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Abstract 
      We developed phase-switch microfluidic devices for molecular profiling of a large number of single 
cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression 
levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, 
cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique 
molecular characteristics of individual cells, as well as the temporal and quantitative information of gene 
expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology 
overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a 
population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from 
an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular 
characteristics. Because a cancer cell population contains cells at various stages of development toward 
drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant sub-
clones evolve during cancer treatment. Here, we discuss how single-cell transcriptome analysis technology 
could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-
resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and 
significant impact on current cancer treatments and future personalized cancer therapies.
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      Our laboratory applies nanotechnology for molecular 
characterization of individual cells[1-4]. We study the molecular profiles 
of many individual cells at various developmental stages, in contrast 
to the traditional population study approach using cell lysates, to 
investigate gene regulation of cell fate. A collection of molecular 
profiles is the molecular counterparts of time-lapse images used for 
describing stepwise developmental events[5]. As fluorescent tags 
facilitate the study of cell movement and cell development, collections 
of single-cell molecular profiles will allow predicting the effects of 
genetic manipulations, as well as applying the theory of evolution to 
cancer research[4]. 
      Studying gene regulation at the single-cell level is necessary and 
effective for understanding normal or cancer cell development[2,6,7]. 
By fluorescently tagging stage-specific proteins, cell biologists can 

visualize protein movements within a cell to determine their functions 
and study the developmental stages at the tissue level. However, 
biomarkers from previous studies must be used in such approaches. 
In contrast, single-cell transcriptome analysis can overcome the 
limitation of using empirical approaches that rely on previously 
published studies and potentially provide a method for studying 
biological events without known biomarkers[4]. 

Single-cell Transcriptome Analysis
      Whole genome microarrays and RNA-sequencing are commonly 
used to determine the expression levels of genes and to infer gene 
functions. However, cellular heterogeneity becomes an inherent 
noise in the measurement of gene expression[8-10]. Although cell 
lysates provide a large amount of RNA for analysis, the temporal 
and quantitative information of gene expression in individual cells 
are lost when averaged among all cells in a lysate. When you lose 
your keys, it is best to look for them where you lost them, not where 
the light is better. Gene-gene interaction occurs inside mammalian 
cells, and regulatory relationships of genes are best preserved within 
a single cell. The “lost key” in the investigation of gene regulatory 
relationships will be found in single-cell transcriptome analysis, not 
the analysis of cell lysates (where the light is better). Because of the 
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heterogeneity and asynchrony among cells, a cell population usually 
contains cells at various developmental stages. Therefore, we can 
infer gene regulatory relationships from a collection of single-cell 
transcriptomes because the temporal and quantitative levels of mRNA 
are best preserved at the single-cell level. The small amount of RNA 
within a mammalian cell (approximately 20-40 pg of total RNA[11]) 
presents a challenge for single-cell transcriptome analysis. Our 
group has overcome the technical hurdles of single-cell molecular 
analysis by using microfluidic technology[1-4,12]. Traditional molecular 
analysis methods are performed on a microliter scale, whereas a 
typical mammalian cell has a volume of approximately 0.065 pL. 
Therefore, traditional techniques dilute cellular RNA more than 106-
fold[12,13]. Using microfluidic devices, we have successfully obtained 
whole genome transcriptomes from individual cells for microarray 
analysis. The quality of single-cell data from our platform is similar 
to that from cell population experiments in which an input of 1 ng 
cDNA was used[2]. Obtaining single-cell whole transcriptome results 
in a technologic advancement that leads to a fundamental change in 
molecular biology and cancer research, and enables us to investigate 
cancer from an evolutionary perspective. 

Intratumor Heterogeneity
      Single-cell transcriptomes are of value in two settings: 1) some 
cells of interest, such as circulating tumor cells (CTCs), are very 
rare and only obtainable in very small numbers, and 2) when cells 
are aggregated for analysis, information on the extent or nature of 
heterogeneity in the cell population being studied is lost, along with 
the ability to identify and characterize sub-populations, such as stem 
cells, which may be the most relevant. Similar to a human population, 
which contains people in various ages, within a cell population, there 
are cells in various developmental stages because cellular events 
are occurring continuously and often asynchronously. Recent single-
cell DNA sequencing has indicated that a tumor contains cells with 
various mutations[14-16]. With random sampling, gene expression 
profiles from various developmental stages can be obtained using 
our single-cell transcriptome analysis technology. Because cellular 
events are determined by sequential gene expression, cells at 
sequential developmental stages are more similar than these from 
further separated developmental stages. Therefore, organizing 
single-cell transcriptomes by similarity can reconstruct the stepwise 
developmental events at the molecular level. In addition, with 
landscape view of the cell expression profiles, gene-gene interaction 
can be better studied. One such example is our study on trans-
differentiation of human cells into neural progenitors. By examining 
the entire p53 gene network instead of only the p53 gene itself, we 
identified regulatory relationships among genes that manipulate 
the fate of human skin cells[17,18]. The single-cell approach we have 
developed can be applied to various studies involving heterogeneous 
cell populations, such as understanding the leukemia development.

Hematopoietic Stem Cells
and Leukemia
      Hematopoietic stem cells (HSC) are capable of self-

renewal and differentiating into different types of blood cells 
as well as immunocompetent cells. A group of primitive cells 
exist in hematopoietic tissues from which all blood cells arise[19]. 
Hematopoietic stem cell transplantation (HSCT) is the clinical 
application of cellular plasticity to restore hematopoietic and 
immunologic functions that have been depleted by chemotherapy 
used for treating leukemia or by various other diseases. 
      The discovery of developmentally plastic cells for HSCT was 
initiated after the atomic bomb detonations in the Japanese cities of 
Hiroshima and Nagasaki. The people exposed to the radiation from 
these bombs developed severe bone marrow and lymphatic failures. 
Since then, radiobiological studies on radiation injury treatments 
have emerged in many countries. In 1951, Brecher and Cronkite at 
the Brookhaven National Laboratory performed radiation shielding 
experiments on rats and made an important discovery: normal bone 
marrow that had not been exposed to radiation could cure severe 
bone marrow failure caused by a lethal radiation dose[20]. Soon 
afterwards, in the United States, Lorenz et al .[21] reported the first 
experimental results on bone marrow cell infusions into animals that 
had received a lethal level of radiation. They found that bone marrow 
allografts from healthy animal donors could replenish hematopoietic 
tissues of the recipients, which had been severely damaged, and 
hence proposed the scientific hypothesis of “transplantation.” In 1957, 
Thomas et al.[22] at the University of Washington reported the world’s 
first case of isogenic bone marrow transplantation (BMT) from an 
identical twin donor to successfully treat leukemia. However, among 
200 reported cases of transplantations, over half failed due to immune 
rejection[23]. Thus, the importance of human leukocyte antigen (HLA) 
matching was recognized. In 1973, Speck et al .[24] reported an 
aplastic anemia patient who underwent a successful allogeneic BMT 
from an unrelated donor with matching HLA type. Allogeneic BMTs 
are BMTs occur between a donor and recipient of the same species 
but with different genotypes. The highly plastic nature and strong 
regenerative capacity which enable the regeneration of the blood 
system also render the hematopoietic system vulnerable to cancer 
development, such as leukemia. 
      There are 4 common types of leukemia: 1) chronic lymphocytic 
leukemia (CLL), which affects lymphoid cells and accounts for more 
than 15,000 new cases of leukemia each year in the United States; 
2) chronic myeloid leukemia (CML), which affects myeloid cells 
and accounts for nearly 5,000 new cases; 3) acute lymphocytic 
(lymphoblastic) leukemia (ALL), which affects lymphoid cells, 
accounts for more than 5,000 new cases and is the most common 
type of leukemia in young children; and 4) acute myeloid leukemia 
(AML), which affects myeloid cells and accounts for more than 13,000 
new cases (http://www.cancer.gov). Treatment of leukemia has 
advanced rapidly in the past several decades. Many drugs have been 
developed to target various types of leukemia, but relapse has been 
a major challenge in treating leukemia; one example is the treatment 
of CML.

Chronic Myeloid Leukemia

      CML is caused by the abnormal proliferation of myeloid cells in 
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the bone marrow and the accumulation of these cells in the blood. 
CML is characterized by a reciprocal translocation of chromosomes 
9 and 22, the so-called Philadelphia chromosome (Ph1). This 
Ph1 translocation generates the BCR-ABL fusion gene encoding 
a constitutively active tyrosine kinase in cells and transforms 
them into cancer stem cells. The tyrosine kinase inhibitor (TKI) 
Imatinib Mesylate (IM; formerly STI571, Gleevec®, Novartis, 
Basel, Switzerland) successfully inhibits the ATP-binding site of 
BCRABL1[25]. IM is a competitive inhibitor of the oncogenic BCR-ABL 
kinase that provides a strong response in most patients and is now 
a standard treatment of CML[26,27]. The estimated event-free survival 
rate was 81%, the freedom from progression to accelerated phase 
or blast crisis (BC) was 92%, and the overall survival rates was 85% 
when only CML-related deaths were considered and 93% when 
only deaths prior to stem cell transplantation were considered[28,29]. 
However, most patients continue to have low levels of residual 
disease after treatment with IM due to the development of drug-
resistant sub-clones[30]. BCR-ABL–positive cancer stem cells have 
been identified and reported to be resistant to a wide range of pro-
apoptotic agents, including tyrosine kinase inhibitors[31]. Second-
generation TKIs, nilotinib (formerly AMN107; Tasigna®, Novartis), 
dasatinib (formerly BMS354825; Sprycel™, Bristol Myers Squibb, 
NY, USA) and bosutinib (formerly SKI-606, Pfizer, NY, USA), are 
capable of preventing some of these drug-resistant relapses[32,33]. The 
challenge of treating CML is the complete elimination of CML stem 
cells to prevent the development of drug-resistant sub-clones and 
disease relapse[34]. The development of drug-resistant sub-clones 
may involve in vivo microenvironments and the activation of multiple 
molecular pathways[35,36]. 
      The key to prevent the development of drug-resistant CML is 
intervention of the stepwise development of such drug-resistant sub-
clones. The single-cell transcriptome method we developed provides 
a method to obtain single-cell molecular profiles for investigating 

the clonal development of drug-resistant cells. Relapse is the major 
contributor to treatment failure of leukemia, and leukemia stem cells 
are considered the origin of disease relapse. Identifying the abnormal 
activities of leukemia stem cells from single-cell transcriptomes will 
aid our understanding of leukemia development and will eventually 
augment and benefit the understanding, diagnosis, and treatment of 
leukemia[37].

Concluding Remarks
      Cancer development from an evolutionary perspective is the 
result of genetic mutations developed under suitable environment. 
One example is the drug-resistant CML. Various molecular 
pathways have been reported in the development of CML including 
Hedgehog[36], Wnt, BMI-1, Notch[38], PTEN[39], Alox5[40], and FoxO[41] 
signaling pathways. The development of treatment-resistant cancer 
cells could be a process similar to the development of drug-resistant 
bacteria, which is a stepwise selection process. A combination of 
different chemotherapeutic drugs may be the solution to prevent the 
relapse of leukemia. Single-cell molecular analysis could potentially 
reveal the stepwise development of these sub-clones and facilitate 
the development of personalized chemotherapeutic combination 
therapy.
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