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Metabolic bone diseases comprise a diverse group of disorders characterized by alterations in skeletal homeostasis, and are
often associated with abnormal circulating concentrations of calcium, phosphate or vitamin D metabolites. These diseases
commonly have a genetic basis and represent either a monogenic disorder due to a germline or somatic single gene mutation,
or an oligogenic or polygenic disorder that involves variants in more than one gene. Germline single gene mutations causing
Mendelian diseases typically have a high penetrance, whereas the genetic variations causing oligogenic or polygenic disorders
are each associated with smaller effects with additional contributions from environmental factors. Recognition of familial
monogenic disorders is of clinical importance to facilitate timely investigations and management of the patient and any
affected relatives. The diagnosis of monogenic metabolic bone disease requires careful clinical evaluation of the large diversity
of symptoms and signs associated with these disorders. Thus, the clinician must pursue a systematic approach beginning with
a detailed history and physical examination, followed by appropriate laboratory and skeletal imaging evaluations. Finally, the
clinician must understand the increasing number and complexity of molecular genetic tests available to ensure their
appropriate use and interpretation.

Introduction
Metabolic bone diseases represent a diverse group of skeletal
conditions characterized by alterations in bone cell activity,
bone matrix proteins or systemic mineral homeostasis
(Table 1) [1, 2]. Many metabolic bone diseases have a genetic
basis, which may be a germline single gene abnormality
(i.e. a monogenic or Mendelian disorder), a somatic single
gene defect (i.e. a post-zygotic mosaic disorder) or involve
several genetic variants (i.e. oligogenic or polygenic disor-
ders) [3]. Genetic mutations causing Mendelian diseases

usually have a large effect (i.e. penetrance), whereas
oligogenic or polygenic disorders are associated with several
genetic variations, each of which may have smaller effects
with greater or smaller contributions from environmental
factors (i.e. multifactorial disorders) [3]. Whilst many mono-
genic disorders result from rare mutations affecting the cod-
ing sequence of the responsible gene, the majority of
common genetic variants identified in association with
polygenic traits are located in non-coding regions, usually
in proximity to candidate genes implicated in the respective
disorders [4]. Furthermore, there is substantial overlap
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Table 1
Examples of monogenic metabolic bone disorders, modes of inheritance and genetic aetiology

Mode of inheritance/Disease Gene(s) Chromosomal location References

Autosomal dominant

Osteogenesis imperfecta (OI), types I-IV COL1A1, COL1A2 17q21.33, 7q21.3 [20]

Osteogenesis imperfecta (OI), type V IFITM5 11p15.5 [23, 24]

Autosomal dominant hypophosphataemic rickets FGF23 12p13.32 [25]

Autosomal dominant high bone mass, type 1 LRP5 11q13.2 [47]

Autosomal dominant high bone mass, type 2 LRP6 12p13.2 [48]

Early-onset osteoporosis WNT1 12q13.12 [19]

Familial hypocalciuric hypercalcaemia (FHH), types 1–3 CASR, GNA11, AP2S1 3q21.1, 19p13.3, 19q13.3 [31–33]

Autosomal dominant hypocalcaemia (ADH), types 1–2 CASR, GNA11 3q21.1, 19p13.3 [32, 37]

Familial expansile osteolysis TNFRSF11A 18q21.33 [34, 35]

Hypophosphatasia TNSALP/ALPL 1p36.12 [36]

Vitamin D-dependent rickets, type 3 CYP3A4 7q22.1 [88]

Pseudohypoparathyroidism, type 1a (PHP1a)a GNAS 20q13.3 [39]

Pseudopseudohypoparathyroidism (PPHP)a GNAS 20q13.3 [39]

Pseudohypoparathyroidism, type 1b (PHP1b)a GNAS, NESP55, STX16 20q13.3 [39]

Autosomal recessive

Osteogenesis imperfecta (OI), type VI SERPINF1 17p13.3 [106]

Osteogenesis imperfecta (OI), type VII CRTAP 3p22.3 [21]

Osteogenesis imperfecta (OI), type VIII P3H1/LEPRE1 1p34.2 [107]

Osteogenesis imperfecta (OI), type XV WNT1 12q13.12 [19]

Hypophosphatasia TNSALP/ALPL 1p36.12 [36]

Neonatal severe hyperparathyroidism (NSHPT) CASR 3q21.1 [31]

Vitamin D-dependent rickets, type 1 CYP27B1 12q14.1 [10]

Vitamin D-dependent rickets, type 2 VDR 12q13.11 [10]

Autosomal recessive hypophosphataemic rickets DMP1, ENPP1 4q22.1, 6q23.2 [27, 28]

Hereditary hypophosphataemic rickets with hypercalciuria SLC34A3 9q34.3 [29, 30]

Osteoporosis-pseudoglioma syndrome LRP5 11q13.2 [46]

Sclerosteosis, type 1 SOST 17q21.31 [49]

Sclerosteosis, type 2 LRP4 11p11.2 [50]

Pyle’s disease SFRP4 7p14.1 [54]

Juvenile Paget disease TNFRSF11B 8q24.12 [108]

X-linked dominant

X-linked hypophosphatemic (XLH) rickets PHEX Xp22.11 [26]

X-linked recessive

X-linked osteoporosis PLS3 Xq23 [18]

Dent disease, type 1 CLCN5 Xp11.23 [11]

(continues)
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between the genes responsible for monogenic skeletal dis-
eases and those contributing to polygenic bone phenotypes.
The elucidation of these loci has provided insights into the
molecular pathogenesis of skeletal disease, and highlighted
novel therapeutic targets [5–7]. This review discusses the ge-
netics of metabolic bone diseases, and outlines the clinical
and genetic approach to evaluating these disorders.

Genetics of metabolic bone diseases

Inheritance
Metabolic bone diseases may be caused by single-gene
mutations or represent digenic or complex polygenic traits
[1, 3, 8]. Inheritance of monogenic diseases occurs as one of
six traits: autosomal dominant [e.g. familial hypocalciuric
hypercalcaemia (FHH) due to mutations of the calcium-
sensing receptor (CaS receptor) signalling pathway [9]];
autosomal recessive [e.g. vitamin D-dependent rickets types 1
and 2 frommutations of the renal 1α-hydroxylase (CYP27B1)
and vitamin D receptor (VDR) genes, respectively [10]];
X-linked recessive [e.g. Dent’s disease involving chloride
channel 5 (CLC-5) [11]]; X-linked dominant [e.g. X-linked
hypophosphataemic (XLH) rickets from mutations of a
phosphate endopeptidase on the X chromosome (PHEX)
gene [10]]; Y-linked (e.g. azoospermia and oligospermia)
[12]; and non-Mendelian mitochondrial defects [e.g. hypo-
parathyroidism in Kearns-Sayre syndrome and mitochon-
drial encephalopathy, lactic acidosis and stroke-like episodes
(MELAS) syndrome] [13, 14]. Monogenic metabolic bone
diseases may also be caused by sporadic postzygotic mosai-
cism [e.g. McCune-Albright syndrome (MAS)] (Table 1) [15].
Digenic inheritance has been reported in a family with
hereditary hypophosphataemic rickets with hypercalciuria
(HHRH), who harbour heterozygous mutations of the
SLC34A1 and SLC34A3 genes, encoding the renal sodium-
phosphate co-transporters type 2a and 2c, respectively [8].
The major metabolic bone disorder representing a complex
polygenic trait is osteoporosis, and more than 200 loci have
been associated with this common disorder [16, 17]. How-
ever, the majority of loci for osteoporosis likely remain to be

elucidated. Osteoporosis may rarely occur as a monogenic
condition, e.g. X-linked osteoporosis due to mutations of
the Plastin 3 (PLS3) gene [18], or early-onset osteoporosis
due to heterozygous mutations of the Wnt family member 1
(WNT1) gene (Table 1) [19].

Genetic heterogeneity
Many phenotypically similar metabolic bone disorders are
caused by mutations in a variety of different genes. For
example, 85–90% of osteogenesis imperfecta (OI) cases are
due to mutations in the genes encoding type 1 collagen
(i.e. COL1A1 and COL1A2) [20], with the remaining 10–15%
ofOI cases being causedbymutations affectinggenes involved
in post-translational processing of collagen [e.g. cartilage-
associated protein (CRTAP)] [21], osteoblast differentiation
and function (e.g. WNT1) [19, 22], or bone mineralization
[e.g. interferon-induced transmembrane protein 5 (IFITM5)]
(Table 1) [23, 24]. Similarly, hypophosphataemic rickets may
be caused by mutations of genes encoding phosphatonins
like fibroblast growth factor-23 (FGF-23), or osteoblast and
osteocyte proteins that mediate the expression and secretion
of FGF-23 [e.g. PHEX, dentin matrix protein 1 (DMP1), and
ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1)]
[25–28], or by mutations affecting renal sodium phosphate
co-transporters (e.g. SLC34A3) (Table 1) [29, 30]. In addition,
FHH, which is a disorder of extracellular calcium homeostasis,
has been shown to comprise three types, which are caused by
germline loss-of-function mutations affecting the CaS receptor,
G-protein subunit-α11 (Gα11), and adaptor-related protein
complex-2 σ-subunit (AP2σ), respectively (Table 1) [31–33].

Mutations within a single gene may give rise to seemingly
distinctive skeletal phenotypes [(e.g. familial expansile
osteolysis (FEO), expansile skeletal hyperphosphatasia (ESH)
and early-onset familial Paget’s disease of bone (PDB)], which
are rapid remodelling skeletal disorders arising from muta-
tions in the signal peptide of receptor activator of NF-κB
(RANK) [34, 35]. In some metabolic bone diseases, the sever-
ity may be determined bymutant allele dosage and whether a
mutation is carried in the heterozygous or homozygous state.
For example, the severe perinatal and infantile forms of
hypophosphatasia, an inborn-error-of-metabolism character-
ized by alkaline phosphatase (ALP) deficiency, are inherited

Table 1
(Continued)

Mode of inheritance/Disease Gene(s) Chromosomal location References

Mitochondrial

Mitochondrial encephalomyopathy with lactic acidosis
and stoke-like episodes (MELAS)

Mitochondrial genome - [13]

Kearns-Sayre syndrome Mitochondrial genome - [14]

Mosaicism

McCune-Albright syndrome (polyostotic fibrous dysplasia)a GNAS 20q13.3 [15]

Osteogenesis imperfecta (OI)b COL1A1/COL1A2 17q21.33, 7q21.3

aParentally imprinted
bAutosomal disorder manifesting as post-zygotic somatic mosaicism in the developing fetus, or arising from germline mosaicism in an apparently
unaffected parent
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in an autosomal recessive manner, whilst later-onset and
milder forms are typically inherited in an autosomal domi-
nant fashion (Table 1) [36]. Moreover, some disorders of min-
eral metabolism are caused by loss- or gain-of-function
mutations affecting the same gene. Thus, loss-of-function
CaS receptor mutations cause FHH or neonatal severe hyper-
parathyroidism (NSHPT), whereas gain-of-function CaS re-
ceptor mutations cause autosomal dominant hypocalcaemia
(ADH) or Bartter syndrome type V [31, 37, 38]. Furthermore,
parental imprinting, which results in non-Mendelian
inheritance of a monogenic disorder, may influence the phe-
notypic consequences of a specific mutation. For example,
maternally-inherited inactivating coding-region mutations
of G-protein subunit αs (Gαs), which is encoded by the GNAS
gene, cause pseudohypoparathyroidism type 1a (PHP1a),
which is characterized by PTH resistance together with
Albright’s hereditary osteodystrophy (AHO) [39]; whereas,
paternally-inherited inactivating coding-region GNAS
mutations cause pseudopseudohypoparathyroidism (PPHP),
which is characterized by AHO without PTH resistance
(Table 1) [39]. The phenotype of MAS, which is caused by so-
matic activating Gαs mutations, is also dependent on paren-
tal imprinting, with acromegaly occurring in MAS patients
who harbour mutations affecting the maternal Gαs allele
[40]. Given this apparent genetic/phenotypic complexity de-
spite genetic ‘homogeneity’, establishing the genetic cause
can be challenging for the evaluation of patients and family
members with bone and mineral disorders.

Molecular insights from monogenic and
polygenic diseases
Classical gene discovery approaches for monogenic disor-
ders have involved studying affected kindreds for co-
segregation with polymorphic genetic markers to define
the chromosomal location, followed by DNA sequence anal-
ysis of genes located within the candidate region [3]. This
approach has been superseded by whole-exome and
whole-genome sequence analysis of affected patients or kin-
dreds [41, 42]. In contrast, the genetic investigation of com-
plex polygenic disorders such as osteoporosis has utilized
genome-wide association studies (GWAS), which involve
large populations of cases and controls [5, 6, 16, 17]. Such
studies typically involve direct or imputed genotyping of
large numbers of common (e.g. minor allele frequency
>5%) and infrequent (e.g. minor allele frequency 1–5%)
single nucleotide polymorphisms/variants (SNPs/SNVs) to
identify genetic loci enriched for the trait [3, 43]. The genetic
investigation of monogenic diseases has provided a funda-
mental understanding of the molecular regulation of bone
mass and maintenance of skeletal microarchitecture. For ex-
ample, studies of mutations affecting several Wnt pathway
components have demonstrated that Wnt signalling plays a
key anabolic role in the skeleton (Figure 1) [44, 45]. Thus,
autosomal-recessive loss-of-function mutations of the LRP5
gene, which encodes a key Wnt co-receptor (Figure 1), result
in osteoporosis-pseudoglioma syndrome, which is character-
ized by severe juvenile osteoporosis and congenital or
childhood-onset blindness [46]. In contrast, heterozygous ac-
tivating mutations in LRP5 [47] and LRP6 [48], which encode
the cognate co-receptors LRP5 and LRP6, respectively, both

lead to autosomal dominant high bone mass. Additionally,
individuals with autosomal recessive loss-of-function muta-
tions of the Wnt-β-catenin inhibitor sclerostin (SOST) man-
ifest sclerosteosis, type 1, which is characterized by
progressive bone overgrowth throughout life [49, 50]; whilst
patients harbouring a homozygous 52 kb deletion containing
an enhancer element downstream of the SOST gene develop
van Buchem disease, which has a similar but milder skeletal
phenotype compared to sclerosteosis, type 1 [51, 52]. More-
over, bi-allelic loss-of-function mutations of WNT1 have
been shown to cause an autosomal recessive formofOI, whilst
heterozygous carriers of such WNT1 missense mutations de-
velop autosomal dominant early-onset osteoporosis (Figure 1)
[19, 53]. Additionally, bi-allelic truncating mutations in
secreted frizzled-related protein 4 (sFRP-4) (Figure 1), which
encodes a soluble Wnt inhibitor, have been reported in
patients with Pyle’s disease, a disorder characterized by cor-
tical bone thinning, limb deformity and fracture [54]. These
key roles for Wnt signalling in bone biology are supported
by the findings from GWAS studies, which have identified
that many Wnt pathway components (>15 genes), includ-
ing LRP5 and SOST, are candidate genes for bone mineral
density (BMD) [16, 17], and that WNT16 is a key determi-
nant of cortical bone strength [55, 56].

Application of genetic discoveries to the
development of targeted therapies
A key aim of the genetic characterization of metabolic bone
disorders has been to identify genes, molecules and pathways
that may be targeted therapeutically. Thus, the identification
of the bone cell OPG/RANKL/RANK/NF-κB signalling
pathway led to the development of the monoclonal anti-
body denosumab, which blocks RANK ligand (RANKL),
thereby inhibiting osteoclast-mediated bone resorption [5].
Denosumab is now widely used for the treatment of osteo-
porosis as it significantly reduces fracture risk in women
with postmenopausal osteoporosis [57]. The multinational
approval in 2015 of the bone-targeted enzyme-replacement
biologic asfotase alfa to treat hypophosphatasia has empha-
sized the importance of determining the genetic and molec-
ular basis for a metabolic bone disease [36]. The
identification that PHEX mutations cause FGF-23 excess,
which in turn is responsible for the phosphate wasting in
XLH [58, 59], has led to the approval in 2018 of
burosumab, which is an anti-FGF-23 monoclonal anti-
body, for the treatment of XLH rickets. Burosumab has been
shown to improve serum phosphate concentrations and de-
crease the severity of rickets in children with XLH [60].
Assessing treatment response according to the genetic
aetiology has been investigated in patients with early-onset
low-turnover osteoporosis due to WNT1 or PLS3 mutations
who were shown to respond to teriparatide therapy [61].
Now, several drugs in development are directed at the Wnt
pathway. This includes anti-sclerostin antibodies (e.g.
romosozumab), which increase bone formation whilst
inhibiting bone resorption [62]. An evaluation of
romosozumab in phase 3 clinical trials has shown that it is
a potent bone anabolic agent for postmenopausal osteopo-
rosis [63, 64].
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Clinical approach to the patient with a
metabolic bone disease

Medical history and physical examination
The diagnosis of genetic forms of metabolic bone diseases be-
gins by acquiring information from the patient’s medical his-
tory and physical examination [3]. The ‘history of present
illness’ provides critical clues concerning aetiology, patho-
genesis and prognosis, as well as guiding diagnosis and ther-
apy. Establishing whether the signs and symptoms have
been lifelong or begun recently may prompt different diag-
nostic considerations and interventions. Thus, lifelong
fractures which have occurred following minor trauma may
suggest a diagnosis of OI [20], whereas the combined

occurrence of fractures and renal calculi in early adulthood
may potentially be a presenting feature of primary hyperpara-
thyroidism caused by the multiple endocrine neoplasia
(MEN) type 1 syndrome [65]. Moreover, it is important to
review prior medical records, radiographs and other investi-
gations, such as the results of plasma and urinary biochemis-
try, to aid diagnosis and prognostication [3]. Physical
assessment should include: measurement of body propor-
tions, limb lengths and head circumference; an examination
of the spine for scoliosis or kyphosis; and joint hypermobility
with a determination of the Beighton score [66]. Physical
examination can show a variety of findings for diagnosis,
e.g. blue or grey sclerae found in OI; café-au-lait spots or other
pigmentary cutaneous lesions that are associated with disor-
ders of FGF-23 excess such as MAS or the epidermal nevus

Figure 1
Schematic representation of Wnt signalling pathway components reported to be mutated in disorders of bone development and skeletal homeo-
stasis. Activation of the canonical Wnt pathway increases bone mass, and this is mediated by the binding of extracellular Wnt ligands (dark green)
to a transmembrane receptor complex comprising the Wnt co-receptor LRP5 or LRP6 (LRP5/6, light blue) and a member of the frizzled (FZD) fam-
ily (dark blue). In contrast, inhibition of the canonical Wnt pathway decreases bone mass [44, 45]. This inhibition is mediated by extracellular fac-
tors such as sclerostin (SOST, orange) and Dickkopf-related protein 1 (DKK1, yellow), which bind to the LRP5/6 co-receptor thereby preventing
activation by Wnt ligands, as well as recruiting inhibitory transmembrane proteins such as LRP4, which is a SOST-interacting protein (light green),
and the Kremen proteins (pink), which are high-affinity DKK1 receptors that functionally cooperate with DKK1 to decrease Wnt signalling [109].
Secreted-frizzled-related proteins (SFRPs, purple) also inhibit the canonical Wnt pathway by sequestering Wnt ligands. The importance of the
canonical Wnt pathway for the regulation of bone mass has been highlighted by loss-of-function mutations affecting SOST and LRP4, and by
gain-of-function mutations of LRP5 and LRP6, which lead to the disorder called high bone mass [47, 49, 51, 110]; and also by loss-of-function
mutations of LRP5 and the Wnt1 ligand, which lead to monogenic osteoporosis disorders [19, 46]
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syndrome; angiofibromas or collagenomas that may be asso-
ciated with MEN type 1; premature loss of deciduous teeth
that occurs in hypophosphatasia; hallux valgus which is
found in fibrodysplasia ossificans progressiva; alopecia that
occurs in vitamin D-dependent rickets, type 2; brachydactyly
which is found in PHP1a and PPHP; syndactyly that occurs in
sclerosteosis types 1 and 2; torus palatinus which is found in
disorders of high bone mass due to LRP5 or LRP6 mutations;
or numerous surgical scars which may reveal a past medical
history of surgical treatments to remove endocrine tumours
associated with the MEN syndromes [10, 20, 36, 39, 48, 50,
65, 67–69]. For some genetic bone diseases, a constellation
of physical features indicates the category for diagnosis;
e.g. rickets featuring craniotabes at birth and soon after a ra-
chitic rosary (enlargement of the costochondral junctions)
appearing during the first year of life [10]. Childhood-onset
rickets causes bowed legs, short stature, flared wrists and
ankles from metaphyseal widening [10]. Knock-knee defor-
mities may occur instead of bowed legs if the rachitic distur-
bance occurs during the adolescent growth spurt [3]. In
adults, skeletal deformation originating from metabolic
bone disorders in childhood can cause substantial morbid-
ity. Bowing of the lower limbs predisposes to osteoarthritis,
especially affecting the knees. Without a complete physical
examination, these important problems may go unnoticed.

Family history
Assessment of the family history is essential for establishing
the mode of inheritance of monogenic metabolic bone dis-
eases, and medical records from living or deceased affected
family members may establish the diagnosis, guide prognos-
tication, and indicate a safe and effective treatment [3]. In au-
tosomal dominant disease, the affected person often has one
affected parent, and the disease occurs in both sexes and is
transmitted by either the father or mother. In autosomal re-
cessive diseases, which can affect both sexes, the proband is
born to parents who are usually asymptomatic ‘carriers’ and
sometimes related (i.e. consanguineous). In X-linked reces-
sive diseases, usually only males are affected, parents are un-
affected yet the mother is an asymptomatic carrier, and
there is no male-to-male transmission. In X-linked dominant
diseases, both males and females can be affected, although
the females are often more mildly and variably affected than
males, and 50% of offspring (girls and boys) from an affected
woman will have the disease, and 100% of the daughters but
0% of sons of an affected man will have the disease. In
Y-linked diseases, only males are affected and, unless
representing a sporadic case, they have an affected father
(patrilineal inheritance) and all sons of an affected male will
have the disease. Mitochondrial inherited disorders (non-
Mendelian) can affect both sexes. However, these disorders
are only transmitted by an affected mother (matrilineal in-
heritance) in her egg mitochondrial DNA, and not through
the paternal line in the sperm, as the small volume of sperm
precludes them from contributing mitochondria to the zy-
gote [3]. These patterns of inheritance may be complicated
by: non-penetrance or variable expression in autosomal dom-
inant disorders (e.g. in MEN1) [65]; imprinting whereby ex-
pression of an autosomal dominant disorder is conditioned
by whether it is maternally or paternally transmitted

(e.g. PHP1a versus PPHP) [39]; anticipation, whereby some
dominant disorders become more severe (or have earlier
onset) in successive generations; pseudo-dominant inheri-
tance of autosomal recessive disorders reflecting repeated
consanguineous marriages in successive generations; and
mosaicism in which an individual has two or more popu-
lations of cells with different genotypes because of post-
zygotic mutations during their development from a single
fertilized egg (e.g. MAS). In the special circumstance of
germline mosaicism within eggs or sperm arising from so-
matic mutation during gametogenesis, there may be con-
fusion about the diagnosis and recurrence risk because of
seemingly unaffected parents having multiple affected off-
spring that would be consistent with autosomal recessive
inheritance, but actually reflects an autosomal dominant
disorder (e.g. OI type II) [70]. Hence, these inheritance
patterns, which can help to diagnose a genetic disorder
and identify individuals at risk, can come from a detailed
family history [3].

Clinical utility of genetic investigations
Establishing the genetic basis of a metabolic bone disease
may aid diagnosis, treatment and prognostication; identify
the need for screening of associated clinical features not ini-
tially apparent; enable appropriate genetic counselling and
testing of first-degree asymptomatic relatives; and facilitate
preconception and/or prenatal genetic evaluation (Figure 2).
Genetic testing may also aid risk profiling. For example,
osteoporosis-associated SNPs have been reported to predict
fracture risk in patients taking bisphosphonates [71], and
other studies have identified potential genetic markers of
bisphosphonate-induced osteonecrosis of the jaw [72].

For patients presenting with a likely genetic metabolic
bone disease, several factors require consideration before or-
ganizing genetic testing (Figure 2). These include the pheno-
type of the patient, the likely mode of inheritance, the
potential genetic aetiology [e.g., aneuploidy, copy number
variation (CNV), or single gene defect], and availability of ad-
ditional pedigree members (Figure 2). For example, DNA se-
quencing of ‘trios’ (i.e. both parents and the affected
proband) may facilitate the identification of compound
heterozygous or de novo mutations [73]. Selecting the most
appropriate genetic test will increase the likelihood of achiev-
ing a genetic diagnosis. For example, direct DNA sequencing
methods which detect nucleotide abnormalities (e.g. substi-
tutions, micro-deletions and micro-insertions) that cause
most monogenic metabolic bone disorders frequently do
not detect whole or partial gene deletions that are associ-
ated with some monogenic syndromes, and are also not
optimal for identifying large chromosomal abnormalities
(e.g. 22q11.2 microdeletion in DiGeorge syndrome), whose
detection requires alternative approaches (Figure 2 and
Table 2) [74]. For other monogenic disorders, it is also im-
portant to consider analysis of a panel of genes if genetic
heterogeneity is likely (e.g. in FHH or OI) [9, 20]. Thus, it
is important to emphasize that genetic testing which fails
to identify an abnormality does not exclude a genetic dis-
ease, but rather may reflect: an alternative genetic aetiology
to the one being tested; limitations of the employed ge-
netic methodology (i.e. inadequate resolution or coverage);
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Figure 2
Flowchart outlining considerations for genetic testing in patients with metabolic bone disease
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Table 2
Examples of genetic tests, their molecular resolution and utility

Genetic test Resolution Abnormalities detected Additional notes

Detection of chromosomal abnormalities including CNVs

Karyotype: G-banding
(trypsin-Giemsa staining)

5–10 Mb Aneuploidy Limited resolution

Large chromosomal deletions,
duplications, translocations,
inversions, insertions

Requirement to study many cells
to detect mosaicism

Fluorescence in situ
hybridization (FISH)

50 kb–2 Mb (dependent on
size of probes employed)

Structural chromosomal
abnormalities (e.g.
microdeletions, translocations)

Labour-intensive

Low resolution limits its use

Unsuitable where unknown
genetic aetiology

Multiplex-ligation probe
amplification

Probe dependent Copy number variations (CNVs)
including (partial) gene deletions
or duplications

Low cost, technically simple method

50–70 nucleotides Simultaneous evaluation of multiple
genomic regions

Single exon deletion or
duplication possible

Not suitable for genome-wide approaches

Not suitable for analysis of single cells

Array comparative
genomic hybridization
(aCGH)

10 kb (high resolution) Genome-wide copy number
variations (CNVs)

Inability to detect balanced translocations

1 Mb (low resolution) Useful for detection of low level mosaicism

(Dependent on probes set)

Single nucleotide
polymorphism
(SNP) array

~50–400 kb Genome-wide detection of SNP
genotypes

Inability to detect balanced translocation

(Dependent on probe set) Copy Number Variations (CNVs) Useful for detection of low level mosaicism

Detection of copy number neutral regions
or absence of heterozygosity (i.e. due to
uniparental disomy)

Detection of monogenic disorders (and CNVs)

First generation
sequencing (Sanger)

Single gene test Single nucleotide Single nucleotide variants (SNVs) Relative high cost/base

(exonic regions and intron/exon
boundaries of candidate gene)

Small insertions or deletions (‘indels’) May miss large deletions/duplications

Unsuitable where unknown genetic
aetiology

Next generation
sequencing

Disease-targeted
gene panels

Single nucleotide Single nucleotide variants (SNVs) May lack complete coverage of exomic
regions (may require Sanger sequencing
to fill in ‘gaps’)

(exonic regions and intron/exon
boundaries of candidate genes)

Small insertions or deletions (‘indels’) Increased likelihood of identifying variants
of uncertain significance (VUS) as number
of genes increases

Unsuitable where unknown genetic aetiology

Whole exome
sequencing (WES)

Single nucleotide Single nucleotide variants (SNVs) Not all exons may be covered/captured

(all exonic regions and
intron/exon boundaries)

Small insertions or deletions (‘indels’) Difficulties with GC-rich regions and
presence of homologous regions/
pseudogenes

Copy number variations (CNVs) Small indels may not be captured

Bioinformatic expertise required for
data analysis

High likelihood of incidental findings
and VUSs

Detection of CNVs requires additional
data analysis (i.e. loss of heterozygosity
mapping across exonic regions)

Suitable for disease associated gene-
discovery

(continues)
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or incorrect assumptions regarding the clinical phenotype
or mode of inheritance [3]. As a consequence, it may be
necessary to undertake sequential or simultaneous genetic
tests to ensure a complete evaluation, although such test-
ing may be limited by cost and local availability.

Types of genetic tests available to the clinician
Cytogenetic and molecular cytogenetic analyses. Karyotyping
represents the initial test for major chromosomal
abnormalities including aneuploidy or large insertions,
deletions, duplications, inversions or reciprocal
translocations, but has a resolution limited to ~5–10 Mb of
DNA (Table 2) [74, 75]. It retains an important place in the
diagnosis of Turner and Klinefelter syndrome, each of
which may manifest a form of osteoporosis [76, 77].
Fluorescence in-situ hybridization (FISH) employs DNA
probes that hybridize to specific target regions, which allow
the detection of specific chromosomal deletions,
duplications, translocations or inversions (Table 2). The
utility of FISH is limited to detecting abnormalities
involving pre-determined genomic regions (e.g. detection of
22q11.2 deletion in DiGeorge syndrome). Multiplex-ligation
dependent probe amplification (MLPA) detects complete or
partial gene deletions by using a pool of custom-designed
probes to amplify specific genomic regions of interest
(Table 2). MLPA is used in the diagnostic evaluation of
monogenic disorders associated with such genetic alterations
(e.g. MEN1) [78]. Modifications of the MLPA technique may
also be used. For example, in establishing the diagnosis of
pseudohypoparathyroidism type 1b (PHP1b), methylation-
specific MLPA (MS-MLPA) may be employed to detect genetic
(e.g. deletions) or epigenetic (e.g. altered patterns of
methylation) abnormalities within the differentially
methylated regions (DMRs) of the GNAS locus, although
alternate methods such as CpG bisulphite pyrosequencing
are frequently used to confirm the presence of specific
methylation defects [79]. Microarray-comparative genomic
hybridization (aCGH) is undertaken for the genome-wide
detection of small chromosomal abnormalities (e.g. CNVs)
(Table 2) and is increasingly used as a first-line investigation
for patients with multiple congenital abnormalities, which

include skeletal manifestations and/or neurodevelopmental
delay [80, 81]. However, it is important to note that all
individuals harbour many small CNVs without discernible
adverse impact on health, whilst several potentially
pathogenic CNVs do not cause disease in all individuals
(i.e. reduced penetrance). Finally, SNP arrays may detect
CNVs as well as facilitating genome-wide genotyping
(Table 2). For example, deletions spanning several adjacent
SNPs included on the array may reveal loss of heterozygosity
(LOH), whilst copy number gains (e.g. duplication) may be
indicated by increased numbers of different genotypes [74].
SNP arrays may also help localize recessive disorders in
the offspring of consanguineous parents by facilitating
homozygosity mapping [82], whilst regions of LOH can also
indicate uniparental isodisomy, which may be relevant to
the diagnosis of imprinting disorders such as PHP1b [83, 84].

DNA sequence analysis
Sanger sequencing remains the gold standard for detecting
DNA sequence variants due to the high accuracy of the DNA
polymerase (i.e. base accuracy of >99.99%) employed during
DNA amplification [41, 85]. However, it remains labour in-
tensive and is typically reserved for disorders with low genetic
heterogeneity (e.g. single- or pauci-gene disorders), an exam-
ple being hypophosphatasia caused only by TNSALP/ALPL
mutations [86]. Single-gene testing by Sanger sequencing is
increasingly being replaced by next-generation sequencing
(NGS) approaches, which facilitates the simultaneous se-
quencing of large amounts of genetic material. Such NGS
methodology has provided a paradigm shift in the investiga-
tion and diagnosis of genetic disease. Currently, the three
most widely employed uses of NGS are whole genome se-
quencing (WGS), whole exome sequencing (WES), and
disease-targeted gene panel sequencing (Table 2). WGS deter-
mines the DNA sequence of the entire genome including cod-
ing and non-coding regions, and can identify SNVs, small
insertions or deletions (‘indels’) and CNVs [3]. In contrast,
WES analyses the 1–2% of the genome that encodes the
~20 000 protein-coding genes (i.e. the ‘exome’), which are ex-
pected to harbourmost disease-associatedmutations [3].WES
has been the mainstay of highly successful disease-gene

Table 2
(Continued)

Genetic test Resolution Abnormalities detected Additional notes

Whole genome
sequencing (WGS)

Single nucleotide Single nucleotide variants (SNVs) Relative high cost

Small insertions or deletions
(‘indels’)

Large data sets generated and complex
data analysis requiring bioinformatic
expertise

Copy Number Variations (CNVs) High likelihood of incidental findings
and VUSs

(Translocations/rearrangements) CNV analysis possible but may present
specific challenges

Suitable for disease associated
gene-discovery

CNVs, copy number variants; FISH, fluorescence in-situ hybridization; LOH, loss of heterozygosity; WES, whole exome sequencing; WGS, whole
genome sequencing. Adapted from Thakker, Whyte, Eisman, Igarashi, eds., Genetics of Bone Biology and Skeletal Disease, 2nd ed. Amsterdam:
Academic Press, 2018: 14 [3]
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discovery studies over the past decade, resulting in the identi-
fication of several genes responsible for metabolic bone disor-
ders (e.g. WNT1 mutations as causes of osteoporosis and OI
[19]; SFRP4 mutations in Pyle’s disease [54]; AP2σ mutations
in FHH type 3 [33]; PLS3 mutations in X-linked osteoporosis
[18]; BMP1 mutations causing increased BMD and recurrent
fractures [87]; and CYP3A4 mutations in vitamin D-
dependent rickets, type 3 [88]). Disease-targeted sequencing
represents the most widely utilized NGS method in clinical
practice, as it can be designed to simultaneously analyse large
collections of genes (e.g. <10 to >150 genes) associated with
a specific disorder [41, 84, 89]. Such NGS disease-targeted
panels have been established for genetically heterogeneous
disorders including OI and other skeletal disorders, as well
as for hypophosphataemic rickets and calcium-sensing disor-
ders [90–92].

Genetic tests to detect mosaicism
Some metabolic bone disorders only manifest as somatic
mosaicism (e.g. GNAS mutations in MAS) [67]. However,
other conditions (e.g. OI type II) may also rarely occur as
germline mosaicism, arising from somatic mutation during
gametogenesis, and may cause diagnostic confusion. In this
setting, apparently unaffected parents (with one carrying
the mutation limited to their gametes) may give rise to more
than one affected child, suggesting possible autosomal reces-
sive inheritance, in contrast to the underlying autosomal
dominant inheritance pattern [93]. Detection of mosaicism
has been enhanced by improved genome-wide testing
strategies (e.g. aCGH, SNP arrays, droplet digital PCR and
NGS approaches), which can provide sensitive methods for
the detection of low-level mosaicism (e.g. 5% for SNP array)
[70, 94, 95]. However, choosing the optimal test depends
on the clinical phenotype, the type of mutation suspected
(e.g. SNV, CNV, aneuploidy), the likely extent of mosaicism,
and its tissue distribution. Typically, circulating lymphocyte
DNA will suffice, but analysis of other affected tissues may
be required (e.g. fibroblasts or bone) [96, 97].

Genetic tests for prenatal diagnosis
Prenatal genetic testing may be undertaken at pre-
implantation or prenatal stages, and has been used to detect
severe skeletal disorders such as perinatal lethal OI [98]. Pre-
implantation genetic diagnosis (PGD) uses a single cell taken
from the developing embryo several days after in vitro fertili-
zation (IVF) to detect chromosomal abnormalities or single
gene defects, thereby allowing selection of the unaffected em-
bryos for implantation [99]. In contrast, prenatal genetic test-
ing is used once pregnancy is established to identify fetuses at
risk of genetic disease [99]. Typically, this involves invasive
methods such as chorionic villous sampling (CVS) or amnio-
centesis to obtain cells for genetic evaluation [99]. This may
include karyotyping for the detection of aneuploidy, FISH or
aCGH to identify smaller chromosomal abnormalities or
DNA sequencing to identify single gene defects associated
with monogenic disease. Recent progress in the detection of
cell-free circulating fetal DNA in the maternal circulation
(e.g. after ~10 weeks gestation) now offers the potential for
non-invasive prenatal genetic diagnosis (NIPD) and/or test-
ing (NIPT) [100]. Thus, a maternal blood sample may allow

screening for aneuploidy and fetal sex determination, which
is important for X-linked disorders, and may also be used to
detect monogenic disorders; however, this is limited to pater-
nally inherited mutations or those arising de novo, as the
sample may contain maternal cell-free DNA, and hence the
detected abnormality cannot be reliably assigned to the fetus
as the methodology cannot distinguish between fetal and
‘contaminating’ maternal DNA in the sample [100].

Data interpretation and incidental findings
The advent of high-content genetic testing employing NGS
approaches has revolutionized the investigation and diagno-
sis of genetic disease. However, such approaches may also
present clinical and ethical challenges [101]. For example,
the simultaneous sequencing of large numbers of genes
(e.g. disease-targeted gene panels, WES and WGS) inevitably
identifies variants of uncertain significance (VUS), whose
relevance to the clinical phenotype is ambiguous [102, 103].
Indeed, the methods employed to assess variant effects are
frequently imprecise leading to inaccurate interpretation,
although the provision of recent large-scale population level
sequence databases facilitates improved estimates of variant
pathogenicity and penetrance [104, 105]. In addition,
high-content genetic testing may identify clinically relevant
genetic abnormalities unrelated to the phenotype under in-
vestigation [i.e. incidental findings (IFs)] and these may have
important health implications for the patient and their
family. Hence, the possibility of identifying ambiguous or
incidental results should be part of the informed consent
prior to genetic testing (Figure 2).

Conclusion
Many metabolic bone diseases have a genetic basis, which
may be a germline single gene abnormality (i.e. a monogenic
or Mendelian disorder), a somatic single gene defect (i.e. a
post-zygotic mosaic disorder), or involve several genetic vari-
ants (i.e. oligogenic or polygenic disorders). Recognition of
these heritable disorders is clinically important, as it can facil-
itate relevant and timely investigation and treatment for the
patients and families. Recent advances in genetics and DNA
sequencing methods have resulted in new ways to detect ge-
netic abnormalities. Therefore, it is increasingly important
for the clinician to gain an appreciation of these complex
genetic tests and to combine this with the fundamental skills
of history taking and physical examination to ensure they are
used for the benefit of patients.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY [111], and are
permanently archived in the Concise Guide to PHARMA-
COLOGY 2017/18 [112–115].
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