorescent green (TUNEL+) and apoptosis-negative cells are pale and opaque 
green (TUNEL–) (×1,000). (D) CMA3-positive cells (CMA3+) were seen as bright yellow, whereas cells with no protamine defects stained dark 
yellow (CMA3–) (×1,000). AB, aniline blue; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; CMA3, chromomycin A3.
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randomly selected. In this regard, large and small diameters were 
measured in each tubule and the average diameter was recorded. 
The thickness of the germinal epithelium layer was also calculated 
by subtracting the inner diameter of the tubule from the overall di-
ameter of the seminiferous tubule [21]. Sertoli cells, spermatogonia, 
primary spermatocytes, spermatids, and Leydig cells were counted 
in each testis. 

8. Statistical analysis  
One-way analysis of variance was used to compare the data and 

Pearson correlation coefficients were used to quantify the relation-
ships between the variables, with p-values < 0.05 considered to indi-
cate statistical significance. The data were analyzed using IBM SPSS 
ver. 20 (IBM Corp., Armonk, NY, USA) and GraphPad software (Graph-
Pad Inc., La Jolla, CA, USA) was used to draw the charts. 

Results 

As shown in Table 2, the percentage of progressive motility was 
significantly lower in the E2-10 group than in the control group 
(p < 0.05). There was no significant difference in the proportion of 
nonprogressive sperm across all groups. The percentage of immotile 
sperm was higher in the E2-10 and sesame oil groups than in the 

control group (p < 0.05). Normal morphology (Figure 1A) was signifi-
cantly lower in the E2-10 group than in the control group (p < 0.05) 
(Table 2). The rate of abnormal chromatin in AB staining in the E2-10 
and sesame oil groups was higher than in the control group and the 
low-dose estradiol group (p < 0.001) (Table 2, Figure 1B). As shown in 
Table 2, a difference was observed between the E2-10 and control 
groups in the TUNEL assay (p < 0.05) (Figure 1C). The results of CMA3 
staining showed higher percentages of abnormal sperm in the E2-10 
and sesame oil groups than in the control group (p < 0.001) (Table 2, 
Figure 1D). The expression of β-catenin and E-catenin was quantified 
in all groups (Table 1). The relative expression of β-catenin mRNA in 
the E2-1 (p = 0.002) and E2-10 (p = 0.012) groups was higher than in 
the control group (Figure 2A), but the relative expression of E-catenin 
mRNA did not significantly differ across all groups (Figure 2B). The 
number of spermatogonia showed no significant difference in any 
group compared to the control group (Figure 3A). The E2-10 group 
displayed higher primary spermatocyte, spermatid cell, and Sertoli 
cell counts compared to the controls at 35 days (p < 0.05) (Figure 3B-
D). The Leydig cell count was significantly higher in the E2-1 and E2-
10 groups (p < 0.001) (Figure 3E). In the E2-10 group (Figure 4A), the 
lumen diameter was significantly lower than that of the control ani-
mals (p < 0.05), and the cellular diameters of the seminiferous tu-
bules were also significantly higher in the E2-1 (p < 0.05) and E2-10 

Table 2. Comparison sperm parameters and sperm function tests between control and experimental groups

Variable Control E2-1 E2-10 Sesame oil
Sperm count ( × 106/mL) 27.8 ± 1 10.8 ± 1 2.6 ± 1 21 ± 2
Progressive motility (%) 41 ± 20 54.2 ± 1 11 ± 1 30.2 ± 1
Non-progressive motility (%) 29 ± 9 17 ± 6 15 ± 8 12 ± 5
Immotile (%) 34 ± 14 33.8 ± 12 80 ± 14b) 62.2 ± 24
Normal morphology (%) 57 ± 3 57 ± 16 30 ± 0a) 42 ± 6
AB (%) 19 ± 3 33 ± 3b) 34 ± 5b) 33 ± 6b)

TUNEL assay (%) 11 ± 2 10 ± 2 22 ± 13 15 ± 2
CMA3 (%) 20 ± 1 22 ± 3 29 ± 2 28 ± 11

Values are presented as mean±standard deviation. The E2-1, E2-10 and sesame oil group were intraperitoneally injected with 1 μL/kg/day of estradiol, 10 μL/
kg/day of estradiol, and 10 μL/kg/day of sesame oil for 35 days, respectively.
AB, aniline blue; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; CMA3, chromomycin A3. 
Compared to the control group: a)p<0.05, b)p<0.001.

Table 1. The primers used in real-time PCR

Accession number Gene Primer sequence (5'-3') PCR product (bp)
NM_009864.3 E-cadherin F: AGCCATTGCCAAGTACATCC 133

R: AAAGACCGGCTGGGTAAACT
NM_001165902.1 β-catenin F: TCCCATCCACGCAGTTTGAC 166

R: TCCTCATCGTTTAGCAGTTTTG
NM_007393.5 β-actin F: GTACTCTGTGTGGATCGGTGG 144

R: AACGCAGCTCAGTAACAGTCC

PCR, polymerase chain reaction ; F, forward; R, reverse.
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Figure 2. (A) Evaluation of mRNA levels of the β-catenin gene. (B) Evaluation of mRNA levels of the E-cadherin gene. The E2-1, E2-10 and 
sesame oil group were intraperitoneally injected with 1 μL/kg/day of estradiol, 10 μL/kg/day of estradiol, and 10 μL/kg/day of sesame oil for 
35 days, respectively. a)Significant mRNA levels of β-catenin and E-cadherin (p<0.05) when compared to the control group.
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Figure 3. Mean and standard error of cell counts in seminiferous 
tubules in the E2-1, E2-10, and sesame oil groups, which were 
intraperitoneally injected with 1 μL/kg/day of estradiol, 10 μL/kg/day 
of estradiol, and 10 μL/kg/day of sesame oil for 35 days, respectively. 
(A) Spermatogonia cell count, (B) primary spermatocyte cell count, 
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Significant differences between groups: a)p<0.05, b)p<0.001.
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(p < 0.05) groups (Figure 4B). The total diameter did not significantly 
vary across all groups (Figure 4C). 

Discussion 

Spermatogenesis decreases daily with a rate of 30% in men above 
50 years old [22-24], and aging affects sperm parameters such as 
sperm motility and viability, as well as sperm chromatin status. Sesa-
me oil is important source of phytoestrogens and has estrogenic 
properties [25]; furthermore, it can improve sperm count and motili-
ty. Thus, it has been suggested that sesame oil could be considered 
as an effective agent for improving the condition of epididymal sper-
matozoa [26]. An appropriate dose of sesame oil for its high antioxi-
dant activity may have effective anti-aging results due to its ability to 
neutralize physiological ROS. Increased ROS levels in semen cause 
sperm dysfunction and DNA damage by oxidative stress, accounting 
for 25% of cases of induced male infertility [27,28]. This study 

showed that sesame oil was more effective than estradiol at 10 μL/
kg in improving sperm parameters such as progressive motility and 
morphology. The more favorable effects of sesame oil may be due to 
its antioxidant properties and ability to bind to antioxidant enzymes 
within the cell [29]. In contrast, Abbasi et al. [30] reported that sesa-
me oil could improve sperm parameters in diabetic rats, potentially 
due to hormonal imbalance and the presence of abundant ROS in 
those animals. Lubbert et al. [31] reported that a high dose (60 μg/
day) of estrogen and a long duration of treatment could impact 
sperm motility and count [9]. Our results demonstrated the effects of 
an injection of 1 μL/kg/day of estradiol on sperm motility. In addi-
tion, we observed that a higher concentration of estradiol (10 μL/kg/
day of estradiol) had a negative effect on sperm motility, but did in-
crease the sperm count. Lubbert et al. [31] found that although a 
high dose of estrogen (60 μg/day) reduced the sperm count, low 
doses (20 μg/day) did not have a negative effect on the sperm count 
in adult men. The effect of a high dose of estrogen on the sperm 
count was observed a few days after injection. Steroid hormones 
play vitally important roles in the maintenance of male reproductive 
function [32]. and sperm DNA fragmentation and progressive motili-
ty are important factors for the evaluation of fertility [33-35]. Based 
on our data, a low dose of estradiol may lead to improvement in 
sperm parameters, especially chromatin quality and DNA fragmenta-
tion, rather than a high dose of estradiol. In this study, CMA3, TUNEL, 
and AB assays were used to evaluate chromatin and DNA status. The 
results of CMA3, TUNEL, and AB tests showed that low concentra-
tions of estradiol and sesame oil were more appropriate than higher 
concentrations of estradiol. In another study, Ebrahimi et al. [36] de-
tected that sesame oil had anti-apoptotic effects on sperm. Our data 
showed that 1 μL/kg/day of estradiol led to the most favorable re-
sults in the TUNEL assay. The CMA3 assay is a suitable method for de-
tecting protamine deficiency in sperm chromatin [37-40]. Although 
a few studies have been conducted on the effect of estrogen on the 
gene expression of Sertoli-spermatid binding proteins [17], to the 
best of our knowledge, no study has reported the effects of different 
exogenous estrogen doses on the expression of E-cadherin and 
β-catenin. Our study showed that a low concentration of estradiol 
downregulated the β-catenin gene, which plays a role in germ 
cell-to-Sertoli cell attachment and mediates proteins in cellular con-
nections, but there was no effect on the expression of the gene cod-
ing for E-cadherin, which also plays an important structural role [41]. 
A higher dose of estradiol (10 μL/kg/day) improved spermatogenesis 
in mice. This finding was confirmed by a significantly higher number 
of spermatogonia cells in the animals that received 10 μL/kg/day of 
estradiol than was found in the control group. Furthermore, the 
numbers of primary spermatocytes, spermatids, Sertoli cells, and 
Leydig cells were significantly higher in the E2-10 group than in the 
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control group. Toyama et al. [42] studied six different doses of estra-
diol and they reported that the effects of estradiol on the male repro-
ductive system were dose-dependent [43]. It has also been found 
that estradiol synthesis by seminiferous cells plays an important role 
in tubal hormonal regulation and spermatogenesis improvement. 
and estradiol and platelet-derived growth factor likely induce prolif-
eration of seminiferous cells in both a dose-dependent and dose-in-
sensitive manner [44]. Moreover, incubation of the seminiferous tu-
bules with estradiol inhibits apoptosis and produces germ cells in 
these tubules. Therefore, estradiol is a very important hormone for 
the survival of germ cells [45]. In addition, the estradiol beta receptor 
is present in Sertoli cells and estradiol exerts its effects through this 
receptor [46]. Our results showed an a higher cellular diameter of 
seminiferous tubules in mice that received 10 μL/kg/day of estradiol 
than was found in the control group. Moreover, MacCalman et al. [47] 
showed that estradiol increased the stimulating effects of folli-
cle-stimulating hormone (FSH) and N-cadherin (a protein that is es-
sential for adhesion and internal cell adhesion in the seminal epithe-
lium) mRNA levels. The interaction between FSH and estradiol in 
Sertoli cells stimulates the mitotic activity of these cells [48-50]. 
Therefore, the increase of the cellular diameter was probably due to 
the interaction of injected estradiol with FSH. Furthermore, changes 
in tubal diameter could occur due to an increase in the number of 
germ lineage cells within the seminiferous tubules [51]. According 
to Shittu et al. [52], sesame oil raises testosterone levels and testos-
terone increases spermatogenesis in male animals. The aqueous ex-
tract of sesame leaves has an antioxidant effect and significantly in-
creases the number of spermatogonia, seminiferous tubules, and 
testosterone levels. According to other researchers, sesame phy-
toestrogens bind to testicular estrogen receptors and stimulate 
spermatogenesis through the proliferation of epithelial cells and sex 
cells [52,53]. In the sesame oil and high-dose estradiol groups, a 
higher rate of chromatin and DNA damage was observed than in the 
control group and the low-dose estradiol group. Low doses of estra-
diol had a greater effect on sperm motility, in addition to exerting 
less chromatin and DNA damage. Therefore, it is recommended to 
use a combination of a low dose of estradiol and sesame oil. This 
combination may lead to a reduction of age-related ROS by balanc-
ing the oxidants and antioxidants in the cell. These are novel find-
ings. 

Despite the beneficial effects of high-dose estradiol on testicular 
function, we recommend that low doses of estradiol or sesame oil 
may play an important role on optimizing sperm parameters and 
chromatin quality in older mice. 
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