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Abstract

Orientation analysis of fibers is widely applied in the fields of medical, material and life sci-

ences. The orientation information allows predicting properties and behavior of materials to

validate and guide a fabrication process of materials with controlled fiber orientation. Mean-

while, development of detector systems for high-resolution non-invasive 3D imaging tech-

niques led to a significant increase in the amount of generated data per a sample up to

dozens of gigabytes. Though plenty of 3D orientation estimation algorithms were developed

in recent years, neither of them can process large datasets in a reasonable amount of time.

This fact complicates the further analysis and makes impossible fast feedback to adjust fab-

rication parameters. In this work, we present a new method for quantifying the 3D orientation

of fibers. The GPU implementation of the proposed method surpasses another popular

method for 3D orientation analysis regarding accuracy and speed. The validation of both

methods was performed on a synthetic dataset with varying parameters of fibers. Moreover,

the proposed method was applied to perform orientation analysis of scaffolds with different

fibrous micro-architecture studied with the synchrotron μCT imaging setup. Each acquired

dataset of size 600x600x450 voxels was analyzed in less 2 minutes using standard PC

equipped with a single GPU.

Introduction

Quantification analysis of fiber orientation is frequently required in the fields of medical,

material and life sciences. The orientation allows to predict properties of materials reinforced

with fibers and regeneration speed of tissues with integrated scaffolds, validate and guide a fab-

rication process of scaffolds with controlled fiber orientation.

There is a vast number of approaches for quantification of fiber orientation. The application

of each approach greatly depends on an imaging method and hardware that dictates data

dimensionality, dynamic range, and spatial resolution expressing a minimal resolvable size of

structures.
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Over the last decades, several approaches for two-dimensional (2D) data analysis emerged.

The Hough transform was utilized for analysis of collagen fibers [1], electrospun polyacryloni-

trile fibers [2], and alignment quantification of structures in textile composites [3]. The

approach using intensity gradient and its magnitudes allowed to determine the orientation at

every pixel of images acquired from cytoskeletal fibers [4], myofiber disarray [5], fibers in

human ligament fibroblast [6], unidirectional fiber reinforced polymers [7], and collagen

fibers [8]. The methods involving the analysis of spatial frequency components of the 2D Fou-

rier spectrum enabled to reveal a global orientation of presented structures. They were applied

to quantify direction of nanofibrous and nonwovens layers of textile materials [9,10], amor-

phous cast iron fibers [11], actin fibers and myofibroblasts [12], scleral fibers in normal rat

eyes [13], fibers in electrospun materials [14–16], collagen fibers [17,18], and fibroblast prolif-

eration [19]. Another way to utilize the 2D Fourier spectrum is to fit a line into the thresholded

spectrum to infer orientation from a line slope [20] to estimate the direction of α-actin fibers

[21]. Also, the Radon transform was employed for quantification of fiber alignment [22].

Recent advances in the development of micro-computed tomography (μCT) and confocal

laser scanning microscopy (CLSM) enable to reveal a three-dimensional (3D) microstructural

information of a sample. Acquisition of X-ray projections of the sample from a range of angles

allows reconstructing the stack of cross-sections of the sample with the help of tomographic

reconstruction algorithms [23,24]. CLSM allows obtaining successive sample optical sections

at different depth levels which provide a 3D representation of the sample. These 3D imaging

methods in conjunction with subsequent processing techniques produce 3D datasets repre-

sented as stacks of 2D images. To quantify the orientation of fiber structures in a 3D space, var-

ious approaches analyzing data in a neighborhood of each voxel were proposed.

Estimation of the second-order structure tensor at a voxel neighborhood allows computing

eigenvalues and eigenvectors of the region. The smallest eigenvalue corresponds to the eigen-

vector pointing towards a direction of a primary orientation of the structures within this

region. The approach is based on a computation of a structure tensor at every point of a medial

axis of segmented fibers in reinforced composite, nonwoven fabrics, and fibrous porous net-

works, produced by a morphological thinning or trajectory tracing algorithm [25–32]. A simi-

lar approach was suggested for investigation of scaffold organization of the engineered heart

valve tissue for post- and pre-implants [33]. For the quantification of electrospun fiber mats

organization, a tensor calculation at every voxel of segmented fibers with maintaining a neigh-

borhood radius larger than maximal fiber diameter was proposed in [34]. Another approach

measures orientation of fibers in planar sections of reinforced composite materials by detect-

ing elliptical and non-elliptical footprints to derive a 3D structure tensor [35–38]. Calculation

of 3D inertia moments of boundary points of the segmented fiber was proposed to estimate

the orientation of the collagen fibers [39,40]. The analysis of the 3D Fourier spectrum allowed

to determine orientation in collagen-based tissues within local 3D windows by performing

correlation with 3D orientation fiber banks [41]. The approach based on parameter-tuning of

an anisotropic 3D Gaussian filter generates a filter of a prolate spheroid shape to find its maxi-

mum response at every voxel, that corresponds to a primary orientation when a filter direction

coincides with the direction of a structure in that voxel [42]. The algorithm based on a

weighted sum of vectors pointing towards each element in a neighborhood from the central

element was proposed and used for investigation of an organization of fiber structures in bio-

logical tissues [43–45].

Development of modern detectors has led to an increase in the amount of generated

data per sample and required computation time. In a case of 2D orientation analysis

approaches, it did not make an issue, since modern central processing units (CPUs) can easily

handle 2D problems in a reasonable amount of time. On the other hand, it increased required
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computation resources for 3D approaches to be executed in reasonable time frames. Men-

tioned approaches provide high-quality analysis, but unfortunately, current 3D approaches are

not rapid enough for processing of large data. Moreover, up to the author’s knowledge, there is

no reported progress on the implementation of these approaches for modern graphics process-

ing units (GPUs).

The conventional workflow for orientation analysis of μCT datasets is composed of several

stages: pre-processing, segmentation, a medial axis extraction, and orientation quantification.

Diverse points of views to this workflow were presented in a range of works devoted to the

analysis of fibrous structures in life and material sciences [8,29,46,47].

The quality of the acquired μCT data varies and depends on parameters of an imaging

method, an acquisition device, a sample preparation protocol and nature of a sample. There-

fore, the pre-processing stage can partially correct weak noise with non-linear filters like

median, bilateral or other edge preserving filters. On the other hand, the low contrast data, or

contaminated with beam hardening, streak or ring artifacts [48,49] are very challenging and

required specifically tailored procedures to correct them.

The pre-processed data should be segmented to proceed with the further analysis. Despite

the diversity of segmentation techniques, their applicability depends on the nature of the data.

When fibers are made of homogeneous material and the data possess high contrast, then sim-

ple histogram-based methods might be applied. Otherwise, more sophisticated approaches

involving texture analysis and machine learning are better suited.

A medial axis or a skeleton is a centerline extracted from isolated binary regions of the seg-

mented data. There are many algorithms for deriving the medial axis, some of them consider

crossing or touching regions [50–53].

Based on the above, here we propose a novel 3D approach for quantification of fiber orien-

tation based on the ray-casting idea. We have compared the proposed method with the

method based on the second-order structure tensor in terms of accuracy and throughput. The

accuracy was verified on a synthetic dataset with varying fiber density, alignment, and diame-

ter. The throughput was measured for several implementations tailored to computational envi-

ronments consisting of CPUs and GPU. Finally, the proposed approach was successfully

applied for the analysis of real-world datasets acquired with the synchrotron μCT imaging

setup.

Materials and methods

Ray-casting algorithm

The fiber can be modeled with a cylinder of length ρ with the center of mass placed at the ori-

gin of the spherical coordinate system and oriented along the Z-axis (Fig 1). The orientation of

the fiber is defined by θ and φ angles determining tilts in different projection planes. The φ
angle is the elevation, which represents an inclination relatively the Z-axis and the θ angle is

the azimuth, specifying orientation in the XY-plane. We assume that angles vary from 0˚ to

90˚ for elevation and from -90˚ to 90˚ for azimuth, and both orientation components are 0˚

when the fiber is co-aligned with the Z-axis.

The proposed method for orientation estimation is based on the concept of emitting a ray

in a direction represented by θ and φ angles at a point of a 3D volume and calculating a ray-

sum denoted as:

Rðx; y; z; y;φÞ ¼
Z

L

Vð‘ sinycosφþ x; ‘ siny sinφþ y; ‘cosyþ zÞd‘ ð1Þ

PLOS ONE GPU-accelerated ray-casting for 3D fiber orientation analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0236420 July 29, 2020 3 / 16

https://doi.org/10.1371/journal.pone.0236420


where, V is a 3D volume, (x,y,z) is a point within this volume subjected to orientation estima-

tion, θ and φ are angles describing a direction of an emitted ray, L is a length of a ray transmis-

sion path in a spherical coordinate system centered at the point that is being estimated. The

orientation at this point can be determined using its neighborhood by emitting rays in direc-

tions specified by the angular scanning ranges and computing ray-sums. The fiber direction

(θ,φ) at the point (x,y,z) is found by the ray having a maximal ray-sum:

R0ðx; y; zÞ ¼ argmax
y;φ

Rðx; y; z; y;φÞ ð2Þ

where, R0(x,y,z) is the primary orientation, which can be solved numerically by searching

through the angular scanning ranges of θ and φ. Carrying out such operation at every point of

V creates a huge computational burden and cannot be done in a reasonable amount of time

using standard multi-CPU implementations when the size of V exceeds several gigabytes. The

propagation distance of the rays is limited by a sphere with a radius of L/2, centered at the

point (x,y,z). The tradeoff between the accuracy and the computation time can be achieved by

adjusting of the radius of restricting sphere, the limits and the step of the angular scanning

ranges.

The proposed approach allows for more accurate orientation estimation of straight fibers

since it accumulates values at points along a ray transmission path. The primary orientation is

determined by a ray with the highest accumulated sum of values at points constituting the

medial axis of the structure. Whereas, the tensor-based approach estimates mean orientation

by taking into account all structures within the 3D local window.

Fig 1. The representation of a fiber in the spherical coordinate system with the rays casted from the origin.

https://doi.org/10.1371/journal.pone.0236420.g001
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Implementation in pseudo-code

The GPU has hundreds of times more cores than CPU, which enables it to perform massively

parallel computations. In comparison to sophisticated CPU cores, GPU ones are much more

straightforward. They have tiny memory cache levels and aimed at tasks involving as less as

possible branching operations. The pseudo-code of the proposed method presented in Alg 1

(Fig 2) was implemented for GPU using the CUDA toolkit provided by NVIDIA. This allowed

us to run the method at a vast number of data points at the same time, distributing computa-

tion over all the GPU cores, which significantly reduces the total execution time. Moreover,

since the proposed approach is based solely on control flow operators, such as loops and con-

ditions, we employed the open-source Numba package [54] for Python language to implement

the CPU version. This package enables dynamic hardware-specific vectorization and optimiza-

tion of code, thereby maximizing the efficiency of using a specific CPU. The algorithm is split

into two procedures: the estimation of the structure orientation in the volume restricted by the

3D local window and casting of a ray through the volume at the specified azimuth and eleva-

tion angle. It returns the azimuth and elevation angle of the ray, which accumulated the maxi-

mum sum of intensities by passing through the volume.

The tensor-based approach [29] is presented in Alg 2 (Fig 3), and it consists of the proce-

dure for calculating the second-order structure tensor and the extraction of eigenvalues and

eigenvectors from the obtained covariance matrix. This approach was successfully imple-

mented and parallelized for CPU and GPU, thanks to the open-source TensorFlow package

Fig 2. Alg 1—The pseudo-code of the ray-casting method.

https://doi.org/10.1371/journal.pone.0236420.g002

PLOS ONE GPU-accelerated ray-casting for 3D fiber orientation analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0236420 July 29, 2020 5 / 16

https://doi.org/10.1371/journal.pone.0236420.g002
https://doi.org/10.1371/journal.pone.0236420


[55] providing computation routines for deriving the eigenvalues and eigenvectors for both

hardware platforms. We have implemented our own version because the software package

providing this approach does not allow measure the execution time of subroutines and smooth

integration into an analysis workflow.

The implementations of these approaches for CPU and GPU platforms are presented in the

Quanfima package [56].

Synthetic data generation

We have generated a synthetic dataset of size 512x512x512 voxels using the algorithm pre-

sented in [56] to validate the proposed method and compare it to the tensor-based approach.

This dataset is composed of 70 fibers of radius from 3 to 20 pixels with a gap between them

from 3 to 10 pixels, oriented in a range from -90˚ to 90˚ of azimuth and from 0˚ to 90˚ of eleva-

tion angle components. Afterward, it was contaminated with the additive Gaussian noise with

different the standard deviation (σagn) of 0.5, 1.0, and 1.5, and subsequently smeared with the

Gaussian filter of 1.0 and 2.0 sigma (σsmooth) values.

Experimental dataset

The biodegradable polycaprolactone (PCL) 3D scaffolds of a randomly oriented and a well-

aligned structure were fabricated using the electrospinning technique [57], which requires a

Fig 3. Alg 2—The pseudo-code of the tensor-based approach.

https://doi.org/10.1371/journal.pone.0236420.g003
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lot of time to find proper fabrication parameters and materials to produce a scaffold with

desirable properties [58]. The internal composition of the fabricated scaffolds was measured

with the help of a high-resolution μCT setup built on a base of the micro-imaging station

placed at a bending magnet source at the Institute for Photon Science and Synchrotron Radia-

tion of the Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany) [59]. The imaging

setup employed for the experiment used a monochromatic beam with energy of 12 keV, a 200-

μm-thick Lu3Al5O12 scintillator, a 5.5 megapixels sCMOS Camera (6.5 μm physical pixel size),

and a BAM macroscope providing magnification of 3.6 times, which results in a spatial resolu-

tion of 1.8 μm with a field of view of 4.6x3.9 mm2. During data acquisition, the sample

mounted at the stage was rotated around the vertical axis for 360˚ with a step of 0.24˚ and

exposed for 1 sec with X-rays. After that, the acquired data were reconstructed into 3D vol-

umes of size 2016x2016x2016 voxels using the filtered back-projection algorithm [60].

Analysis workflow

The workflow was implemented in the following stages: the pre-processing stage uses the 3D

median filter of size 3x3x3 voxels, the segmentation stage employs the Otsu thresholding algo-

rithm [61] to obtain the binary data, the middle axis extraction was performed with the algo-

rithm from [51], and at the analysis stage both methods were estimated in the specified 3D

local window. The whole workflow was implemented and performed on CPUs, except the ori-

entation analysis methods, which were implemented and executed on both CPUs and GPU.

Benchmarking setup

The performance evaluation was done at a computer operating under 64-bit Ubuntu 16.04

and equipped with Intel Xeon E5-4660 v4 processor, NVIDIA Tesla T4 16GB graphical

adapter and 60 GB of random-access memory. The data were located at a corporate storage

and were accessed via a high-speed network of 320 MB/s.

Performance analysis

The proposed method and the tensor-based approach were integrated into the described work-

flow to quantify the orientation of the generated dataset (Fig 4A). The validation procedure is

Fig 4. The synthetic dataset (a) with noised slices extracted from the central XY-plane of the contaminated dataset (b-g) (marked with

the blue dashed line).

https://doi.org/10.1371/journal.pone.0236420.g004
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composed of several phases. At the first phase, the noiseless dataset is estimated by each

method with varying a window size from 4 to 44 pixels. Then, the window size providing the

best accuracy is selected for further calculations. In the next phase, the fixed window size is

used in the processing of the generated dataset to observe the behavior and limitations of each

method in specific conditions. After that, the throughput of each method was estimated at dif-

ferent scales of the same dataset.

Accuracy evaluation

The methods have a similar behavior of elevation component errors (Fig 5A and 5B), which

rapidly fall from 4 to 20 pixels of window size and then do not change much. The results pre-

sented in Fig 5A for the tensor-based method show that the sum of absolute angular errors of

the azimuth component rapidly falls from 4 to 28 and starts slowly decreasing from 32 pixels of

window size. While the azimuthal error of the proposed method in Fig 5B quickly falls from 4

to 24 and then slightly varies. Since the sums of absolute errors of both methods start slowly

decreasing from a certain window size, we chose the optimal window size is 34 pixels for the

tensor-based approach and 32 pixels in a case of the proposed method. The optimal window

sizes were then averaged to unify the parameters of both methods for the further analysis, which

results in 33 pixels of window size. Given that the synthetic dataset has radii of fibers in a range

from 3 to 20 pixels, with the average fiber radius of approximately 9.5 pixels, then 33/9.5×2

yields the 1.73 factor explaining the relationship between the optimal window size and the fiber

radius. The absolute errors produced by the tensor-based approach and the proposed method

using the optimal window size are (5.6˚±24.29˚, 1.03˚±0.67˚) and (3.75˚±8.97˚, 0.93˚±1.25˚)

correspondingly, where the values in the parentheses are azimuth and elevation components.

Then, we analyzed which angular ranges are the most error-prone for each method while

keeping the optimal value of the window size. The polar heatmaps depicted in Fig 5C and 5D

use a logarithmic scale to present the errors calculated as the sum of the averaged azimuth and

elevation errors within angular ranges from -90˚ to 90˚ and from 0˚ to 90˚ for azimuth and ele-

vation correspondingly, with a step of 5˚ for both. It can be seen from the Fig 5C that most

errors of the tensor-based approach are uniformly distributed over the heatmap, except the

strong error peaks around (88˚, 25˚), (-88˚, 18˚) locations of azimuth and elevation compo-

nents correspondingly. The proposed method has a comparable distribution of errors (Fig 5D)

to its competitor and has weak error peaks around (-60˚, 85˚), (-50˚, 26˚), (25˚, 16˚) and (70˚,

26˚) locations of azimuth and elevation components correspondingly. The angular error

increases towards angles 0˚, 90˚, and -90˚ because at these orientation angles tend to be incor-

rectly determined due to the limited spatial resolution governed by the window size, which in

turn is restricted by the proximity of fibers. Thus, the optimal window size should maximize

the spatial resolution and minimize capturing neighbor fibers in the window. In a case of

tightly packed fibers, the optimal window size will be equal to the diameter of fibers, which is

not sufficient to resolve a complete angular range.

Afterward, we run the methods over the synthetic dataset contaminated with σagn of 0.0,

0.5, 1.0, 1.5, 2.0 and σsmooth of 1.0 to estimate the robustness (Fig 4B–4G). The results pre-

sented in Table 1 have shown that the proposed ray-casting approach is more accurate for

both azimuth and elevation components for every configuration of noise (Fig 5E and 5F). The

angular error almost linearly changes for the proposed method from 0.5 to 2.0 of σagn. How-

ever, it non-linearly varies in the same range for the tensor-based approach. This is due to the

fact that the segmentation stage produces the over-segmented binary data because of the

imposed noise, and subsequently, the extracted skeleton will be significantly distorted, and

many wrong locations of orientation estimation are produced.
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Throughput evaluation

We analytically estimated the complexity of each method in terms of the required number of

arithmetical operations, where Nθ and Nφ denote the number of azimuth and elevation angles,

correspondingly, NW indicates the side length of a 3D local window in voxels, and Nd is the

size of the square matrix (in our case 3x3 covariance matrix calculated from a 3D local win-

dow). It showed that the proposed method requires approximately (Nθ×Nφ) × (NW
2+NW

2)1/2

arithmetic operations if we assume that each ray has a fixed length of (NW
2+NW

2)1/2 and we

emit (Nθ×Nφ) rays in all possible directions in the 3D local window, thus the computational

burden highly depends on the number of emitted rays. Whereas, the tensor-based approach

Fig 5. The comparative accuracy analysis of the tensor-based approach (left) and the proposed method (right): a,b) the absolute

error of orientation quantification of the noiseless dataset to determine the optimal window size; c,d) the evaluation of the sum of

absolute errors to spot error-prone regions on the noiseless dataset; e,f) the behavior of the absolute error while increasing σagn for

the dataset and keeping a window size of 33 pixels.

https://doi.org/10.1371/journal.pone.0236420.g005
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requires NW
2×(10/3×Nd

3+Nd
2)+(6×Nd

2+Nd) arithmetic operations. The number of required

operations was numerically estimated by substituting the variables with corresponding values

used in the study, where NW = 33, Nd = 3, Nφ = 90 and Nθ = 180. This showed that the pro-

posed method requires approximately 30×106 arithmetic operations, while the tensor-based

method roughly 105. Therefore, the throughput of the sequential computation of the proposed

method theoretically is more than an order of magnitude less than for the tensor-based

approach. However, this issue can be overcome with help of CPU-specific code vectorizing

optimizations and GPUs which are aimed at massive parallelization of fine-grained tasks.

The performance of the proposed and the tensor-based approach was experimentally evalu-

ated over the synthetic dataset at different scales. We implemented versions of the algorithms

for CPU and GPU to compare their throughput in conditions of varying the computational

environment and the sizes of the dataset. The results of the evaluation are presented in Fig 6

and Table 2.

The CPU version of the proposed method is 12–20 times faster than the tensor-based

approach in the same conditions, and this tendency is preserved for all cases of computations

involving CPUs. The throughput of the proposed method on CPUs is always higher than the

Table 1. The absolute error of methods and the absolute error differences between the tensor-based and the ray-casting approach estimated for the synthetic dataset

contaminated with varying σagn.

σagn Ray-casting approach Tensor-based approach Difference of Tensor-based from Ray-casting

approach

Azimuth [deg.] Elevation [deg.] Azimuth [deg.] Elevation [deg.] Azimuth [deg.] Elevation [deg.]

0.0 5.11 2.41 11.95 7.59 6.84 5.18

0.5 17.05 15.01 22.55 18.59 5.5 3.58

1.0 21.71 20.39 25.84 23.30 4.13 2.91

1.5 27.11 26.18 32.25 28.91 5.14 2.73

2.0 33.67 32.96 43.91 39.86 10.24 6.9

This validation procedure has shown that the proposed method provides higher accuracy than the tensor-based approach for the same dataset over different validation

scenarios.

https://doi.org/10.1371/journal.pone.0236420.t001

Fig 6. The throughput evaluation of the proposed method and the tensor-based approach over different data sizes for various computation environments.

https://doi.org/10.1371/journal.pone.0236420.g006
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tensor-based method because it is based on control flow operators and trivial memory access

patterns allowing for hardware-specific optimizations, whereas the method competitor is

locked to the specific implementation of the eigen-decomposition algorithm. In the case of the

GPU version, the proposed method outruns in 17–30 times the tensor-based approach,

because the latter cannot be easily parallelized due to the eigen-decomposition algorithm.

Thus, the undertaken experiment showed the high suitability of the proposed method for

implementation on both CPU and GPU and its superiority over the tensor-based approach in

all considered evaluation scenarios.

Application

We have performed a 3D orientation analysis of microfibrous scaffolds made from biodegrad-

able PCL polymer with aligned and randomly oriented fiber structure using the presented

method. Such scaffolds are widely applied in regeneration medicine as they serve as construc-

tions which imitate an extracellular matrix of native bone tissue [62].

The experimental datasets were cropped to 600x600x450 voxels, corresponding to

1080x1080x810 μm3, and then subjected to the previously described workflow to pre-process

each dataset before the analysis. At first, each slice of the reconstructed 3D volumes was filtered

with a median filter of radius 1.8 μm. Then, each filtered slice was segmented with the Otsu

thresholding algorithm [61] to provide slices where only fibers have non-zero values. Next, the

medial axis was extracted from the segmented data using the axis thinning algorithm [51]. The

optimal window size was selected based on the averaged expected fiber diameter of 33 μm cor-

responding to 18.3 pixels given the spatial resolution of 1.8 μm and taking into account the

previously calculated factor of 1.73, it yields the optimal window size of 32 pixels. Then, the

orientation analysis was performed over the extracted central axis by estimating the proposed

algorithm in the neighborhood 32x32x32 voxels of every voxel belonging to the central axis.

Even though we estimated the optimal window size, the diameter fluctuations of the fibers will

not significantly affect the orientation analysis results, since the orientation is estimated over

the extracted medial axis of the fibers, thus only the spatial proximity of fibers may have an

impact.

The 3D orientation analysis presented in Fig 7 has shown that in the azimuthal direction,

the samples with a well-aligned structure (Fig 7C) demonstrate prevalent fiber orientation in

the range from 70˚ to 100˚. Whereas, the scaffolds with a randomly oriented structure (Fig

7D) have directionality of fibers distributed in the range from 80˚ to 160˚ due to the type of

rotating collector. However, all samples demonstrate similar results in the elevation direction

(Fig 7E and 7F)), which concentrated in the range from 50˚ to 90˚ because fibers were depos-

ited layer-by-layer during the electrospinning process.

The results of 3D orientation analysis allow immediately distinguish between randomly ori-

ented (Fig 7B) and well-aligned (Fig 7A) fibers by a color coding, where the color of the same

shade represents a similar direction. As it may be observed, fibers of the sample with a well-

aligned structure change their preferred orientation depending on the height level of the

Table 2. The results of throughput evaluation of the proposed method and the tensor-based approach for various data sizes and computation environments.

Data size (pixels) Ray-casting approach (MB/s) Tensor-based approach (MB/s)

GPU CPU x8 CPU x16 GPU CPU x8 CPU x16

256 227.03 18.33 35.41 11.90 1.47 1.68

512 304.18 38.26 39.25 10.25 1.84 2.05

1024 192.66 37.34 43.92 11.07 1.80 2.07

https://doi.org/10.1371/journal.pone.0236420.t002
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sample. It could be due to a difference in the layer deposition during electrospinning, where

each layer is deposited individually. While in the sample with a randomly oriented structure,

fibers are chaotically distributed in the sample volume, and some of them are linked in depth

to other layers. Such a detailed 3D orientation analysis allows for the controlled fabrication

process to produce scaffolds with desirable fiber properties [58].

Discussion

In recent years a vast number of methods aimed at orientation analysis of structures in datasets

of diverse modalities were presented. Initially, every method was developed to answer a spe-

cific question about a particular dataset. However, late due to the inherent generality, some of

them were successfully applied to other problems, such methods as analysis of the Fourier

spectrum or the tensor-based approach. The latter has been compared to the proposed method

Fig 7. The 3D orientation analysis results produced by the proposed algorithm for estimating orientation on the datasets of

PCL scaffolds acquired at the synchrotron-based μCT imaging setup: a,b) the 3D visualization of the color-coded fiber

orientation datasets of the scaffolds with well-aligned and randomly oriented structure; c,d) the azimuthal orientation

histograms; e,f) the elevation orientation histograms of fibers for well-aligned and randomly oriented cases.

https://doi.org/10.1371/journal.pone.0236420.g007
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in this study. The proposed method outperformed the tensor-based approach in terms of accu-

racy, and due to inherent parallelizability, it can be efficiently implemented for GPU to

improve the execution time drastically. Moreover, the processing speed can even be further

improved by shrinking the scanning angular ranges. The coarse-to-fine approach can be used

to create the multi-level pyramid of the dataset. Then, starting from the top level, the orienta-

tion angles are calculated at each point and propagated to the next level. The orientation is

recalculated for the new level at each point, taking into account the angular values at the previ-

ous level and some confidence intervals to mitigate the accuracy errors. The process repeats

until it reaches the latest level, where the initially large scanning ranges are significantly

shrunk. The described changes will be introduced in the further revisions. Despite the pro-

posed method outperformed the tensor-based approach, it cannot completely replace it. Our

method is mainly oriented to the analysis of the datasets with straight and clearly separable

structures because it relies on intensity accumulation along a ray path. While the method com-

petitor is more suitable to analyze stuck together or bent structures by quantifying average ori-

entations in the regions-of-interests.

Conclusions

We presented a new method based on the ray-casting concept aimed at quantification of struc-

tures orientation in datasets from various sources. The method was validated on a synthetic

ground-truth dataset. It provides higher accuracy than the popular tensor-based approach,

and it has an inherent potential for the efficient implementation for GPUs. It was successfully

applied for the orientation analysis of microfibrous scaffolds with aligned and randomly ori-

ented fiber structure. In future work, the method will be improved regarding speed by intro-

ducing the coarse-to-fine strategy to reduce the scanning angular ranges.
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