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Abstract: Advances in screening methods and pharmacological treatments are increasing the life
expectancy of cancer patients. During recent decades, the community of long-term disease-free cancer
survivors (LCS) has grown exponentially, raising the issues related to cancer follow-up. Cancer
relapse and other cancer-related diseases, as well as lifestyle, influence cancer survival. Recently, the
regulatory role of microRNAs (miRNAs) in gene expression and their involvement in human diseases,
including cancer, has been identified. Extracellular circulating miRNAs (ECmiRNAs) have been
found in biological fluids and specific ECmiRNAs have been associated with cancer development
and progression or with a therapy response. Here, we focus on the pivotal role of ECmiRNAs
as biomarkers in cancer diagnosis and prognosis. Then, we discuss the relevance of ECmiRNAs
expression in cancer survivors for the identification of specific ECmiRNAs profiles as potential tools
to assess cancer outcome and to control LCS follow-up.
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1. Introduction

The International Agency for Research on Cancer (IARC) recently described cancer as
a globally spreading disease involving 20% of the worldwide population and causing high
mortality, ranging from 12% in men to 9% in women [1]. Cancer is identified as the second
leading cause of death, but improvements in early tumor diagnosis combined with new
therapeutic treatments are boosting patient survival [2]. Since 2015 in the European Union,
total cancer mortality rates have resulted in a 5-year mortality decline of about 5% in men
and 4% in women [3].

Cancer survivors or long-term disease-free cancer survivors (LCS) are a growing
community of cancer patients with a life expectancy of several years after the diagnosis. Ac-
cording to the IARC evaluation of December 2020, more than 50 million people worldwide
are alive 5 years after cancer is diagnosed [4]. The survival rate after cancer diagnosis is
not only related to cancer recurrence and to a healthy lifestyle, but also to the development
of diseases deriving from cancer treatments. Therefore, risk factors associated with the
neoplastic diseases influence cancer survival [5,6], as described in a recent study showing
an increased risk of cardiovascular diseases in survivors of different cancer types [7].

MicroRNAs (miRNAs) have been identified as biomarkers for human disorders,
including cancer [8]. These 18–23 nucleotides-long RNA sequences regulate cellular gene
expression influencing several biological processes, such as cell proliferation, mitochondrial
functions and organ development [9,10]. After annealing to complementary mRNA targets,
miRNAs interfere with mRNAs translation or promote their degradation [11]. Since their
regulatory role, alterations of intracellular miRNAs have been associated to several diseases
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other than cancers, including cardiovascular illnesses [12]. Moreover, miRNAs have been
identified extracellularly in many biological fluids (i.e., blood, urine, tears) [13,14]. The
association of extracellular circulating miRNAs (ECmiRNAs) with extracellular vesicles
(EVs), high density lipoproteins (HDLs) and proteins, protects them from degradation
and ensures the ECmiRNAs stability in RNAse-rich biological fluids, such as blood [15].
Stable ECmiRNAs act as mediators in cell-to-cell communication, modulating the biological
processes of neighboring cells by gene expression regulation, such as the establishment
of a favorable niche around the primary tumor, within the tumor microenvironment [16].
ECmiRNAs expression has been suggested as a biomarker in pathological conditions: for
example, decreased levels of miR-17-5p and miR-20a were observed in the plasma of breast
cancer patients with cardiotoxicity in comparison to cancer patients without cardiotoxicity,
arising a potential diagnostic role in cardiovascular diseases [17].

miRNAs can be potential diagnostic and prognostic tools to improve cancer outcome.
Investigations on novel highly informative and specific biological molecules (ECmiRNAs)
can lead to early diagnosis of cancer recurrence and improve cancer risk stratification
in LCS [18]. Moreover, ECmiRNAs can give feedback to adopt the most appropriate
pharmacological treatment and to assess therapy response in order to achieve a precision
drug therapy and, therefore, to enhance cancer survival.

2. miRNAs’ Characteristics and Functions
2.1. miRNAs Biogenesis and Gene Regulation

miRNAs are small noncoding RNAs involved in the regulation of gene expression
interacting with the target mRNAs [19]. Starting from a longer nucleotide sequence (several
hundreds of nucleotides) named primary miRNA (pri-miRNA), subsequent processes lead
to a mature single strand miRNA capable of regulating biological functions [19]. In the
nucleus, the pri-miRNAs are transcribed mostly by nonprotein coding genes (about 50%)
and intragenic regions, mainly introns, while relatively few transcripts result from non-
coding exons [20]. The generated pri-miRNA has a characteristic hairpin structure which is
recognized and processed by the microprocessor complex [21]. The double-stranded RNA
(dsRNA) binding protein DGCR8 (DGR8 microprocessor complex subunit, also named
Pasha) and the RNAse III enzyme DROSHA (drosha ribonuclease III), components of
the microprocessor complex, cleave the pri-miRNA, generating a 70–120 nucleotides-long
precursor miRNA (pre-miRNA) with an overhang of two nucleotides at the 3′ end [22].
Within the pre-miRNA duplex, the two miRNAs strands are differently named as 5p
or 3p in accordance with their direction: 5p- and 3p- strands originate from the 5′ and
the 3′ ends, respectively [23]. The resulting pre-miRNA is translocated by the nuclear
transport receptor protein Exportin 5 (XPO5)/GTP-binding nuclear protein Ran (RanGTP)
complex into the cytoplasm, where the final steps of the canonical pathway of miRNA
biogenesis can occur [24]. In the cytoplasm, the terminal loop of the pre-miRNA is removed
by the ribonuclease III Dicer1 (DICER1) together with the kinase EIF2AK2 (eukaryotic
translation initiation factor 2 alpha kinase 2) and the dsRNA-binding proteins TARBP and
PRKRA (TAR (HIV-1) RNA binding protein and protein activator of interferon induced
protein kinase EIF2AK2, respectively), obtaining a 18–23 nucleotide-long mature miRNA
duplex [25]. On the other hand, noncanonical miRNAs biogenesis occurs independently
from DROSHA/DGCR8 and DICER1 cleavages [26]. At the end of both canonical and
noncanonical miRNAs biogenesis pathways, mature single strand miRNAs regulating the
gene expression are generated.

Within the mature miRNA duplex, the two strands are distinguished as a guide strand
or passenger strand in accordance with their association, or lack of, with Argonaute RISC
complex (AGO) proteins in the assembly of an RNA-induced silencing complex loading
complex (RISC) [27]. Generally, the guide strand is loaded into the RISC-loading complex,
while the passenger strand is usually degraded [28]. However, the degradation of the
passenger strand does not always occur, and both the two mature single strand miRNAs
can be loaded into AGO proteins regulating gene expression. For example, miR-574-5p
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and miR-574-3p act oppositely in gastric cancer: a 5p-strand promotes cancer progression,
while a 3p-strand suppresses it and is therefore related to a better cancer prognosis [29].

Once the mature miRNA guide strand is loaded into an AGO protein (AGO1-4 in
humans) [30], the gene expression regulation can occur in presence of both the other
RISC-loading complex components and the mRNA target [31,32]. miRNAs anneal to a
complementary sequence on the 5′ or 3′ UTR of their mRNA targets, named miRNA
Response Element (MRE) [33]. The degree of their engagement influences the mRNA fate,
which can be degraded or its translation can be repressed [34,35].

Evidences showed miRNAs as pleiotropic and redundant factors in the regulation of
biological processes. Indeed, a single mRNA may be targeted by multiple miRNAs, and
one miRNA can bind to different mRNAs [36].

2.2. Extracellular miRNAs as Cell Messengers

Several studies observed the presence of several various miRNAs in extracellular
fluids such as blood, urine and cell culture medium [15]. The increasing number of studies
analysing extracellular circulating miRNAs (ECmiRNAs) suggest the existence of systems
preserving miRNAs from their potential extracellular degradation. Plasma ECmiRNAs
are remarkably stable when stored at room temperature, subjected to different pH or
multiple freeze–thaw cycles, in comparison to synthetic miRNAs and mRNAs [37,38]. The
encapsulation and transport of ECmiRNAs by extracellular vesicles was first hypothesized
as a protecting mechanism [39,40]. Moreover, two different contemporary studies ob-
served ECmiRNAs from plasma or cell culture medium mainly associated to AGO proteins
(90%) [41,42]. Currently, circulating ECmiRNAs can be found within extracellular vesicles
(EVs) or bound to proteins. Exosomes, microvesicles and apoptotic bodies are the main EVs
enwrapping ECmiRNAs [43,44]. Differences in dimension, composition and biosynthesis
distinguish the various EVs [45]: (i) exosomes are 30–100 nm in diameter vesicles that origi-
nate by internal budding of early endosomes [46]; (ii) microvesicles are both heterogeneous
in size (i.e., from 100 to 1000 nm in diameter) and composition, since they originate by out-
ward budding or fission of plasma membrane [47]; (iii) apoptotic bodies are larger vesicles
of 1–5 µm in diameter released by dying cells [48]. Among the non-packaged ECmiR-
NAs, AGO2 and HDL protect them from the extracellular degradation [42,49]. Circulating
miRNAs identified in cerebrospinal fluid were mostly immunoprecipitated by anti-AGO2
antibodies, suggesting their predominant association with AGO proteins [50]. A potential
diagnostic role of this complex was hypothesized due to the variation of AGO2/ECmiRNAs
concentration under pathological conditions, such as colorectal cancer [50].

The stability of ECmiRNAs in the extracellular fluids proposes the existence of their
key roles in gene expression regulation among cells, rather than resulting as byproducts
of cellular activities [19]. Furthermore, the release of ECmiRNAs is a controlled process.
Ceramide is a sphingolipid on plasma membrane involved in the secretion of exosomal miR-
NAs. Inhibition of the sphingomyelin phosphodiesterase 2 (SMPD2) enzyme in HEK293
cells caused reduced ceramide biosynthesis, resulting in decreased exosomal miRNAs [51].
Recently, the GGAG and GGUC conserved sequences (EXO and extra-seed EXO [hEXO]
sequence, respectively) at the 3′ end of exosomal miRNAs have been identified and related
to the ECmiRNAs secretion mechanism [52,53]. Evidence showed the interaction among
the recognized miRNAs motif and specific cellular proteins. The sumoylated form of
HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1) recognized the GGAG
motif on miR-198 but not the mutated sequence in T cells [54], while the GGUC sequence
was bound by the SYNCRIP protein (synaptotagmin-binding cytoplasmic RNA-interacting
protein) in hepatocytes [55].

As a consequence of the intracellular concentrations of both miRNAs and their targets,
a passive cellular mechanism for ECmiRNAs release has been hypothesized [56]. Accord-
ing to this thesis, miRNAs containing vesicles are secreted when miRNAs concentration
raises at a higher level than its targeted mRNA, in order to maintain a stable intracellular
miRNA:mRNA ratio [57].
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3. miRNAs in Cancer

Early and specific predictors of tumor development and progression are key elements
to achieve constant monitoring in LCS patients. miRNAs have been identified as good
potential screening markers for different cancer types and, therefore, for related drug
treatments [58]. Their eligibility also resides in noninvasive and nonharmful tests (i.e.,
blood draws), that can be conceivably repeated limitlessly.

3.1. Aspects of Intracellular miRNAs

miRNAs regulate at least 30% of all human genes influencing most of the biological
processes, including cell fate differentiation, proliferation and host-viral infection [59].
Alteration in miRNAs biogenesis, as well as in miRNAs expression levels and functions,
have been related to several human cancers [60]. Decreased human HCT-116 cell (human
colorectal carcinoma cells) proliferation was observed as a consequence of the knockout of
DROSHA and DICER1. Western blot and sequencing analyses showed miRNAs expression
reductions of 96.5 and 96% in the absence of DROSHA and DICER1, respectively [61].

The quick malignant cellular proliferation and expansion requires continuous avail-
ability of intermediates and metabolites. Cancer cells are capable of switching their miRNA
expression in order to support their metabolic activities, forcing tumor cells to perform
anaerobic glycolysis instead of aerobic respiration (Warburg effect) [62]. Different glycolytic
enzymes are targeted by the miR-200 family: miR-122; miR-17/92 cluster; miR-15a/16-1;
miR-29; miR-326 and miR-133 to support cancer cell metabolic needs, proliferation and
metastasis [63]. The PGI/AMF is one of the first glycolytic enzymes, which also induces
the expression of ZEB1/ZEB2 (zinc finger E-Box-binding homeobox 1/zinc finger E-Box-
binding homeobox 2), thus enhancing the epithelial-to-mesenchymal transition (EMT). In
MDA-MB-231 breast cancer cells, the repression of miR-200 family (miR-200a, miR-200b,
and miR-200c), as a consequence of PGI/AMF (phosphoglucose isomerase/autocrine
motility factor) overexpression, resulted in increased metastasis [64].

According to their role within cancer development and progression, miRNAs can
be recognized as tumor-promoting miRNAs (oncomiRs), metastasis-promoting miRNAs
(metastamiRs) and tumor-suppressor miRNAs [65]. The tumorigenic role of miRNAs is
also influenced by the cellular context, since they can act either as tumor suppressors or as
oncomiRs [66].

The PIK3/AKT/MTOR (phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT serine-
threonine kinase/mechanistic target of rapamycin kinase) is one of the most activated cell
signaling routes in cancer [67]. Loss of function mutations of phosphatase and tensin ho-
molog (PTEN), a negative regulator of PIK3/AKT/MTOR [68], increase PIK3/AKT/MTOR
pathway activation and are associated with cancer development [69]. Gene expression
analyses by RNA-seq and miRNAs microarray in biopsy or surgery tissue from 217 col-
orectal carcinoma patients observed the association between miRNAs and genes involving
a PIK3/AKT signaling pathway, such as miR-590-5p, miR-106b and miR-93 acting as PTEN
suppressors [70]. In SUM149 breast cancer cells, miR-181c inhibited the PTEN protein
expression, targeting its 3′UTR mRNA, and promoted breast cancer proliferation [71].
Upregulation of miR-181a (a member of the miR-181 cluster) in Jurkat T-ALL cells (T-acute
lymphoblastic leukaemia) reduced EGR1 (early growth response one) level, inducing G1/S
cell-cycle progression and cell proliferation [72].

The same miRNAs may have different targets within diverse cancer types. MiR-
105 was upregulated in triple-negative breast cancer tissue promoting chemoresistance,
stemness and metastasis, acting on a WNT/β-catenin pathway [73]. In hepatocellular
carcinoma, miR-105 downregulation activated the PIK3/AKT signaling, enhancing cancer
proliferation both in vitro and in vivo [74].

Specific groups of miRNAs (clusters), and their relative expression levels may disclose
a set of information with a diagnostic and prognostic role [12,16]. The first evidence of
miRNAs’ involvement in human cancer dates back to 2002, when miR-15a and miR-16-1
dysregulation was associated to B-cell chronic lymphocytic leukemia (B-CLL) [75]. The
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13q14 chromosome deletion, present in over 50% of B-CLL cases, induces the loss of
the tumor suppressor miR-15a/miR-16-1 cluster (miR-15/16). Downregulation of these
miRNAs promotes overexpression of several oncogenes including BCL2 (BCL2 apoptosis
regulator), inhibiting apoptosis of tumor cells and enhancing cell proliferation [76–78].
Moreover, deletions or loss of functions (mutations) of the miR-15/16 were reported in a
variety of tumors other than CLL, such as melanoma, colorectal and prostate cancer [79].

3.2. Extracellular miRNAs in Cancer

Recent studies have highlighted the functional role of ECmiRNAs, that after secretion
are delivered towards target cells where they can induce regulatory effects. Therefore, since
their role in cell-to-cell communication, ECmiRNAs have been identified as biomarkers for
several human pathologies, including cancer.

The involvement of ECmiRNAs in tumorigenesis was hypothesized as a consequence
of the higher number of released exosomes by cancer cells compared to normal controls [80].
In 24 h, the B42 breast cancer cell line released approximately 53× 108 exosomes per million
cells, whereas nonpathological human mammary epithelial cells (HMEC B42) released
5 × 108 exosomes per million cells [81].

Exosomes derived from EMT-transformed HCT-116 cells and containing miR-128-3p
downregulated FOXO4 (forkhead box O4) and activated TGF-β/SMAD (transforming
growth factor- β/SMAD family) and JAK (Janus kinase)/STAT3 signaling pathways in
normal HCT-116 cells, inducing the EMT process [82]. The level of six ECmiRNAs (miR-
19b-3p; miR-21-5p; miR-221-3p; miR-409-3p; miR-425-5p and miR-584-5p) were increased
in the plasma of lung adenocarcinoma (LA) patients in comparison to healthy subjects,
suggesting their potential role for LA diagnosis [83].

Colorectal cancer growth was also related to the regulation of the immune system
through miR-222-EVs secretion. Decreased release of miR-222 microvesicles from im-
planted SW480 human colon cancer cells in mice resulted in reduced colorectal cancer
growth and higher CD3+ cells infiltration of cancer tissue, suggesting a reduced immune
escape [84].

Further studies investigated the messenger role of ECmiRNAs in cell-to-cell communi-
cation, highlighting their relevance within the tumor microenvironment [16,85]. Exosomal
miR-21, secreted by human bronchial epithelial cancer cells (HBE), increased VEGF (vas-
cular endothelial growth factor) in human umbilical vein endothelial cells (HUVEC),
promoting angiogenesis [86]. Exosomes containing miR-105 can be released by metastatic
breast cancer cells to destroy the vascular endothelium barrier targeting the tight junction
protein 1 (TJP1) in endothelial cells (recipient cells) and promoting cancer metastasis [87].

Cancer therapy induces changes in the ECmiRNAs pattern of tumor cells and can
become a readout of treatment efficacy. Analysis of blood samples from 68 metastatic
colorectal cancer patients showed a decreased miR-126 level in the combined treatment
of chemotherapy and bevacizumab [88]. Higher miR-128b level in peripheral blood was
related to good prednisolone response and prognosis in children with ALL [89].

Summary of the described miRNAs involved in cancer metabolic pathways and
tumorigenic processes are listed in Tables 1 and 2.

Table 1. Examples of representative miRNAs involved in cancer cell lines development, progression and therapy response.

miRNA Intracellular/Extracellular Cells miRNA Level Target Effect Ref.

miR-15a/miR-16-1 Intracellular B-CLL cells ↓ BCL2, MCL1,
CCND1, Wnt3A

Cancer cell
proliferation and

inhibition of
apoptosis

[78]

miR-21 Extracellular HBE cells ↑ VEGF
Promotion of

angiogenesis in
HUVEC cells

[86]
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Table 1. Cont.

miRNA Intracellular/Extracellular Cells miRNA Level Target Effect Ref.

miR-105 Extracellular Metastatic breast
cancer cells ↑ TJP1 Promotion of

metastasis [87]

miR-126 Extracellular Blood sample ↓ -

Good metastatic
colorectal cancer
therapy response
(chemotherapy

and bevacizumab
combination)

[88]

miR-128-3p Extracellular HCT-116 ↑ FOXO4 Promotion of
EMT [82]

miR-181a1 Intracellular Jurkat cells ↑ EGR1
G1/S cell-cycle

progression, cell
proliferation

[72]

miR-181c Intracellular Hepatocytes ↓ PIK3/AKT Cancer cell
proliferation [74]

miR-200a,
miR-200b, miR-200c Intracellular MDA-MB-231

cells ↓ PGI/AMF Promotion of
metastasis [64]

miR-222 Extracellular SW480 cells ↓ ATF3

Inhibition of
colorectal cancer

growth and
promotion of

immune system
response

[84]

↑ Upregulation; ↓ downregulation; ATF3: activating transcription factor 3; B-CLL: B-chronic lymphocytic leukemia; BCL2: BCL2 apoptosis
regulator; CCND1: cyclin D1; EGR1: early growth response 1; EMT: epithelial-to-mesenchymal transition; FOXO4: forkhead box O4; HBE:
human bronchial epithelial cells; HCT-116: human colorectal cells; HUVEC: human umbilical vein endothelial cells; MCL1: MCL1 apoptosis
regulator; PIK3/AKT: phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT serine-threonine kinase; WNT3A: Wnt family member 3A;
PGI/AMF: phosphoglucose isomerase/autocrine motility factor; TJP1: tight junction protein 1; VEGF: vascular endothelial growth factor.

Table 2. Examples of representative miRNAs from samples of cancer patients involved in tumor development, progression
and therapy response.

miRNA Intracellular/Extracellular Tissue miRNA Level Target Effect Ref.

miR-93, miR-106,
miR-590-5p, Intracellular Colorectal

carcinoma biopsy ↓ PTEN

Activation of
PIK3/AKT

pathway; cancer
development

[68]

miR-105 Intracellular
Triple negative
breast cancer

tissue
↑ WNT/β-catenin

Promotion of
metastasis,

stemness and
chemoresistance

[73]

miR-126 Extracellular Blood sample ↓ -

Good metastatic
colorectal cancer
therapy response
(chemotherapy

and bevacizumab
combination)

[88]

miR-128b Extracellular Peripheral blood,
bone marrow ↑ PTEN

Good leukemia
therapy response

(prednisolone)
[89]

↑ Upregulation; ↓ downregulation; PIK3/AKT: phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT serine-threonine kinase; PTEN:
phosphatase and tensin homolog; “-”: no described target.

4. Cancer Survival

When it was defined in 1985, the term “cancer survivor” referred to a cancer patient
who went from a phase of “acute survivorship” (i.e., cancer diagnosis and primary treat-
ments) to “permanent survivorship” (i.e., cancer remission or cancer as a chronic disease),
experiencing a phase of “extended survivorship” (i.e., physical and psychological conse-
quences following cancer treatment) [90]. Then, the American National Coalition of Cancer
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Survivorship (NCCS) identified the LCS as a person other than a patient, recognizing
his/her needs (e.g., psychological, legal, medical) from the moment of the cancer diagnosis
through the balance of life [91]. Moreover, the National Cancer Survivorship Initiative
in the UK includes “patients undergoing primary treatments, in remission, with active
or advanced disease and cured” in the LCS concept [92]. In Italy, survivors are generally
defined as patients free of cancer disease and therapy for at least 5 years [93]. Within the
LCS group, some researchers describe as “cured” survivors, the cancer survivors with a
death rate comparable to general populations [94,95]. It should be taken into account that
some patients reject the term “survivor” judging it as offensive [96]. Therefore, actually
LCS do not correspond to a unique definition [97].

Overcoming the definition issue, the percentage of LCS among cancer patients is
increasing due to early diagnosis and new advanced therapies. According to recent
research, more than 68% of approximately 17 million of American LCS had a cancer history
of 5 years or more, and 18% (i.e., more than 3 million) were 20-year survivors in 2019 [98].
The same research has foreseen an increase in LCS numbers to more than 22.1 million by
2030 [98].

Several factors affect the cancer survivorship, such as type and stage of cancer at
diagnosis, cancer therapy and lifestyle. It is also known that cancer treatments, such as
chemotherapy, lead to several side effects due to their nonspecific action targeting both
cancer and normal cells [99]. Other than an increased risk of mortality, cancer therapy
may worsen the quality of life [100]. For example, higher incidences of obesity, diabetes or
fractures associated with osteoporosis were observed in prostate cancer survivors treated
with androgen deprivation therapy (ADT) [101].

Hence, LCS life expectancy is a multifactorial condition in which patient care and
lifestyle contribute to survival regardless of the tumor characteristics (Figure 1) [102,103].

Figure 1. Factors affecting the cancer life expectancy. On the left, most relevant negative factors for cancer survival. On the
right, positive factors contributing to increase the cancer life expectancy.

5. miRNAs as Biomarkers in Cancer Survivors

Other than advances in pharmacological treatments, an earlier cancer diagnosis, ac-
companied by the most appropriate therapy, can improve the life expectancy of cancer
patients [104]. Several studies showed the high sensitivity and specificity of miRNAs in
cancer diagnosis [105], highlighting their potential in reducing tumor mortality as a conse-
quence of earlier cancer detection. Recent studies evaluated the ECmiRNAs expression
and correlated it to the cancer prognosis, focusing on long-term survival.
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5.1. miRNAs for Cancer Follow-Up and Monitoring of the Therapy

Since ECmiRNAs profiles have been recognized as representative of miRNAs patterns
expressed by different tumors and are capable of distinguishing their different devel-
opment stages, they may act as a useful tool to predict cancer relapse or progression.
Among ECmiRNAs profiles, the analysis of more than 2000 serum samples of patients
with or without lung cancer, miR-1268b and miR-6075 showed 99% of both sensitivity and
specificity in the detection of lung cancer [106]. Distinct ECmiRNAs patterns were de-
tected among hepatocellular carcinoma patients and noncancerous subjects during disease
progression [107].

For example, in chronic hepatitis B patients, upregulated miR-122-5p, miR-125b-5p,
miR-885-5p, miR-100-5p and miR-148a-3p were found, while miR-34a-5p was identified
as a biomarker for cirrhosis. Finally, downregulation of miR-424-5p and miR-101-3p and
upregulation of miR-128, miR-139-5p, miR-382-5p and miR-410 were associated with larger
HCC (hepatocellular carcinoma) tumor size and invasion, as well as a worse survival
outcome [107].

Evaluation of ECmiRNAs patterns in breast cancer patients with more than 15 years
of follow-up displayed a cancer survival potentially influenced by the expression of the
five most relevant miRNAs (miR-29c, miR-143-3p, miR-187-3p, miR-205-5p and miR-210).
In particular, decreased levels of both miR-210 and miR-29c were associated with a 10-year
life expectancy, suggesting a better cancer prognosis [108].

Specific miRNAs patterns have been related to therapy response, thus contributing to
assess its efficacy and therefore, cancer prognosis. The signature of four serum ECmiRNAs
(miR-940, miR-451a, miR-16-5p and miR-17-3p) was related to the trastuzumab treatment
response in 386 ERBB2+ (erb-b2 receptor tyrosine kinase 2-positive)-metastatic breast cancer
patients, compared to 179 chemotherapy-treated patients. The increased expression of these
four miRNAs was associated with trastuzumab resistance [109]. Analysis of miRNAs in the
serum of 97 castration-resistant prostate cancer showed high levels of miR-200b, miR-429,
miR-200a, miR-21, miR-200c, miR-375, miR-132, miR-20a and low levels of miR-590-5p in
patients with shorter survival. Moreover, after cancer therapy with docetaxel, decreased or
unchanged levels of miR-20a, miR-222, miR-20b, miR-132 or miR-25 were associated with
poor prognosis. Therefore, these miRNAs patterns were suggested as potential biomarkers
for docetaxel resistance and poor prognosis in prostate cancer patients [110].

Diet contributes to cancer survival and influences the ECmiRNAs pattern. In a very
recent study, 42 EVs-miRNAs (among the 798 studied) were differently expressed in
the plasma of overweight breast cancer survivors treated with the Mediterranean diet
for eight weeks: 36 miRNAs were upregulated and six miRNAs were downregulated.
The identified miRNAs were associated with different cellular pathways involved in
breast cancer progression (e.g., miR-122-5p and let-7a-5p, engaged in tumor metastasis),
energy and glucose metabolisms (e.g., miR-329-3p and miR-216-5p, altered in obesity), thus
suggesting a positive influence of the diet [111].

ECmiRNAs have been also associated with cancer relapse prediction. qRT-PCR
analysis showed a higher expression of miR-194 and miR-146-3p in the serum of patients
with prostate cancer recurrence compared to nonrecurrent patients, following radical
prostatectomy [112]. In another study, increased circulating miR-17, miR-20a, miR-20b and
miR-106a (all members of the oncogenic cluster of the miR-17 family) in blood samples
predicted a high risk of prostate cancer relapse [113]. In biliary tract cancer, the relapse
after radical surgery was disclosed by six specific ECmiRNAs (miR-1225-3p, miR-1234-3p,
miR-1260b and miR-1470, miR-6834-3p and miR-6875-5p). Upregulation of miR-1225-3p,
miR-1234-3p, miR-1260b and miR-1470 and downregulation of miR-6834-3p and miR-
6875-5p were observed in the serum samples of patients with cancer relapse. The best
prognostic information with 84.6% of sensitivity, 100% of specificity and 90.0% of accuracy,
was obtained using a set of three randomly selected miRNAs among the six analysed [114].
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5.2. miRNAs to Monitor Cancer Therapy Side Effects

Other than ECmiRNAs patterns related to cancer follow-up, circulating miRNAs have
been also associated with cancer therapy side effects, such as cardiotoxicity, that influence
patients’ life expectancy.

At least 50% of cancer chemotherapy drugs, including doxorubicin, anthracycline and
cisplatin, are known to induce oxidative stress [115]. Oxidative stress condition changes
EVs and ECmiRNAs release to mediate cell–cell communication in order to counteract
or alternatively boost the inflammation [116,117]. MiR-1, miR-133b, miR-146a, miR-208a,
miR-208b and miR-423-5p (cardiac functions related miRNAs) were observed in plasma
of 56 doxorubicin-treated breast cancer patients after each cycle of treatment. Among
them, miR-1 was recognized as the best biomarker for doxorubicin-induced cardiotoxicity
showing its significant increased expression in comparison to the other miRNAs, and
driving a better evaluation of cardiac injuries rather than the cardiac troponin I (cTnI),
in patients with cardiotoxicity [118,119]. Upregulation of miR-126-3p, miR-199a-3p, miR-
423-5p and miR-34a-5p (markers of congestive heart failure [CHF]) was detected in the
plasma of primary breast cancer patients treated with anthracycline-based chemotherapy
that developed CHF, suggesting an impairment of heart functions as consequence of cancer
therapy [120].

ECmiRNAs identified as biomarkers for cancer follow-up are listed in Table 3.

Table 3. Examples of miRNAs as cancer follow-up biomarkers.

ECmiRNAs Level Sample Cancer Effect Ref.

miR-128,
miR-139-5p,
miR-382-5p,

miR-410

↑ Blood Hepatocellular
carcinoma

Larger tumor size,
cancer invasion and

worst prognosis
[107]

miR-29c,
miR-143-3p,
miR-187-3p,
miR-205-5p,

miR-210

↓ Blood Breast cancer
Good prognosis, up

to 10-year life
expectancy

[108]

miR-940,
miR-451a,
miR-16-5p,
miR-17-3p

↑ Serum
ERBB2+

metastatic breast
cancer

Trastuzumab
treatment response

and good cancer
prognosis

[109]

miR-20a,
miR-222,
miR-20b,
miR-132,
miR-25

= Serum Prostate cancer
Docetaxel resistance

and poor cancer
prognosis

[110]

miR-1 ↑ Plasma Breast cancer
Doxorubicin-

induced
cardiotoxicity

[118,119]

miR-126-3p,
miR-199a-3p,
miR-423-5p,
miR-34a-5p

↑ Plasma Breast cancer

Congestive heart
failure as

consequence of
anthracycline cancer

treatment

[120]

miR-194,
miR-146-3p ↑ Serum Prostate cancer Cancer recurrence [112]
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Table 3. Cont.

ECmiRNAs Level Sample Cancer Effect Ref.

miR-17,
miR-20a,
miR-20b,
miR-106a

↑ Blood Prostate cancer Cancer recurrence [113]

miR-1225-3p,
miR-1234-3p,

miR1260b,
miR-1470

↑
Serum

Biliary tract
cancer

Cancer recurrence;
poor prognosis [114]

miR-6834-3p,
miR-6875-5p ↓

↑ Upregulation; ↓ downregulation; = unchanged; ERBB2: erb-b2 receptor tyrosine kinase 2.

6. Conclusions

Changes in miRNA expression levels alter biological processes, such as cellular pro-
liferation and metabolism. Evaluation of ECmiRNAs in biological fluids, such as blood
or urine, could represent a potential routine test, based on miRNAs quick analysis, nonin-
vasive and nonhazardous characteristics for the patients. Therefore, ECmiRNAs analysis
appears conceivably endlessly repeatable, with the possibility of multiple samplings over
time that are important especially in the follow-up [121]. Furthermore, since specific cir-
culating miRNAs should reflect the miRNAs profiles within the parental tumor [53], they
might provide information on the tumor stages and its modifications more rapidly than
other techniques. Currently, some cancers, such as lung cancer, have low life expectan-
cies due to a lack of distinctive symptoms that causes a late diagnosis [98]. A specific
ECmiRNAs profile could be informative for cancer diagnosis and follow-up, but could
also suggest the appropriate treatment to block tumor growth and to monitor therapy side
effects. Recent studies evaluated miRNAs themselves as a potential cancer therapy. For
example, TG221 transgenic mice treated with miR-199a-3p mimic displayed a reduction in
liver cancer size and a fewer number of nodules compared to control animals [122].

It should be taken into account that ECmiRNAs expression changes as a consequence
of personal characteristics, such as lifestyle (i.e., diet and physical activity) [123,124]. Limita-
tions of ECmiRNAs analyses may be related to availability of clinical samples and amount
of miRNAs content, RNA extraction methods, miRNA database errors and unstandardized
statistical analyses [125,126].

Identification of biomarkers in cancer survivors is a very innovative research topic
and ECmiRNAs are gaining an emerging role within it. The identification of ECmiRNAs
patterns, related to specific cancer stages and progression phases, could allow us to prevent
cancer relapse and to monitor therapy effects.

Knowledge of cancer characteristics, as described by ECmiRNAs, may orient toward
the best individual treatment, fitting within the idea of a personalized precision medicine.
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