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Pancreatic ductal adenocarcinoma (PDAC) has an 11% 5-yr sur-
vival rate1 due to late detection, early metastases and therapy 
resistance2–6. First-line treatment is surgery followed by radia-

tion and/or chemotherapy7,8, with immunotherapy options being lim-
ited9,10. Drivers such as KRAS, TP53, CDKN2A and SMAD4 (HUGO 
Gene Nomenclature Committee at the European Bioinformatics 
Institute, https://www.genenames.org/) have been identified11 as 
have transcriptional subtypes of classical and basal-like12,13.

Single-cell technologies enable analysis regardless of tumor 
content and facilitate dissection of the tumor microenviron-
ment (TME), whose role in PDAC remains largely unknown. For 
instance, cancer-associated fibroblast (CAF) subtypes have been 

identified and cytotoxic natural killer (NK) and CD8+ T cells are 
often numerically and functionally impaired14–17. This creates an 
immunosuppressed, pro-tumorigenic environment, but how this 
occurs is poorly understood18,19. There is a growing appreciation 
surrounding acinar-to-ductal metaplasia (ADM), in which acinar 
cells start expressing ductal markers. Animal models posit acinar 
cells as the origin of PDAC when KRAS(G12D) is expressed20–23, 
but this hypothesis is difficult to evaluate in humans due to the pau-
city of acinar and ADM cells sampled at single-cell resolution24–28. 
Recent efforts have focused on acinar heterogeneity in chronic pan-
creatitis29 and healthy human pancreas30, but adequate sampling of 
ADM cells is still lacking.
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Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial 
samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, 
spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signal-
ing, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor 
populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. 
Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct 
histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor 
cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate 
metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma 
tumors that could help improve therapy for patients with this disease.
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As part of the Human Tumor Atlas Network consortium, we 
used a spatially distinct, multi-sampling approach to analyze 83 
PDAC samples across 31 patients31. Samples are physically sepa-
rate from one another, which allowed interrogating both inter- and 
intra-tumor heterogeneity via extensive omics, including bulk DNA 
and RNA sequencing (RNA-seq), bulk proteomics and phospho-
proteomics, single-cell and single-nucleus RNA-seq (scRNA-seq 
and snRNA-seq, respectively), cellular imaging and spatial tran-
scriptomics. We identified and validated transitional populations 
and their associated molecular signatures along the spectrum from 
normal pancreas to PDAC that were previously proposed in mouse 
models. We characterized differential impact of chemotherapy on 
the abundance and transcriptional programs of tumor and stroma 
populations using multi-omic approaches. We highlight the neces-
sity of spatial sequencing for polyclonal/heterogeneous PDAC 
tumor characterization.

Results
Study design and overview of the study cohort. We collected 
73 PDAC samples from 21 patients undergoing standard treat-
ment, including four normal adjacent tissue samples. Treatment 
groups included seven treatment-naïve cases, eight neoadju-
vant FOLFIRINOX (a treatment regimen comprising folic acid, 
5-fluorouracil, irinotecan and oxaliplatin) cases, four neoadjuvant 
gemcitabine + nab-paclitaxel cases, one mixed (FOLFIRINOX and 
gemcitabine + nab-paclitaxel) and one chemoradiation (Chemo-RT) 
case (Supplementary Table 1). Each tumor was spatially sampled 
2–4 times, with sample segments subsequently used to generate 
histologic, imaging and omics data; hematoxylin and eosin (H&E) 
slides; scRNA-seq; bulk mass spectrometry-based proteomics and 
phosphoproteomics; bulk whole-exome sequencing (WES); and 
bulk RNA-seq (Fig. 1a, Supplementary Table 2 and Methods). We 
generated scRNA-seq data for all 73 samples, WES for 64 samples 
and bulk RNA-seq for 65 samples. A subset (n = 30) underwent tan-
dem mass tag (TMT) 11 proteomic and phosphoproteomic charac-
terization (Fig. 1b). Following quality control, we clustered 232,764 
cells across all samples based on expression profiles and assigned 
cell types based on marker gene expression (Fig. 1c, Extended Data 
Fig. 1a–c, Methods and Supplementary Note). Using the fraction of 
tumor cells as a proxy for tumor purity, estimates ranged from 0.10% 
to 82.69% across samples, with an average of 16.28%. H&E pathol-
ogy review revealed that within-patient tumor content differences 
across samples averaged 24%, with a range of 5% to 64% (Extended 
Data Fig. 1d, Methods and Supplementary Note), consistent with 
tumor percentages from scRNA-seq (Pearson R = 0.40, P = 0.001). 
Principal component analysis (PCA) of bulk proteomic and phos-
phoproteomic data confirms that, while most within-tumor regions 
cluster closely, several specimens from the same tumor have sub-
stantial intra-tumor heterogeneity (Extended Data Fig. 1e,f).

We further generated snRNA-seq with matching spatial transcrip-
tomics, RNA-seq and WES data for an additional 10 cases, bringing 
the total cohort to 31 patients, 83 sc/snRNA-seq samples and 15 spatial  

transcriptomics slides (Fig. 1d). The treatment groups included 
three treatment-naïve cases, four neoadjuvant FOLFIRINOX cases, 
one mixed (FOLFIRINOX and gemcitabine + nab-paclitaxel) and 
one Chemo-RT case. Following quality control, we assigned cell 
types to 83,860 nuclei based on marker gene expression and used 
the paired snRNA-seq to label spots in the spatial transcriptomics 
slides (Fig. 1d,e and Methods).

PDAC tumor subclusters with distinct cellular functions. Pathway 
enrichment analysis between case-level tumor subpopulations 
to dissect tumor heterogeneity (Fig. 2a and Methods) identified 
case-specific subpopulations enriched in pathways including cell 
proliferation, cell stress response, epithelial-to-mesenchymal tran-
sition and immune-related pathways that displayed spatial hetero-
geneity (Fig. 2a and Extended Data Fig. 1g). Actively proliferating 
clusters were present in most cases and were characterized by upreg-
ulation of genes belonging to the Molecular Signatures Database 
hallmark gene sets32 for E2F targets, G2M checkpoint, MYC targets 
and mitotic spindle. These clusters also exhibited increased oxida-
tive phosphorylation, in line with previous reports33 (Fig. 2a–c). It 
was common (15 of 21 cases) for tumor subclusters enriched in cer-
tain pathways to originate predominantly from only one of the spa-
tially distinct samples from each case, such as S1H3 in HT185P1 and 
S1H4 in HT200P1 (Fig. 2d,e). Other sets of co-upregulated genes 
included ‘KRAS signaling up’ and ‘inflammatory response’, which 
lead to pancreatitis, pancreatic intraepithelial neoplasia (PanIN) 
and eventually PDAC34. Increased expression of these sets occurred 
in samples with lower numbers of proliferating tumor cells, as 
demonstrated by clusters 7 and 0 from sample HT200P1_M1K1 
and cluster 10 from HT185P1_S1H2 (Fig. 2b,c). KRAS-associated 
inflammatory response was expressed in clusters with increased 
expression of gene sets associated with cell stress (defined by the 
TP53 pathway, hypoxia and TNFA signaling via NFKB). This could 
indicate that parts of the tumor with the most actively proliferat-
ing cells were least impacted by KRAS-driven inflammation, or that 
tumor cells modulate their KRAS-driven associated inflammation 
during proliferation (Fig. 2d,e and Methods).

Using the spatial transcriptomics cohort, we characterized spa-
tial heterogeneity by integrating histology features. Most slides 
had dense stroma intermingled with tumor populations (Fig. 1e). 
For HT264P1, six of eight tumor subclusters were mapped from 
snRNA-seq data to the spatial transcriptomics spots using cell-type 
label transfer and Robust Cell Type Decomposition (RCTD) to 
deconvolve the cell-type composition of each spot (Methods and 
Fig. 2f,g)35. Subpopulation ‘Tumor_2’ clustered separately from 
other tumor cells and had a distinct ‘lower grade’ morphology (as 
annotated by pathology) (Fig. 2g–i). Gene and pathway enrich-
ment analysis revealed that the ‘Tumor_2’ population upregulates 
fucosylation, hydroxylation and HIF pathways, and genes associ-
ated with the basal-like tumor subtype (BTNL8, AGR3 and LYZ) 
(Fig. 2j,k). These findings suggest that this population is a spatially 
distinct cluster with different H&E morphology and likely more 

Fig. 1 | Sampling strategy and cohort overview. a, Spatial sampling approach. At least two punches or grids were selected from each tumor for 
comprehensive imaging and omics characterization. prefixes: ‘p’ denotes tissue punches, ‘H’ denotes tissue grids, ‘r’ denotes remainder tissue and ‘A’ 
denotes a piece of tissue. each associated piece of tissue was processed in a systematic fashion and utilized for the listed assays. b, top, data overview 
of the cohort. Samples are organized by treatment status. m1K1 and m1G1 denote normal adjacent tissue (NAt) samples. Dots for each associated 
assay indicate data availability: red for tumor tissue, purple for NAt, and blue for tumor tissue and blood normal. bottom, scrNA-based (blue) and 
histology-based estimates (green) of tumor purity (methods). c, Overview of all cell types profiled in the scrNA-seq cohort. the left UmAp shows that a 
total of 232,764 cells were profiled from 73 samples and 21 cases, representing 32 cell types or states (colored by cell types). the right UmAp shows the 
28,733 tumor cells subset (colored by sample). d, Data overview of the validation cohort. treatment status is listed on the top followed by sample name 
and data availability. Dots for each associated assay indicate data availability: red for tumor tissue, and blue for tumor tissue and blood normal. For spatial 
transcriptome slides, the number indicated in the circle denotes the number of spatial transcriptome slides generated from that sample. e, Overview of 
spatial transcriptomics cohort. Samples are organized according to treatment groups. For each sample, the bottom image shows the H&e and the top 
image has cell types overlayed. DC, Dendritic Cells; ID, Identification; IF, Immunofluoresence; ImC, Immunohistochemistry.
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aggressive, highlighting the heterogeneous composition of tumor 
cells in PDAC in terms of pathology and transcriptomics. We iden-
tified ‘Tumor_4’ as a proliferative population that upregulates cell 
cycle pathways (Fig. 2j,k). Lastly, we characterized ‘Tumor_3’, which 
is scattered around the periphery of the large tumor regions in H&E 
(Fig. 2g,h). This population has high expression of laminin genes 
and is enriched in integrin and fibril formation pathways, which 
interact with the extracellular matrix and may be involved in tumor 
expansion (Fig. 2j,k)36. In summary, we observe spatially and tran-
scriptionally distinct tumor subpopulations from the same patient 
sample, within the same H&E section.

KRAS signaling and spatial drivers in pancreatic cancer. We 
observed substantial variation of driver mutation variant allele 
fractions (VAFs) between samples (Extended Data Fig. 1g and 
Supplementary Data 1). We detected a KRAS hotspot mutation 
in at least one sample in all cases, except for HT138P1 (HT204P1 
lacks WES data). For low VAF (<0.01) mutations, 10 of 20 cases 
had samples whose mutation profiles differed from one another. We 
also identified pathogenic germline variants37 (Methods). HT138P1 
carried a pathogenic germline BRCA2 variant. Three cases carried 
variants in the homology-directed DNA repair pathway (FANCC 
D23*, BRCA2 I1470* and K607*, and ATM Y1124*), and, expect-
edly, all spatial samples carried the same variant in each case. Using 
RNA-seq, we classified samples into established subtypes12,38,39 and 
determined immune subtypes and stromal and immune compart-
ment scores using xCell40 and ESTIMATE41, respectively (Extended 
Data Figs. 1g and 2a,b, Supplementary Note and Methods).

Tumor cells grouped into patient-specific clusters, consistent 
with the genomic landscapes within each patient (Fig. 3a and 
Methods). We mapped mutation and copy number alterations to 
single cells (Fig. 3b and Methods). We tested the impact of KRAS 
hotspot variants by comparing gene expression profiles of each 
subset of tumor cells with a given KRAS mutation (Methods). 
Interestingly, tumor cells harboring KRAS G12V upregulate sev-
eral genes associated with more aggressive or metastatic tumors, 
including COL1A1, VIM and MUC5B (Extended Data Fig. 2c)42–44.  
We identified five cases with multiple KRAS hotspot drivers, 
which we interpret as synchronous primary tumor clones11,45,46 
(Extended Data Fig. 2d). For case HT061P1, we obtained four sub-
populations of clustered tumor cells, three small clusters largely 
derived from punch A and one large cluster common to all three 
punches (the remainder, as expected, represented all clusters) 
(Fig. 3c and Extended Data Fig. 2d,e). KRAS G12V cells faithfully 
map into one cluster from punch A predominant populations, 
with G12D cells mapping onto the large mixed cluster. Thus, two 
distinct clones carrying different KRAS driver mutations in the 
same patient are spatially separated, with differing gene expres-
sion profiles (Fig. 3c).

Using inferCNV47, we identified copy number variation (CNV) 
signatures at both focal and arm levels that are unique to the respec-
tive KRAS subclones in case HT061P1 (Fig. 3c, Extended Data  
Fig. 2f and Methods). Copy number alterations were further evalu-
ated using WES (Supplementary Data 2 and Methods). The G12D 
population shows amplifications of AKT2 and MYC, while both 
G12D and G12V clusters harbor amplifications in GATA6, among 
others (Fig. 3c and Extended Data Fig. 2f). We reconstructed a 
lineage tree using MEDALT48 (Fig. 3d and Methods), separating 
tumor cells into two major groups, each branching from a normal 
duct origin, consistent with both gene expression-based clustering 
and spatial origin of the cells (Fig. 3c,d). Together, we propose a 
model that integrates the gene expression and CNV data (Fig. 3e 
and Supplementary Note).

To assess proteomic heterogeneity, we conducted a global pair-
wise correlation analysis for the n = 30 samples from 9 tumor cases 
(Methods and Supplementary Note). We determined the impact 
of mutations on downstream targets by analyzing the associated 
changes at protein and phosphorylation levels in several oncogenic 
pathways (Methods). We found a large degree of differential regula-
tion, between and within tumors, in several phosphosites within the 
PI3K/PDk1/Akt and Raf/Mek/Erk pathways (Fig. 3f, Extended Data 
Fig. 2g–i and Supplementary Note).

Transitional populations between acinar and tumor cells. The 
hypothesis that PDAC arises from acinar cells that undergo ADM49–51  
has been examined in mice, but not humans52. A major hurdle has 
been the small numbers of acinar and ADM cells that have been 
sampled from patients at single-cell resolution24,25.

We identified populations of acinar cells expressing acinar 
markers (PRSS1, CELA3A) from multiple samples (Fig. 4a–d). The 
Acinar-REG+ cluster exhibits high expression of regenerating pro-
teins25,30,53,54 thought to promote ADM and PanIN in PDAC55,56. Two 
mixed populations of ductal cells30,54 lacked genomic alterations 
and maintained high expression of ductal markers (CFTR, SLC4A4, 
ANXA4, SOX9). Duct-like1 expresses SPP1 and CRP, which have 
been observed in stressed cells and have progenitor-like features 
from the pancreatic ductal niche25. Duct-like2 expresses normal duc-
tal genes to a lesser extent and shows increased expression of mucus 
secretion (MUC5B) and trefoil factor genes. Highly expressed mark-
ers in Duct-like2 suggest these cells are a major source of malig-
nant PDAC cells24, and transcriptionally resemble cells identified 
in healthy pancreases30. Finally, this cluster exhibits expression of 
ONECUT2, a transcription factor exclusively expressed in metaplas-
tic cells derived from acinar origin in a mouse model54. Peng et al.24 
hypothesized that subclusters of Duct-like2 could be PanIN-like, 
but we find that our PanIN and ADM populations are distinct from 
Duct-like2 and are only identified in our cohort (Extended Data 
Fig. 3a,b and Supplementary Note). PDAC exhibits high expression  

Fig. 2 | Tumor subclusters with distinct cellular functions. a, Differential pathway enrichment case-level tumor subpopulations. each column is a different 
tumor subcluster; the top bar indicates treatment and the bottom indicates case ID. two samples are highlighted: Ht185p1 (red) and Ht200p1 (blue). the 
heatmap denotes relative expression of each pathway for each tumor subcluster, grouped by pathway similarity indicated on the left (methods). b, tumor 
cluster pathway enrichment for Ht185p1. For panels b and c, each column indicates a tumor subcluster (ID is listed at the bottom of each column), below 
which is a bar plot indicating the percentage of the cluster that comes from each spatial sample. the heatmap is colored by the relative expression of each 
pathway. c, tumor cluster pathway enrichment for Ht200p1. d, UmAp of tumor subclusters for Ht185p1. the left UmAp highlights tumor subclusters  
with high relative expression of associated pathways outlined in panel b. the right UmAp indicates tumor subclusters colored by spatial samples.  
e, UmAp of tumor subclusters for Ht200p1. UmAps are equivalent to those shown in panel d but for pathways in panel c. f, H&e of the section used for 
spatial transcriptomics for Ht264p1. g, snrNA-seq tumor subcluster mapping using the rCtD deconvolution approach for each spatial transcriptomic 
spot (methods). Gray regions in each pie chart denote nontumor cell types and grayed out tumor subpopulations (tumor_5 and tumor_6) represent 
subpopulations with minimal mapping to the H&e section. h, Left, simplified version of g, where each spot with high confidence was assigned a single tumor 
subpopulation identity. right, magnification of the tumor_2 subpopulation, which has a different morphology from the surrounding tumor. i, UmAp of tumor 
nuclei subclusters from the paired Ht264p1 snrNA-seq data. j, pathway enrichment analysis of tumor subclusters focusing on the tumor_2, tumor_3 
and tumor_4 subpopulations. k, top DeGs of tumor subclusters focusing on the tumor_2, tumor_3 and tumor_4 subpopulations. the size of each bubble 
indicates the percentage of cells expressing the gene of interest and color indicates average expression. emt, epithelial-mesenchymal transition.
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Fig. 3 | Genomic landscape and oncogenic driver heterogeneity. a, tumor cell clusters labeled by case ID. b, tumor cells labeled with genomic 
alterations including mutations and copy number alterations. mutations are denoted by colored circles with a black outline, while deep copy number 
events (gain/loss of more than 1 copy) are denoted by colored circles without an outline. c, Ductal cells from case Ht061p1. From left to right, tissue 
sample spatial locations; spatial sample IDs (r1 denotes the remainder tissue); KrAS variant mapping; and AKT2 CNV, MYC CNV and GATA6 CNV 
mapping. Spatial samples are labeled with a ‘p’ to denote punches and ‘r’ to denote remainder tissue. Copy number calls were obtained using inferCNV 
and CNV status is indicated by color. d, CNV-based lineage tree of a subset of ductal cells from Ht061p1. e, proposed model of tumor progression for 
Ht061p1. f, bulk phosphosite levels in the pI3K/pdk1/Akt and raf/mek/erk pathways. Cells filled in gray denote missing data. Samples with proteomics/
phosphoproteomics all did not have mutations in CDKN2A. NA, No coverage for mutant or reference allele; ref, reference allele.
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of FXYD3, S100P and KRT17 in addition to copy number and driver 
mutations. PanIN-like cells were derived from 19 patients with a 
large proportion from sample HT168P1 (>1,700 cells) and, consis-
tent with previous studies, we observe PDAC-initiating mutations in 
KRAS and CDKN2A (from HT168P1) within PanIN populations52. 
PanIN exhibits increased expression of extracellular matrix-related 
genes (DCN, SPARC, SPON1), a diversity of collagens57, genes 
involved in acinar-to-ductal reprogramming (KLF4, MMP7)58,59 and 
other markers of early-stage malignancy (CXCL12, TIMP3, ITGA1, 
MUC5AC)60–63.

We detected ADM cells in eight samples, including from cases 
HT122P1 and HT168P1 that represented a large proportion of 
ADM cells (>700 cells) (Supplementary Data 3). We found PDAC 
cells harboring several distinct alterations (Fig. 4a,b). Cells express-
ing acinar and ductal markers clustered separately from acinar cells 
and tended to be between acinar cells and normal ductal lineages 
on the Uniform Manifold Approximation and Projection (UMAP) 
(Duct-like1, Duct-like2), termed ADM_Normal, or between acinar 
and PanIN, denoted ADM_Tumor (Fig. 4b,c). While tumor and aci-
nar cells express ductal and acinar markers in a mutually exclusive 
pattern, ADM cells express a combination, suggestive of an inter-
mediate, reversible state (Fig. 4d). While both ADM_Tumor and 
ADM_Normal have decreased expression of acinar markers, they 
also have increased expression of PDAC markers and Duct-like1 
markers, respectively. Following copy number analysis (CopyKAT, 
Methods), we found that a majority of predicted aneuploid cells 
are annotated as PanIN (n = 524), while only a handful (n = 30) in 
ADM_Tumor are labeled aneuploid (Fig. 4e,f). By mapping both 
KRAS and CDKN2A mutations, we identified several cells in the 
ADM_tumor population with either a KRAS mutation (n = 1) or 
CDKN2A mutation (n = 7), although this was not as widespread as 
the predicted PanIN populations (KRAS: 23 cells; CDKN2A: 163 
cells) (Fig. 4g,h and Supplementary Data 3).

We examined whether acinar cells transition to different expres-
sion states (tumor or normal) by way of the two distinct ADM cell 
populations by performing Monocle analysis (Methods). We found 
two different transition states starting either with acinar cells tran-
sitioning towards the normal ductal cell route with ADM_Normal 
cells in between or with cells transitioning from acinar cells 
towards PanIN cells with ADM_Tumor cells in between (Fig. 4i). 
This suggests ADM_Normal is a transition state more similar to 
normal ductal cells and largely lacking genomic alterations, while 
ADM_Tumor is more related to PanIN and has a few alterations 
(for example, CDKN2A, aneuploidy). Recent studies in mice suggest 
acinar-derived tumors are preceded by PanINs, while ductal-derived 
tumors are PanIN independent64.

Validation of ADM using snRNA-seq, immunohistochemistry  
and mouse models. We orthogonally surveyed two samples by 
snRNA-seq to see if cells expressing acinar and ductal features 

could be identified from frozen tissue (Fig. 5a–c). ADM cells in 
HT288P1 and HT412P1 snRNA-seq samples have higher expres-
sion of Duct-like1 features than tumor cells, suggesting similarity to 
the ADM_Normal population in scRNA-seq.

As validation, we performed immunofluorescence staining 
on tumor and normal formalin-fixed paraffin-embedded (FFPE) 
sections with amylase (acinar), cytokeratin-19 (ductal), Hoechst 
(nuclei) and Ki67 (proliferation) to evaluate co-staining pat-
terns within individual cells (Fig. 5d, Extended Data Fig. 4a and 
Methods). In HT122P1 and HT288P1, we observe co-staining of 
acinar and ductal markers within multiple individual cells across 
several tumor regions. As controls, we provide a normal section with 
intermixed acinar and ductal cells, but lacking a co-staining expres-
sion pattern (HT288P1), and a tumor section that is predominantly 
stained by cytokeratin-19 (HT190P1). The paucity of ADM using 
immunofluorescence was recently validated in a tamoxifen-induced 
PDAC mouse model where acinar transformed ductal cells simi-
larly co-stained for amylase and Cytokeratin-19 (ref. 65). Although 
rare, this co-staining pattern is confirmed at single-cell resolution 
in the same samples for which we performed immunofluorescence, 
thanks to our spatial sampling strategy. We identified two additional 
samples (HT412P1, HT434P1) with high acinar content with the 
same co-expression patterns (Extended Data Fig. 4b,c).

Finally, we performed scRNA-seq on eight mice from mouse 
models including induction of pancreatitis, KRAS-driven early- 
and late-stage transformation (KPC-OG GEMM mice) and normal 
pancreas tissues (Methods)66. We identified two pancreatitis-acinar 
populations, one tumor-acinar population and one normal-acinar 
(Extended Data Fig. 5a–c). Markers within the pancreatitis-acinar 
populations overlap differentially expressed genes (DEGs) identi-
fied in another study67 (Extended Data Fig. 5d). The tumor-acinar 
population from the KPC-OG model was the only acinar cluster 
with GFP expression (Extended Data Fig. 5b). Within this tumor 
model, GFP is associated with early transformation and metapla-
sia. While the tumor-acinar population expresses Reg3a, which is 
overexpressed in ADM regions68, it also maintains high expression 
of Sox9, a ductal lineage marker in normal ductal and cancer cells, 
suggesting early-stage metaplasia.

These results support the identification of this rare population 
with acinar and ductal-like features seemingly lacking widespread 
genomic alterations. Our findings enable us to expand the proposed 
models of acinar origin to human PDAC development (Fig. 5e).

Transitional populations in histological features by spatial tran-
scriptomics. Spatial transcriptomics enables the identification of 
histology features (for example, PanIN) to complement findings 
in sc/snRNA-seq. Each H&E image with associated spatial tran-
scriptomics data was annotated by a pathologist (Extended Data 
Fig. 6a). Of ten paired spatial transcriptomics/snRNA-seq samples, 
HT288P1 presented with ADM (88 cells). We compared pathology 

Fig. 4 | Acinar, ductal and transitional populations. a, UmAp clustering of acinar, ductal, transitional and pDAC tumor cells across the single-cell cohort. 
mutations and deep copy number events were mapped to individual cells (methods). Copy number events are indicated by colored dots with no outline, 
while an outlined black circle denotes a mutation event. b, UmAp clustering of acinar, ductal, transitional and pDAC tumor cells colored by cell-type 
annotation from single-cell rNA-seq samples. c, proportion of cells identified as acinar, ductal, transitional and pDAC tumor cells by sample. d, Highly 
expressed genes identified in each cell type. the size of the bubble indicates the percentage of cells expressing the gene of interest and color indicates 
average expression. the bubble plot is ordered by expression across each cell-type group. AMY2A/2B and KRT19 are indicated in bold because they are 
genes used for staining acinar cells and ductal cells, respectively, in the following immunofluorescence assays. ADm cells show expression of both of 
these markers in the scrNA data. e, Cell-type annotation and genomic alterations mapped across acinar, normal ductal, panIN and ADm populations. 
UmAp of cell-type annotation indicates two distinct ADm populations annotated as ADm_Normal and ADm_tumor. f, Copy number was annotated using 
CopyKAt, which predicts aneuploid cells independent of identifying tumor populations. Cells are colored by ploidy status. g,h, CDKN2A (g) and KrAS 
(h) mutation mappings are indicated in the lower two UmAps and are colored by reference, variant and variant/reference supporting cells. i, monocle 
pseudotime analysis indicates a cell-state transition from acinar cells to ADm_tumor and ADm_Normal states independently. each cell is colored by 
pseudotime which is a measurement of the change each cell is making through a process (for example, differentiation) and is annotated with a trajectory 
of change in the solid line overlaying the UmAp. Inset of the trajectory shows a summary of the cell-state transitions, with dots indicating cell type.
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Fig. 5 | Validation of ADM using snRNA and immunofluorescence. a, UmAp plots of acinar and ductal cells from two cases, Ht288p1 and Ht412p1. 
Cells are colored by sample. b, UmAp plots of acinar and ductal cells colored by cell types. c, Gene expression signatures derived from scrNA data of 
acinar and ductal genes across cell types. each dot indicates expression of a given gene in an annotated cell cluster. the size indicates the percentage 
of cells expressing that gene and the color is average expression. ADm cells show expression of both acinar and ductal markers in the snrNA data. 
d, Immunofluorescence staining of tumor and NAt sections. Amylase stains acinar cells (green), cytokeratin-19 stains ductal cells (red), Ki67 stains 
proliferating cells (white) and Hoechst stains nuclei (blue). For select sections, individual cells expressing both acinar and ductal markers, indicating ADm, 
are highlighted by the yellow arrowheads. Acinar cells are denoted with a yellow arrow and ductal cells with an outlined yellow angle. e, proposed models 
of pDAC development. Development of pDAC along the spectrum from normal to pDAC in humans was initially suggested to be derived predominantly 
from ductal origin, but, with evidence of ADm cells in humans, an additional model of transition from acinar origin to pDAC is proposed.
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annotations with spots defined via integration with snRNA-seq and 
with RCTD (Fig. 6a–c)35. We observe strong concordance between 
pathology-defined and molecular regions for tumor, normal duct 
and acinar cells. Myeloid and plasma cells mapped throughout anno-
tated pancreatitis regions, Duct-like2 mapped to annotated normal 
ductal structures and ADM mapped sparsely throughout the section. 
It remains difficult to validate ADM in spatial transcriptomics data 
since it has not yet reached single-cell resolution and ADM cells are 
rare. Under these circumstances, pancreatitis regions may appear to 
have both acinar and ductal features in agreement with Tosti et al.30.

We annotated spatial transcriptomics spots in select samples  
with PanIN and a ductal structure within the capture area  
(Fig. 6a–e). Extracted spots were then subsetted from the full object 
and DEGs were analyzed. Isolated PanIN regions exhibited distinct 
DEGs that spanned multiple samples (Fig. 6f and Supplementary 
Data 4). DEGs identified with spatial transcriptomics data for 
normal duct, tumor and PanIN were compared against annotated 
scRNA-seq data, corroborating our initial annotations of PanIN, 
normal duct and tumor. Interestingly, the two cases having multiple 
PanIN regions identified by spatial transcriptomics exhibited dis-
tinct DEGs that differed by each uniquely annotated region. Our 
combined analysis strongly supports the presence of PanIN and 
existence of ADM in human samples.

CAF subpopulations in PDAC TME. We identified three subtypes 
of CAFs: myofibroblastic CAFs (myCAFs), inflammatory CAFs 
(iCAFs) and antigen-presenting CAFs (apCAFs)14,15,69 (Fig. 7a and 
Extended Data Fig. 7a). We also observed subpopulations of iCAFs, 
denoted as CXCR4+ iCAFs and CD133+ iCAFs. Several CAF mark-
ers, including ACTA2 and FAP, used to identify CAF subtypes are 
not definitive, being often expressed in both iCAFs and myCAFs70. 
We identified the top DEGs between each CAF subtype; TAGLN 
and ACTA2 discern myCAFs, FAP and CXCL12 distinguish iCAFs, 
and apCAFs express HLA-DRA and CD74 (refs. 14,71) (Fig. 7b and 
Extended Data Fig. 7b). CXCR4+ iCAFs and CD133+ iCAFs are 
defined by CXCR4 and CD133 (PROM1), respectively, although they 
also weakly express myCAF and apCAF marker genes. While most 
CAFs in tumors are iCAFs or myCAFs, the other CAF subtypes are 
present at low numbers throughout. These CD133+ iCAFs carry no 
genomic alterations, but express cancer stem cell markers, includ-
ing CD133, MET, EPCAM, CD24 and CD44. We observed high 
CD44 expression in apCAFs and CXCR4+ iCAFs. VIM and NFE2L2 
were highly expressed in apCAFs, which were more abundant in 
treated samples (P < 10−5) (Fig. 7b). These results suggest that small 
unique CAF subpopulations that express cancer-driving programs 
exist within standard CAF subtypes. We examined expression 
of CAF genes currently targeted by clinical trials registered since 
January 2020 (ref. 15) (Fig. 7c). As treated samples have a depletion 
of myCAFs and enrichment of iCAFs, the effectiveness of addi-
tional therapies targeting CAFs may differ across treatment groups. 
Further, tumor-specific CAF clusters (relative to normal adjacent 
tissue) were enriched for TME-remodeling pathways (Extended 
Data Fig. 7c–e and Supplementary Note).

By assessing cell-type enrichment across treatment groups, we 
detected modest changes in endothelial and tumor cells and the 
largest difference within fibroblasts, where both treated groups had 
higher numbers than the treatment-naïve group (Fig. 7d). This is 
largely driven by a threefold higher level of iCAFs in FOLFIRINOX 
and Gemcitabine + nab-paclitaxel samples (P < 10−3), with compa-
rable myCAF abundance between treatment groups (Fig. 7e). As 
iCAFs are considered to be pro-tumorigenic72, this large increase of 
iCAFs after treatment may be associated with treatment resistance. 
We observed upregulation in heat shock genes, AP-1 pathway genes 
and metallothionein genes in treated iCAFs (Fig. 7f). As we only 
observe substantial expression of metallothionein genes in iCAFs, 
their prognostic value for predicting chemotherapy resistance 
originates from the stroma, rather than tumor cells73 (Fig. 7g). Heat 
shock and AP-1 genes were more highly expressed in FOLFIRINOX 
samples, while metallothioneins were more highly expressed in 
Gemcitabine + nab-paclitaxel samples, suggesting iCAF heteroge-
neity based on treatment regimen (Fig. 7f). These observations sug-
gest that treated tumors have much higher levels of iCAFs, which 
are potential targets for chemo-resistant tumors.

We identified 18 proteins having at least a twofold or greater 
change between treated and untreated samples (Methods and 
Supplementary Note). GBP6, PTGDS and ADAM23 were elevated 
in treated samples, while REG1A, EIF1AY, PRSS3 and HLA-DRB4 
were elevated in naïve samples (Fig. 7h). While these proteins dis-
play overall differences between treated and naïve samples, we 
observe modest heterogeneity between spatial samples and between 
a subset of tumor cases (Methods). To assess whether these proteins 
are signals originating from tumor cells or the TME, we compared 
their expression profiles in scRNA data within each cell type among 
treatment groups. REG1A is upregulated in naïve apCAFs, while 
PTGDS is upregulated in treated endothelial and iCAF cells; neither 
were observed in tumor cells. (Fig. 7i). Only AKR7A3 and SDCBP2 
were consistently upregulated strictly in tumor cells. These results 
suggest that several of these differentially abundant proteins may 
originate from the TME.

Immunosuppressive PDAC TME and treatment. To examine the 
immunosuppressed TME characteristics of PDAC18, we identified 
and reclustered immune cells into lymphocytes or myeloid/den-
dritic cells. In the latter group, we further distinguished between 
type I and II classical dendritic cells (cDC1, cDC2), macrophages, 
monocytes and neutrophils. Myeloid cells and classical dendritic 
cells strongly express TME-remodeling pathway genes, such as 
angiogenesis and hypoxia pathways, at higher levels than tumor 
cells (Extended Data Fig. 8a–c). While tumor cells do not have high 
expression of NFE2L2 relative to myeloid cells, elevated expression 
occurs downstream of the Nrf2 pathway (NQO1, GPX2), which 
regulates oxidative damage repair (Fig. 8a). Such activation may 
be triggered via paracrine interactions with TME cells and would 
indicate that myeloid and dendritic cells contribute towards a 
pro-tumor TME. Within lymphocytes, we observed slight enrich-
ment of CD4/CD8+ T cell subsets in treated samples and expression  

Fig. 7 | CAF subpopulations across treatment groups. a, CAF subtype distribution across the cohort and across treatment groups. CAF subtype colors 
are indicated at the top and are consistent throughout panels a–c. b, Key markers and DeGs in each CAF subtype. c, expression of genes currently 
targeted by clinical trials across CAF subtypes. the size of the bubble indicates the percentage of cells expressing the gene of interest and color indicates 
average expression. d, Cell-type percentage differences in tumor, endothelial and fibroblast cells among treatment groups. the mixed and Chemo-rt 
singleton cases were excluded in these analyses (n = 41 treated, n = 25 untreated). ***P < 10−3 (exact P = 0.0026360), using a two-sided Wilcoxon rank 
sum test. the boxplots show the median with 1.5 × interquartile range whiskers. e, top, average cell-type percentages split into treated versus untreated 
groups. bottom, average cell-type distributions of the main CAF subtypes (iCAF, myCAF and apCAF) split into treated versus untreated groups (n = 41 
treated, n = 25 untreated). ***P < 10−3 (exact P = 0.0065984), using a two-sided Wilcoxon rank sum test. f, DeGs between treated and untreated iCAFs. 
g, expression of metallothionein genes across treatment groups in iCAFs and tumor cells. h, top differentially expressed proteins across treated and 
untreated samples. i, Differential gene expression in specific cell types that match the proteins in panel h (n = 41 treated samples, n = 25 untreated 
samples). the boxplots show the median with 1.5 × interquartile range whiskers.
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Fig. 8 | Myeloid and lymphocyte populations in the TME. a, expression of Nrf2 pathway genes in myeloid and tumor cells. the size of the bubble indicates 
the percentage of cells expressing the gene of interest and color indicates average expression. b, expression of immune checkpoint receptor and ligand 
genes across cell types. c, expression of the four nectin receptors across all cell types. d, Average expression of TIGIT, NECTIN1, NECTIN2, NECTIN3 and 
NECTIN4 in exhausted t cells, NK cells, tregs and tumor cells. each column denotes a spatial sample and columns are grouped by case ID. e, tIGIt 
expression in lymphocyte-infiltrated regions from two spatial transcriptomics cases. f, NECTIN4 expression colocalization with tumor spots across the 
spatial transcriptomics cohort. For each slide, the bottom image shows tIGIt expression and the top shows cell types. tumor cells are colored bright pink.
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of heat shock genes in FOLFIRINOX samples (Extended Data  
Fig. 8d,e,h and Supplementary Note).

We analyzed the expression of common immune checkpoint 
receptors and ligands, including PD-1 (PDCD1), CTLA4 and TIGIT 
(Fig. 8b). We observed strong expression of exhaustion markers 
in NK, CD4+ and CD8+ T, and regulatory T (Treg) cells. We do 
not detect any significant expression of immune checkpoint genes 
in tumor cells or transitioning populations, including PD-L1 and 
PD-L2, consistent with the poor response of PDAC to anti-PD-1/
PD-L1 immunotherapy74,75. Receptor–ligand analyses reveal inter-
actions between the TIGIT receptor in lymphocytes and NECTIN 
ligands across all samples, which we found highly expressed in 
tumor cells, but somewhat less in other transitioning ductal popu-
lations (Fig. 8c and Methods). This is consistent with reports that 
NECTIN4 is a potential target for immune checkpoint blockade76,77. 
TIGIT interaction with NECTIN inactivates T and NK effector 
function, which the tumor could exploit for immune evasion76,77. 
NECTIN1 and NECTIN4 are most strongly expressed in tumor cells, 
but NECTIN2 and NECTIN3 are also expressed in some lymphocyte 
cell types, while TIGIT is largely expressed in Tregs and exhausted 
CD4+ T cells (Fig. 8c and Extended Data Fig. 8i).

NECTIN1/2/3 are expressed in fibroblasts, endothelial cells 
and lymphocytes, respectively, while NECTIN4 is the most tumor 
cell-specific NECTIN (Fig. 8c), consistent with previous reports76. 
We analyzed TIGIT and NECTIN expression of individual samples 
and observed high expression of all NECTIN receptors in tumor 
cells and TIGIT in Tregs and exhausted T cells, and noted substan-
tial heterogeneity across cases, particularly in TIGIT expression 
in exhausted T cells and in NECTIN1 and NECTIN3 expression 
in tumor cells (Fig. 8d). Finally, in the snRNA-seq cohort, we 
observe the same expression pattern of TIGIT and NECTIN across 
cell types (Extended Data Fig. 8j). Using spatial transcriptomics 
data, we focused on two regions in HT259P1 and HT264P1 to 
show the expression of TIGIT in spots proximal to the infiltrat-
ing lymphocyte regions (Fig. 8e). We find colocalization of tumor 
regions in the H&E with expression of NECTIN4 across most H&E 
slides, regardless of treatment status (Fig. 8f). These results pro-
vide a rationale for targeting the TIGIT–NECTIN axis to improve 
anti-tumor T cell activity.

Discussion
Using bulk sequencing and proteomics/phosphoproteomics, 
single-cell sequencing, spatial transcriptomics and high-resolution 
cellular imaging on 83 PDAC samples, we identified transi-
tional populations, including ADM and PanIN, and populations 
of nontransformed acinar and duct cells and PDAC cells. ADM 
populations express both oncogenes and tumor suppressor genes, 
significantly upregulating epithelial-to-mesenchymal transition and 
stem cell genes, compared with tumor cells78. The unique expres-
sion pattern of ADM as an intermediate state suggests a dynamic 
transition between tumor and acinar fates and progression towards 
PDAC via acquisition of a driver KRAS event. This is consistent with 
acinar sensitivity to KRAS mutations as a catalyst of ADM and incli-
nation toward PDAC78. Driver mutations mapped to PanIN-like 
cells and tumor cells, consistent with their role as a precursor lesion. 
We used pathology-assisted spatial transcriptomics to identify dis-
tinct tumor subpopulations, as well as PanIN and PDAC-associated 
chronic pancreatitis. PanIN profiling by spatial transcriptomics 
provides direct confirmation of scRNA-seq findings.

CAFs are poorly understood in PDAC. Historically presumed 
to be cancer drivers, they are now known to have dual behavior as 
either drivers or suppressors of cancer, depending upon numer-
ous factors79,80. We identified iCAFs, myCAFs and apCAFs, further 
classifying two iCAF subsets as CD133+ and CXCR4+. We noted 
that several markers and activated pathways found to be differen-
tially expressed between subtypes are being explored in current 

clinical trials15. We observed higher iCAF abundance in treated 
samples. This is important, as IL-1-mediated and JAK-STAT sig-
naling in iCAFs have motivated trials of adding IL-1R block-
ade to standard-of-care (FOLFIRINOX-based) chemotherapy72 
(ClinicalTrials.gov: NCT02021422) and treating KPC mouse mod-
els with a JAK inhibitor decreases tumor size81. In patients treated 
with gemcitabine and nab-paclitaxel (either alone or in succession 
with other therapies), we observed upregulation of metallothionein 
genes in iCAFs. Metallothionein proteins are associated with resis-
tance to a variety of chemotherapeutics, and may signal a chemore-
sistance mechanism82.

Immunotherapy has revolutionized treatment of many tumors, 
but is not yet effective for PDAC83–85. Lack of immune checkpoint 
blockade activity in PDAC is multifaceted, including the short-
age of naturally occurring T cell responses, partially due to the 
inhibition of effective T cell priming and/or T cell exclusion86,87. 
Single-cell analysis revealed that NECTIN family members, espe-
cially NECTIN4, are tumor-specific, uncovering a potentially tar-
getable interaction with TIGIT in Tregs and exhausted T cells. We 
observed high expression of all NECTIN genes in tumor cells and 
TIGIT in Tregs and exhausted T cells, but noted substantial hetero-
geneity across cases. Clarifying the key elements of the immunosup-
pressive PDAC microenvironment may pave the way for effective 
immunotherapy in PDAC.

Our study provides a comprehensive analysis of PDAC spatial 
heterogeneity and treatment effects. We found substantial het-
erogeneity in PDAC, including spatially separated driver clones, 
subtype heterogeneity within the same patients and multiple tran-
sitional cell populations, including duct-like, ADM and PanIN. 
Our work provides a resource to identify new targets of clinical 
relevance. We acknowledge the heterogeneous treatments in the 
patient population included in the study. Future work using clini-
cal trials, specimens with uniform treatment regimens and com-
prehensive clinical response data will identify treatment-associated  
resistance signatures.
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Methods
Specimens and clinical data. All samples were collected with informed consent in 
concordance with the Washington University Institutional Review Board (IRB) at 
the Washington University School of Medicine in St Louis (St Louis, MO). Primary 
pancreatic adenocarcinoma samples were collected during surgical resection and 
verified by standard pathology (IRB protocol 201108117). Blood was collected at the 
time of surgery into vacuum tubes containing heparin or EDTA (BD Bioscience). 
Cells were isolated by Ficoll-density centrifugation and frozen in FBS with 5% 
dimethyl sulfoxide. Clinical data were captured in accordance with IRB protocol 
20108117, at the time of informed consent, and entered into the REDCap database.

Sample processing. After verification by an attending pathologist, a 
1.5 × 1.5 × 0.5-cm3 portion of the tumor was removed, photographed, weighed 
and measured. Each piece was then subdivided into 6–9 pieces (depending on the 
original size) and then further subdivided into four transverse cut pieces. Pieces 
were each then separately placed into formalin, snap-frozen in liquid nitrogen, 
DMEM and formalin, respectively. The purpose of the switch from punch sampling 
to the grid processing method was utility-based, as it minimized remainder tissue.

Genomic DNA and RNA extraction. Tumor tissues and corresponding normal 
mucosae were obtained from surgically resected specimens, and after a piece was 
removed for fresh single-cell prep the remaining sample was snap-frozen in liquid 
nitrogen and stored at −80 °C. Before bulk RNA/DNA extraction, samples were 
cryo-pulverized (Covaris) and aliquoted for bulk extraction methods. Genomic 
DNA was extracted from tissue samples with either the DNeasy Blood and Tissue 
Kit (Qiagen, 69504) or the QIAamp DNA Mini Kit (Qiagen, 51304). Total RNA 
was extracted with TRI reagent (Millipore Sigma, T9424) and treated with DNase 
I (Qiagen, 79254) using an RNeasy MinElute Cleanup Kit (Qiagen, 74204). RNA 
integrity was evaluated using either a Bioanalyzer (Agilent Technologies) or 
TapeStation (Agilent Technologies). Genomic germline DNA was purified from 
cryopreserved peripheral blood mononuclear cells using the QiaAMP DNA Mini 
Kit (Qiagen, 51304) according to the manufacturer’s instructions (Qiagen). The 
DNA quantity was assessed by fluorometry using the Qubit dsDNA HS Assay 
(Q32854) according to manufacturer’s instructions (Thermo Fisher Scientific).

WES. First, 100–250 ng of genomic DNA was fragmented on the Covaris LE220 
instrument targeting 250-base pair (bp) inserts. Automated dual-indexed libraries 
were constructed with the KAPA Hyper library prep kit (Roche) on the SciClone 
NGS platform (Perkin Elmer). Up to ten libraries were pooled at an equimolar 
ratio by mass before the hybrid capture targeting a 5-µg library pool. The library 
pools were hybridized with the xGen Exome Research Panel v1.0 reagent (IDT 
Technologies) that spans a 39-megabase (Mb) target region (19,396 genes) of the 
human genome. The libraries were hybridized for 16–18 h at 65 °C followed by 
stringent washing to remove spuriously hybridized library fragments. Enriched 
library fragments were eluted and PCR cycle optimization was performed to 
prevent over amplification. The enriched libraries were amplified with KAPA HiFi 
master mix (Roche) before sequencing. The concentration of each captured library 
pool was accurately determined through quantitative PCR (qPCR) utilizing the 
KAPA Library Quantification Kit according to the manufacturer’s protocol (Roche) 
to produce cluster counts appropriate for the Illumina NovaSeq-6000 instrument. 
Then, 2 × 150 paired-end reads were generated targeting 12 gigabases of sequence 
to achieve ~100x coverage per library.

RNA-seq. Total RNA integrity was determined using Agilent Bioanalyzer or 
4200 Tapestation. Library preparation was performed with 500 ng to 1 μg of total 
RNA. Ribosomal RNA was blocked using FastSelect reagents (Qiagen) during 
complementary DNA synthesis. RNA was fragmented in reverse transcriptase 
buffer with FastSelect reagent and heated to 94 °C for 5 min, 75 °C for 2 min, 70 °C 
for 2 min, 65 °C for 2 min, 60 °C for 2 min, 55 °C for 2 min, 37 °C for 5 min and 
25 °C for 5 min. mRNA was reverse transcribed to yield cDNA using SuperScript 
III RT enzyme (Life Technologies, per manufacturer’s instructions) and random 
hexamers. A second strand reaction was performed to yield double-stranded 
cDNA (ds-cDNA). cDNA was blunt ended, had an A base added to the 3′ ends 
and then had Illumina sequencing adapters ligated to the ends. Ligated fragments 
were then amplified for 15 cycles using primers incorporating unique dual index 
tags. Fragments were sequenced on an Illumina NovaSeq-6000 S4 instrument, 
generating approximately 30 million paired-end 2 × 150 reads per library.

Single-cell suspension preparation. For each tumor, approximately 15–100 mg 
of 2–4 sections of each tumor and/or normal piece of tissue were cut into small 
pieces using a blade and processed separately. Enzymes and reagents from the 
Human Tumor Dissociation Kit (Miltenyi Biotec, 130-095-929) were added to 
the tumor tissue along with 1.75 ml of DMEM. The resulting suspension was 
loaded into a gentleMACS C-tube (Miltenyi Biotec, 130-093-237) and subjected 
to the gentleMACS Octo Dissociator with Heaters (Miltenyi Biotec, 130-096-427). 
After 30–60 min on the heated dissociation program (37h_TDK_1), samples 
were removed from the dissociator and filtered through a 40-μm Mini-Strainer 
(PluriSelect no. 43-10040-60) or 40-μm Nylon mesh (Fisher Scientific, 22-363-547) 
into a 15-ml conical tube on ice. The sample was then spun down at 400g for 5 min at 

4 °C. After removing the supernatant, when a red pellet was visible, the cell pellet was 
resuspended using 200 μl to 3 ml of ACK Lysis Solution (Thermo Fisher, A1049201) 
for 1–5 min. To quench the reaction, 10 ml of PBS (Corning, 21-040-CM) with 0.5% 
BSA (Miltenyi Biotec, 130-091-376) was added and spun down at 400g for 5 min at 
4 °C. After removing supernatant, the cells were resuspended in 1 ml of PBS with 
0.5% BSA, and live and dead cells were visualized using Trypan Blue. If over 40% 
of dead cells were present, the sample was spun down at 400g for 5 min at 4 °C and 
subjected to the dead cell removal kit (Miltenyi Biotec, 130-090-101). Finally, the 
sample was spun down at 400g for 5 min at 4 °C and resuspended in 500 μl to 1 ml of 
PBS with 0.5% BSA to a final concentration of 700 to 1,500 cells per μl.

Single-nuclei suspension preparation. First, 15–25 mg of pulverized tissue was 
placed in a 5-ml Eppendorf tube on ice. Using a wide-bore pipette tip (Rainin), 
a lysis buffer prepared from the Nuclei Isolation protocol (10x Genomics) and 
SuperRNase inhibitor (Invitrogen) was added to the tube. The tissue solution was 
gently pipetted until the lysis liquid turned a slightly cloudy color. (The number of 
pipetting iterations depended on the specific tissue.) The tissue homogenate was 
then filtered through a 40-μm strainer (pluriSelect) and washed with a BSA wash 
buffer (2% BSA + 1 × PBS + RNase inhibitor). The filtrate was collected, centrifuged 
at 500g for 6 min at 4 °C and resuspended with a BSA wash buffer. Then, 100 μl of 
cell lysis solution was set aside for unstained reference, while the rest was stained 
with 1 μl of 7AAD per 500 μl of the sample. Nuclei underwent FACS and sorting 
gates were based on size, granularity and dye staining signal. The final suspension 
was spun down at 500g for 6 min at 4 °C, and resuspended with a BSA wash buffer.

Single-cell/nuclei library prep and sequencing. Utilizing the Chromium Next 
GEM Single Cell 3′ GEM, Library & Gel Bead Kit v.3.1 and Chromium instrument, 
approximately 17,500 to 25,000 cells were partitioned into nanoliter droplets to 
achieve single-cell resolution for a maximum of 10,000 to 15,000 individual cells 
per sample (10x Genomics, 1000269). The resulting cDNA was tagged with a 
common 16-nucleotide (nt) cell barcode and 10-nt Unique Molecular Identifier 
during the reverse transcriptase (RT) reaction. Full-length cDNA from poly-A 
mRNA transcripts was enzymatically fragmented and size-selected to optimize  
the cDNA amplicon size (approximately 400 bp) for library construction  
(10x Genomics). The concentration of the 10x single-cell library was accurately 
determined through qPCR (Kapa Biosystems) to produce cluster counts 
appropriate for the HiSeq 4000 or NovaSeq-6000 platform (Illumina). Then, 
26 × 98-bp sequence data were generated targeting 50,000 read pairs per cell, which 
provided digital gene expression profiles for each individual cell.

Spatial transcriptomics prep and sequencing. Optimal cutting temperature 
(OCT)-embedded tissues were cryosectioned and placed on a Visium Spatial Gene 
Expression Slide following Visium Spatial Protocols-Tissue Preparation Guide 
(10x Genomics, CG000240 Rev A). Briefly, fresh tissues were coated carefully 
and thoroughly with room temperature OCT without any bubbles. OCT-coated 
tissues were then placed on a metal block chilled in dry ice until the OCT turned 
solidified and white. After RNA quality check using Tapestation and morphology 
check using H&E staining for the OCT-embedded tissues, blocks were scored into 
a proper size that fit the Capture Areas and then sectioned into 10-μm sections. 
After the tissue placement into the Capture Area, sections were fixed in methanol, 
stained with H&E and imaged at ×20 magnification using the brightfield imaging 
setting on a Leica DMi8 microscope. Tissues were then permeabilized for 18 min 
and Spatial Transcriptomics libraries were constructed following Visium Spatial 
Gene Expression Reagent Kits User Guide CG000239 Rev A (10x Genomics). 
Briefly, cDNA was reverse transcribed from the poly-adenylated messenger RNA 
which was captured by the primers on the slides. Next, the second strand was 
synthesized and denatured from the first strand. Free cDNA was then transferred 
from slides to tubes for further amplification and library construction. Libraries 
were sequenced on the S4 flow cell of the Illumina NovaSeq-6000 system.

KPC-OG GEMM mouse model. Three KPC-OG GEMM mice were killed at 
3–5 months old, at a time when pathologically these mice have early metaplasia 
and PanIN throughout the pancreas, with only microscopic PDAC detectable66,88. 
Age-matched KPC-OG negative littermates (CRE and OG negative) were treated 
with caerulin to induce acute pancreatitis by administering 6 hourly intraperitoneal 
injections (that is, once per hour for 6 h) at a dose of 100 μg kg−1 given every other 
day for 1 week. For normal, we extracted tissue from KPC-OG breeders negative 
for cre that underwent no treatment. Cell types were annotated from previous 
publications14,89. All mice were bred and maintained under specific pathogen-free 
conditions, 12-h light/dark cycle, in accordance with the National Institute of 
Health and American Association for Accreditation of Laboratory Animal Care 
(NIH-AALAC) standards and consistent with Washington University School of 
Medicine Institutional Animal Care and Use Committee (IACUC) regulations 
(protocol no. 19-0856). Ethical approval for all mouse work was given by 
Washington University School of Medicine IACUC under protocol no. 19-0856.

Somatic variant calling. Somatic variants were called from whole-exome 
tumor-normal paired BAMs using somaticwrapper v.1.5, a pipeline designed for 
detection of somatic variants from tumor and normal WES data. The pipeline 
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merges and filters variant calls from four callers: Strelka v.2.9.2 (ref. 90), VarScan 
v.2.3.8 (ref. 91), Pindel v.0.2.5 (ref. 92) and MuTect v.1.1.7 (ref. 93). SNV calls were 
obtained from Strelka, Varscan and MuTect. Indel calls were obtained from 
Strelka, Varscan and Pindel. The following filters were applied to obtain variant 
calls of high confidence: normal VAF ≤ 0.02 and tumor VAF ≥ 0.05, read depth 
in tumor ≥14 and normal ≥8, indel length <100 bp, all variants must be called 
by 2 or more callers, all variants must be exonic and variants in dbSNP but not in 
COSMIC excluded.

KRAS hotspot and within-case genotyping. To verify manually and/or 
determine the KRAS mutation status at KRAS hotspots G12, G13 and Q61, we 
used bam-readcount. For each case, we first applied bam-readcount to generate 
readcounts for each of the nine bases in these loci and then calculated VAF values 
of all the KRAS hotspots based on reference and alternative base read counts at 
each position. Additionally, we manually verified every variant present in a sample 
in a pairwise fashion against other samples within the same case.

Germline variant calling and annotation. Germline variant calling was 
performed using an in-house pipeline, germlinewrapper v.1.1 (https://github.com/
ding-lab/germlinewrapper), which implements multiple tools for the detection 
of germline INDELs and SNVs. Germline SNVs were identified using VarScan 
v.2.3.8 (with parameters: --min-var-freq 0.10 --p-value 0.10 --min-coverage 3 
--strand-filter 1) operating on an mpileup stream produced by samtools v.1.2 
(with parameters: -q 1 -Q 13) and GATK v.4.0.0.0 (ref. 94) using its haplotype 
caller in single-sample mode with duplicate and unmapped reads removed and 
retaining calls with a minimum quality threshold of 10. All resulting variants 
were limited to the coding regions of the full-length transcripts obtained from 
Ensembl release 95 plus an additional 2 bp flanking each exon to cover splice 
donor/acceptor sites. We required variants to have allelic depth ≥ 5 reads and 
alternative allele frequencies ≥ 20% in both the tumor and normal samples. We 
used bam-readcount v.0.8 for reference and alternative alleles quantification (with 
parameters: -q 10 -b 15) in both normal and tumor samples. Additionally, we 
filtered all variants with ≥0.05% frequency in gnomAD v.2.1 (ref. 95) and the 1000 
Genomes Project96.

Germline variant pathogenic classification. For annotation and prioritization 
of the filtered germline variants, we used our automatic variant classification tool 
CharGer v.0.5.4 (ref. 37), which computes a classification score based on American 
College of Medical Genetics and Genomics and the Association for Molecular 
Pathology (ACMG-AMP) guidelines. CharGer automatically marks as pathogenic 
those input variants that are marked as known pathogenic in ClinVar’s curated 
database and marks as likely pathogenic those variants with a CharGer score > 8. 
All pathogenic or likely pathogenic variants had both their normal and tumor 
samples reviewed manually by us using the Integrative Genomics Viewer software.

sc/snRNA-seq data preprocessing. For each sample, we obtained the unfiltered 
feature-barcode matrix per sample by passing the demultiplexed FASTQs to 
Cell Ranger v.3.1.0 ‘count’ command using default parameters and the prebuilt 
GRCh38 genome reference v.3.0.0 (GRCh38 and Ensembl 93) for scRNA or the 
pre-mRNA version for snRNA. Seurat v.3.1.2 (refs. 97,98) was used for all subsequent 
analyses. First, a series of quality filters was applied to the data to remove those 
barcodes that fell into any one of these categories recommended by Seurat: too 
few total transcript counts (<300); possible debris with too few genes expressed 
(<200) and too few unique molecular identifiers (UMIs) (<1,000); possible more 
than one cell with too many genes expressed (>10,000) and too many unique 
molecular identifiers (>10,000); possible dead cell or a sign of cellular stress 
and apoptosis with too high proportion of mitochondrial gene expression over 
the total transcript counts (>10%). We constructed a Seurat object using the 
unfiltered feature-barcode matrix for each sample. Each sample was scaled and 
normalized using Seurat’s ‘SCTransform’ function to correct for batch effects 
(with parameters: vars.to.regress = c(‘nCount_RNA’, ‘percent.mito’), variable.
features n = 2,000). Any merged analysis or subsequent subsetting of cells/samples 
underwent the same scaling and normalization method. Cells were clustered using 
the original Louvain algorithm99 and top 30 PCA dimensions via ‘FindNeighbors’ 
and ‘FindClusters’ (with parameters: resolution = 0.5) functions. The resulting 
merged and normalized matrix was used for the subsequent analysis. Mouse 
data were aligned to refdata-gex-mm10-2020-A and GFP was added to the 
reference using the cellranger mkref function (https://support.10xgenomics.com/
single-cell-gene-expression/software/pipelines/latest/using/tutorial_mr).

sc/snRNA-seq cell-type annotation. Main cell types were assigned to each 
cluster by manually reviewing the expression of a comprehensive set of marker 
genes (Supplementary Note). These assignments were all done by one person to 
maximize consistency.

Spatially distinct tumor cluster assignment. We used sample provenance of 
tumor cells as well as a requirement of 95% of cells in a tumor cluster to originate 
from a sample that is physically 6 mm from another sample to conclude that a 
subcluster is spatially distinct between samples (Supplementary Table 3).

scVarScan mutation mapping. We applied our in-house tool scVarScan that can 
identify reads supporting the reference and variant alleles covering the variant site 
in each individual cell by tracing cell and molecular barcode information in an 
scRNA bam file. For mapping, we used high-confidence somatic mutations from 
WES data. Additionally, we use cancerhotspots.org100 to obtain the most common 
KRAS hotspot mutations at G12, G13 and Q61, and use scVarScan to detect 
potential minority KRAS mutations in each sample.

scVarScan statistics. To assess the degree of certainty that mutations were 
preferentially mapped to tumor cells versus nontumor cells (for which mappings 
can be reasonably assumed to be noise), we devised the following analysis based 
on the standard binomial difference of proportions test. Let XT be the read count 
for mapped tumor mutations and let NT be the total read count (mutation plus 
reference) for the tumor. Similarly, let XN and NN be the respective counts for the 
normal sample. The respective proportions of mapped reads for tumor and normal 
are clearly PT = XT/NT and PN = XN/NN. Also, define the average joint fraction as 
Pavg = (XT + XN)/(NT + NN) and its complement as Qavg = 1 − Pavg. The large counts 
we are working with suggest the binomial distribution is well-approximated by 
the normal (Gaussian) distribution, as assessed by traditional heuristics NT Pavg 
Qavg ≥ 5 and NN Pavg Qavg ≥ 5. Adding the standard continuity correction (the normal 
distribution is continuous, whereas the binomial is discrete), we can then construct 
the following Z score for the difference of proportions:

Zscore =
|PT − PN| − (1/NT + 1/NN) /2

PavgQavg
√
1/NT + 1/NN

P = Φ (Zscore) ,

which is normally distributed with mean 0 and variance 1. The P value for 
the one-sided test of whether the tumor proportion is statistically greater than 
the normal proportion is Φ(Zscore), that is, the area under the standard Gaussian 
curve within the range Zscore ≤ Z < ∞. We restrict performance of the test only to 
those cases where PT > PN is actually observed, skipping cases of PT ≤ PN, to avoid 
over-correcting in the calculation of false discovery rate (FDR). Using this method, 
we determined that the rate of mutations mapping is significant in the following 
comparison: tumor cells versus nontumor cells (P ≈ 0), PanIN cells versus 
nontumor cells (P ≈ 0), tumor cells versus PanIN cells (P = 1.04 × 10−11).

Single-cell RNA CNV detection. To detect large-scale chromosomal CNVs using 
single-cell RNA-seq data, inferCNV (v.0.8.2) was used with default parameters 
recommended for 10x Genomics data. All cells that are not tumor cells were 
pooled together for the reference normal set. InferCNV was run at a sample level 
and only with post-quality controlled filtered data. To calculate arm-level CNV 
events, we used an in-house script to match the gene-level inferCNV output to 
chromosome bands and take the mean value for each arm.

Single-cell mutation and CNV plotting. For clarity, we assigned each cell, 
represented by a single dot in a UMAP plot, with only one genetic alteration, in 
a hierarchical fashion. For clarity and to not overcomplicate plotting due to too 
many comparison groups, if a mutation and a copy number event are detected in 
the same cell, the cell is labeled with the mutation. Additionally, when multiple 
mutations or copy number events are detected in the same cell, we plot them 
hierarchically as follows: KRAS > CDKN2A > SMAD4 > TP53.

Differential sc/snRNA expression analyses. For cell-level and cluster-level 
differential expression, we used the ‘FindMarkers’ or ‘FindAllMarkers’ Seurat 
function as appropriate, using a minimum percentage of 0.25 (parameter min.
pct = 0.25) and looking only in the positive direction, as lack of expression is 
harder to interpret due to the sparsity of the data. The resulting DEGs were then 
filtered for adjusted P < 0.05 and sorted by fold change. All differential expression 
analyses were carried out using the ‘SCT’ assay.

Tumor subcluster pathway analysis. To demonstrate tumor heterogeneity in 
merged scRNA/snRNA data, we first took subsets of tumor cells from each 
individual case and renormalized with Seurat function ‘SCTransform’. We then 
found case-level clusters with Seurat functions ‘FindNeighbors’ and ‘FindClusters’ 
(top 20 PCA dimensions, resolution = 0.8). Clusters with fewer than 0.1% of total 
tumor cells across cases were excluded. For each case-level cluster, we found DEGs 
with function ‘FindAllMarkers’ with a minimum percentage (min.pct) of 0.1, a 
minimum percentage difference (min.diff.pct) of 0.1, positive log fold change 
and adjusted P < 0.05. For each DEG list, we ran an enrichment analysis using the 
function ‘enricher’ against the 50 MSigDB hallmark gene sets32,101. The universe 
background for enrichment analysis was composed of genes detected in more than 
0.1% of total tumor cells across cases. For each pathway, genes shown as enriched 
with adjusted P < 0.05 in any cluster were used to calculate the pathway score. 
Finally, in the merged tumor cell object, we calculated the average expression of 
genes identified in each pathway, centered and scaled across all clusters as the final 
score. To present pathways that distinguish tumor clusters the most, we ranked 
tumor cell-related pathways by their occurrence shown as enriched significantly 
(adjusted P < 0.05) in the enrichment analysis and plotted the most common 
pathways. The final heatmap was generated with the pheatmap package using the 
Optimal Leaf Ordering clustering method from the seriation package.
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Receptor–ligand interactions. We used the CellPhoneDB tool102 to detect 
significant pairs of receptor–ligand interactions between cell types. This 
comparison was done at the sample level using default parameters between tumor 
and lymphocyte cell types.

Monocle trajectory analysis. We used the Monocle3 tool (https://cole-trapnell-lab.
github.io/monocle3/) to infer cell-type transition states among acinar, transitional, 
PanIN and normal ductal populations. Objects and trajectory mapping were 
obtained by following tutorials outlined by developers (https://cole-trapnell-lab.
github.io/monocle3/).

CopyKAT. To predict copy number ploidy without tumor annotation we utilized 
CopyKAT (https://github.com/navinlabcode/copykat) and followed the standard 
tutorial to define populations of aneuploid tumor cells.

Spatial transcriptomics data preprocessing. For each sample, we obtained 
the unfiltered feature-barcode matrix per sample by passing the demultiplexed 
FASTQs and associated H&E image to Space Ranger v.1.1.0 ‘count’ command 
using default parameters with reorient-images enabled, and the prebuilt GRCh38 
genome reference 2020-A (GRCh38 and Ensembl 98). Seurat v.4.0.3 was used 
for all subsequent analyses. We constructed a Seurat object using the ‘Load10X_
Spatial’ function for every slide. Each slide was then scaled and normalized with 
the ‘SCTransform’ function to correct for batch effects (with parameters: vars.
to.regress = c(‘nCount_Spatial’)). Any merged analysis or subsequent subsetting 
of cells/samples for a sample with several slides underwent the same scaling and 
normalization method. Spots were clustered using the original Louvain algorithm99 
and top 20 PCA dimensions via ‘FindNeighbors’ and ‘FindClusters’ functions.

sc/snRNA-seq cell-type annotation. For spot-level cell-type assignment, we 
used the Seurat functions ‘FindTransferAnchors’ and ‘TransferData’ to perform 
a cell-type label transfer from the paired snRNA-seq annotations to the spatial 
transcriptomics spots. For further resolution, we used RCTD to deconvolve cell 
types within a given spot35. We used the default parameters in RCTD using the 
‘multi’ mode and a minimum of 25 nuclei for each cell-type identity to deconvolve; 
https://github.com/dmcable/spacexr.

Manual spot selection. In select samples with PanIN identified and a tumor 
or normal ductal structure within the capture area, we annotated the spatial 
transcriptomics spots using the Loupe Browser 5.0 and the lasso tool to manually 
select and annotate groups of spots. Annotated spots were then used to annotate 
the UMAP object; then, annotated spots were subsetted from the full object and 
DEGs were calculated using Seurat (FindAllMarkers).

DNA and RNA sample quality control. Bulk sequencing data quality metrics 
(adaptor content, mapping quality, coverage and swaps/mislabeling) were 
determined for DNA and RNA bams using our in-house pipeline SeqQEst. The 
inclusion criteria for paired DNA and RNA bams with sufficient coverage was 
>50× coding region coverage in WES or >50 Mb mapped depth in RNA-seq data.

RNA quantification. We used our in-house bulk RNA-seq expression analysis 
pipeline for quantification. Briefly, for each sample, the raw sequence reads 
were aligned into BAM files using STAR103 (v.2.7.4a) two-pass alignment with 
GRCh38 as the reference. The resulting BAM files were then quantified as a 
raw count-matrix using read feature counts using Subread104 (v.2.0.1). For both 
alignment and quantification, gene annotations were based on Gencode v.34. The 
raw counts were then converted to FPKM-UQ based on GDC’s formula (https://
docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline
/#upper-quartile-fpkm) and then log2 transformed with 1 pseudocount.

Proteomic and phosphoproteomics quantification. Proteomic data processing 
followed the methods detailed by Clark et al.105. Briefly, raw mass spectrometry 
files were converted into open mzML format, then searched using the MSFragger 
database against a RefSeq protein sequence database appended with an equal 
number of decoy sequences. The specific parameters and software are detailed 
in the Clark et al. 2020 study. We then used the ComBat function from the R sva 
package to correct for TMT batch effects106.

Pathway analysis. For each comparison, we obtained the top 30 genes ranked  
by highest fold change that are significantly different between the comparison 
groups (FDR < 0.05). We used ConsensusPathDB-human for gene set 
over-representation analysis107.

Statistics and reproducibility. Relevant statistics are referred to in each of the 
associated methods sections. We did not use statistical methods to predetermine 
a sample size and patients were not randomly selected, as they were enrolled as 
they passed through the clinic. We excluded samples that did not pass sample prep 
quality control. For all immunofluorescence imaging, at least three regions of each 
sample were assayed, but immunofluorescence staining was not repeated for the 
same sample sections.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All human sequencing and imaging data have been deposited via the Human 
Tumor Atlas Network (HTAN) dbGaP Study Accession: phs002371.v1.p1  
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs002371.v1.p1). In addition, all data have been deposited to the HTAN Data 
Coordinating Center Data Portal at the National Cancer Institute: https://data.
humantumoratlas.org/ (under the HTAN WUSTL Atlas). References (GRCh38 
genome reference v3.0.0 and refdata-gex-mm10-2020-A) used for single-cell 
analysis of the human and mouse genomes, respectively, are available from public 
sources, as described in access scripts freely furnished by 10x Genomics:  
https://support.10xgenomics.com/single-cell-gene-expression/software/
release-notes/build. Mouse single-cell RNA-seq data are freely available from 
the National Library of Medicine BioProject (https://www.ncbi.nlm.nih.gov/
bioproject/) under accession: PRJNA835747. Data for single-cell integration from 
Peng et al.24 were downloaded from the Genome Sequence Archive (PRJCA001063).

Code availability
The code for the mutation mapping from bulk to single cells can be found at: 
https://github.com/ding-lab/10Xmapping. Code for inferCNV post processing 
can be found at: https://github.com/ding-lab/infer_cnv_postprocesssing.git. Code 
for germline wrapper variant calling can be found at: https://github.com/ding-lab/
germlinewrapper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Details of Data Cohort Overview. a) All 232,764 cells labeled by case ID. b) Same as A, but cells are labeled by cell type.  
c) scrNA cell type proportions across samples in the cohort. the bigger the circle, the higher the proportion. d). Spearman correlations of tumor 
estimates. the 95% confidence interval is shown. top: histology vs scrNA, middle: AbSOLUte vs scrNA, bottom: AbSOLUte vs histology. e) proteomics 
and phosphoproteomics pCAs labeled by case ID. f) proteomics and phosphoproteomics pCAs labeled by tmt plex. g) top: Genomic landscape of 
the cohort showing the top significantly mutated genes. the color scale denotes variant allele fraction (VAF) for each gene. the top bar plot indicates 
mutation burden for each sample. bottom: bulk omics overview of the cohort. the first row indicates germline mutation status followed by scrNA tumor 
fraction, immune subtype, relative scores of immune and stroma, and different pDAC subtypes (moffitt, Collisson, bailey) by piece.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Genomic Features in Heterogeneous KRAS Subpopulations. a) Spearman correlation of scrNA estimates and eStImAte stroma 
score. b) Spearman correlation of scrNA estimates and eStImAte immune score. For panels A and b, the 95% confidence interval is shown. c) top 
significant DeGs between specific KRAS hotspot mutations. Only cells with a mappable KRAS mutation were included in this analysis. d) KRAS mutations 
in tumor cells of 5 cases with multiple KRAS variants mapped. e) H&e images of the spatial samples in Ht061p1. f) Arm and gene-level CNV events in 
Ht061p1 mapped to different tumor clusters. g) percent of mappable mutations or deep copy number amplifications and/or deletions in each sample for 
KrAS, tp53, CDKN2A, and SmAD4. Samples are grouped together by case and cases are separated by white lines. h) protein-level pairwise spearman 
correlation between all 30 samples that underwent bulk proteomics. boxed cases represent cases with high heterogeneity: Ht064p1 in green, Ht123p1 
in red, and Ht124p1 in purple. i) Cell type proportion distribution of the three heterogeneous cases from panel H. Cell types in dotted boxes represent 
substantial differences in cellular composition that likely underlie the observed heterogeneity.
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Extended Data Fig. 3 | Evaluating Transitional Populations in Published Studies. a) Integration of downsampled cells from tumor samples from peng 
et al.24, and WashU samples. UmAp shows integrated single cells colored by cell type. Circled region indicates cells that are specific to the WashU Cohort 
predominantly made of up panIN and ADm identified cells. b) Integration of downsampled cells from tumor samples from peng et al., and WashU samples. 
UmAp shows integrated single cells colored by case. Cases indicated with ‘Ht#p1’ are WashU samples while samples with ‘t#’ are from peng et. al.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Combined Channel Immunofluorescence Images of ADM Samples. a) Combined channel immunofluorescence staining across 
four samples Ht288p1 (Adjacent Normal), Ht190p1 (tumor), Ht122p1 (tumor) and Ht288p1 (tumor). Amylase stains acinar cells (green), cytokeratin 
19 stains ductal cells (red), Ki67 stains proliferating cells (white), and Hoechst stains nuclei (blue). For select sections, individual cells expressing both 
acinar and ductal markers indicating acinar to ductal metaplasia (ADm) are highlighted by the yellow triangle. Acinar cells are denoted with a yellow 
arrow. b) Combined channel immunofluorescence staining across two samples Ht412p1 (tumor) and c) Ht434p1 (tumor). Amylase stains acinar cells 
(green), cytokeratin 19 stains ductal cells (red), Ki67 stains proliferating cells (white), and Hoechst stains nuclei (blue). Cells exhibiting co-expression of 
Amylase and cytokeratin 19 are circled in white. regions of the section with high acinar content, tumor content and ADm content are shown from top to 
bottom for each sample.
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Extended Data Fig. 5 | Single Cell Analysis of Mouse Model Validating Transitional Acinar Populations. a) UmAp of acinar and ductal single cells 
from mouse model. Cells are colored by cell type. b) UmAp of GFp expression. Cells are colored by expression value. c) UmAp of acinar and ductal cells 
separated by mouse model from which cells are derived from. d) Selected gene expression markers of acinar and ductal genes across cell types. each 
dot indicates expression of a given gene in an annotated cell cluster. the size indicates the percent of cells expressing that gene and the color is average 
expression. e) Violin plot showing the distribution of expression levels of Sox9 across each annotated cell type.
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Extended Data Fig. 6 | Evaluating Transitional Populations with Spatial Transcriptomics and Published Studies. a) H&e images associated with each 
piece of tumor that underwent spatial transcriptomics processing. regions on slides are highlighted based on pathology assisted review. regions are 
indicated as tumor (red), panIN (Yellow), Normal Duct (Green), pancreatitis (blue) and Acinar (purple).
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Extended Data Fig. 7 | CAF Subtypes. a) UmAp of all fibroblast cells labeled by CAF subtype. b) top DeGs and pathways across iCAFs, myCAFs, 
and apCAFs. c) CAV1 and CAV2 expression in CAF subtypes, tumor cells, and fibroblasts from NAt samples. d) CXCR4 and CXCL12 expression in CAF 
subtypes and tumor cells. e) HIF1A and NFE2L2 expression in CAF subtypes, tumor cells, macrophages, and monocytes. FDr < 0.0001 for macrophage 
and monocyte upregulation of NFE2L2 and HIF1A. panels D-F include expression from all cells in the study of the given cell type and the boxplots show the 
median with 1.5x IQr whiskers.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Immune Cells in PDAC. a) UmAp of myeloid and dendritic cells (DC) labeled by cell type. b) myeloid and DC cell type marker 
expression. c) expression of the Keap1-Nrf2 (NFe2L2) pathways genes in all myeloid, DC, and tumor cells in the study. the boxplots show the median 
with 1.5x IQr whiskers. d) UmAp of lymphocyte and NK cells labeled by cell type. e) Lymphocyte cell type marker expression. f) Cell type percentages of 
lymphocytes across treatment groups. g) expression of heat shock genes across treatment groups in treg and CD4 + t cells (cells from n = 26 FOLFIrINOX 
samples, n = 15 Gemcitabine + Nab-paclitaxel samples, n = 25 untreated samples). the boxplots show the median with 1.5x IQr whiskers. h) pathway 
enrichment of FOLFIrINOX vs treatment-naïve samples in treg and CD4 + t cells using gene set overrepresentation analysis. i) Average expression of 
genes in lymphocytes and tumor cells in the scrNA data. j) Average expression of TIGIT and nectin genes across cell types in the snrNA data.
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