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Abstract

Motivation: Knowing the sensitivity of a viral strain versus a monoclonal antibody is of interest for HIV vaccine
development and therapy. The HIV strains vary in their resistance to antibodies, and the accurate prediction of virus-
antibody sensitivity can be used to find potent antibody combinations that broadly neutralize multiple and diverse
HIV strains. Sensitivity prediction can be combined with other methods such as generative algorithms to design
novel antibodies in silico or with feature selection to uncover the sites of interest in the sequence. However, these
tools are limited in the absence of in silico accurate prediction methods.

Results: Our method leverages the CATNAP dataset, probably the most comprehensive collection of HIV-antibodies
assays, and predicts the antibody-virus sensitivity in the form of binary classification. The methods proposed by
others focus primarily on analyzing the virus sequences. However, our article demonstrates the advantages gained
by modeling the antibody-virus sensitivity as a function of both virus and antibody sequences. The input is formed
by the virus envelope and the antibody variable region aminoacid sequences. No structural features are required,
which makes our system very practical, given that sequence data is more common than structures. We compare
with two other state-of-the-art methods that leverage the same dataset and use sequence data only. Our approach,
based on neuronal networks and transfer learning, measures increased predictive performance as measured on a
set of 31 specific broadly neutralizing antibodies.

Availability and implementation: https://github.com/vlad-danaila/deep_hiv_ab_pred/tree/fc-att-fix

Contact: vlad.rares.danaila@gmail.com or catalin.buiu@upb.ro

1 Introduction

HIV is characterized by a high mutation rate, enabling the virus to
adapt rapidly and to circulate under diverse strains. Some of the
strains are neutralized by the antibodies, but some resistant ones re-
main and continue the infection. Due to HIV diversity, combina-
tions of broadly neutralizing antibodies are more likely to be
efficient than a single antibody in combating the virus (Williamson
et al., 2021a). In addition to the potency of neutralization, the
breadth of neutralization, or how many strains can be neutralized
by a particular antibody is essential, and some works focus on this
aspect (Cheng et al., 2018; Conti and Karplus, 2019; Sevy et al.,
2018; Williamson et al., 2021a; Yu et al., 2019). A model that can
accurately determine the neutralization potency for a given
antibody-virus pair can be useful for the analysis of neutralization
coverage and for finding ideal antibody combinations.

The neutralization potency was predicted by machine learning
techniques in Hepler et al. (2014), Buiu et al. (2016), Hake and
Pfeifer (2017), Rawi et al. (2019), Conti and Karplus (2019), Yu
et al. (2019), Magaret et al. (2019) and Williamson et al. (2021a).
SLAPNAP (Williamson et al., 2021a) predicts the neutralization of

specific antibodies with more predictors: elastic net (Zou and
Hastie, 2005), random forests (RF) (Breiman, 2001), gradient
boosted machines (GBM) (Friedman, 2001) and extreme gradient
boosting (XGBoost) (Chen and Guestrin, 2016). The user can
choose a predictor or combine more of them using an ensemble
named Super Learner (van der Laan et al., 2007). In addition,
SLAPNAP calculates the importance of features and predicts the
neutralization of combinations of antibodies using either an additive
or Bliss-Hill model (Wagh et al., 2016). GBM (Friedman, 2001) was
used in Rawi et al. (2019) to predict the sensitivity of viruses to 33
antibodies from the CATNAP database (Yoon et al., 2015). The in-
put consisted of one-hot encoded virus aminoacid sequences (Rawi
et al., 2019). The GBM outperformed other algorithms, such as lo-
gistic regression, RF and the support vector machine (SVM) from
Hake and Pfeifer (2017). In Hake and Pfeifer (2017), an SVM with
string kernels (Meinicke et al., 2004; Rätsch et al., 2005) was
compared against RF (Liaw et al., 2002), a neural network,
least absolute shrinkage and selection operator (LASSO) (Friedman
et al., 2010), and a linear SVM (Karatzoglou et al., 2004). The virus
neutralization was determined for eleven selected antibodies and the
measurements uncovered an increase of virus resistance in time
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(Hake and Pfeifer, 2017). In Conti and Karplus (2019), neural net-
works (NNs) with one or two layers, k-nearest neighbors (Altman,
1992), RF (Ho, 1995; Svetnik et al., 2003) and SVM (Cortes and
Vapnik, 1995) receives an input of atomistic descriptors and pre-
dicts the potency of antibodies that target the highly conserved
CD4 region. The glycans that cover the virus envelope play an es-
sential role in the interaction with antibodies, and Yu et al. (2018)
used a system composed of Metropolis-Hastings algorithm
(Andrieu et al., 2003; Hastings, 1970) and support vector regres-
sion (SVR) (Cortes and Vapnik, 1995; Drucker et al., 1997) to as-
sess the importance of specific glycans and protein sites for
antibody binding. This system is used in Yu et al. (2019) as well for
feature selection prior to regression of the neutralization sensitivity.
HIV neutralization and feature importance was studied for a singu-
lar broadly neutralizing antibody VRC01 in Magaret et al. (2019)
using LASSO (Tibshirani, 1996), RF (Liaw et al., 2002), Naı̈ve
Bayes (John and Langley, 1995), XGBoost (Chen and Guestrin,
2016), generalized linear models and an ensemble named
Super Learner (van der Laan et al., 2007). Buiu et al. (2016)
regressed the neutralization measures for a panel of selected
antibody-virus pairs using NN. B-cell receptor sequence repertoires
were analyzed using phylogenetic trees for uncovering potentially
effective antibodies and determining favorable mutations in Ralph
and Matsen (2020).

The detection of epitopes, which are sites on the antigen
bound by the antibody, is an important study topic for vaccine
design and is sometimes analyzed together with virus neutralization
potency. Some of the works focused on epitope detection are
Gnanakaran et al. (2010), Wang et al. (2011), Ren et al. (2014),
Evans et al. (2014), Hepler et al. (2014), Nogal et al. (2017), Cheng
et al. (2018), Yu et al. (2018), Bricault et al. (2019), Magaret et al.
(2019), Rawi et al. (2019), Kaku et al. (2020), Ralph and Matsen
(2020) and Williamson et al. (2021a). In the current material, we
are not investigating epitope detection.

2 Approach

Most authors (Buiu et al., 2016; Hake and Pfeifer, 2017; Hepler
et al., 2014; Magaret et al., 2019; Rawi et al., 2019; Williamson
et al., 2021a; Yu et al., 2019) create multiple classifiers/regressors,
and each of those models is trained with a subset of viruses as in-
put and the outcomes specific to a certain antibody as ground
truths. For example, if the dataset contained assays specific to ten
antibodies, ten separate models are trained, one for each antibody.
If the neutralization potency of a combination of antibodies
against a virus needs to be estimated, that is achieved by combin-
ing the estimations from the models trained on each antibody.
CATNAP also provides assays for certain combinations of anti-
bodies, which can be used for validation. SLAPNAP (Williamson
et al., 2021a) took this approach to predict the potency of anti-
body cocktails by leveraging an additive and a Bliss-Hill model
(Wagh et al., 2016).

The sequences of the virus envelopes are used as input without
taking into account the antibodies sequences. This has the advan-
tages of lowering the feature space dimensionality and simpler
modeling. We take a different approach and use both antibody and
antigen sequences at once as input to our model. Our rationale is
that more generic interactions can be modeled this way. Moreover,
we can leverage substantially more data, �32 000 combinations of
antigen-antibody sequence pairs. In contrast, when grouping
viruses by antibodies, the data amount is reduced to hundreds of
samples per antibody at best. Therefore, if an antibody has too little
data available, it becomes impossible to analyze with the previous
approaches; however, our setup does not have this drawback.
Using both antigen and antibody sequences and NNs, we can take
advantage of transfer learning to pretrain on the majority of the
antibody-antigen pairs and fine-tune the model on specific antibod-
ies of interest. This is an essential advantage provided by NNs that
would not be possible with the decision-tree or SVM-based algo-
rithms mentioned in Section 1.

As shown in Figure 1, the architecture of our system consists of:

• a module that encodes antibody sequences
• a module that analyzes the virus sequence and the encoded

antibody
• a decoder

Each module can take multiple forms, as described in Section 3,
we experimented with GRU (Cho et al., 2014), fully connected
layers, attention, transformers (Vaswani et al., 2017), more input
encoding strategies and multitask learning.

Since Rawi et al. (2019) and Williamson et al. (2021a) report
state-of-the-art results in virus neutralization binary classification,
we compare with those works and display significant improvements
in terms of recorded accuracy, Matthews correlation coefficient
(MCC) and receiver operating characteristic area under the curve
(AUC).

3 Materials and methods

Due to the costly nature of training NNs, we did not perform an ex-
haustive search across the combinations of models, input processing
and hyperparameters. Despite this, in our search, we came across
several configurations that measured promising results. To keep the
article concise, we document only the most representative models.

3.1 Models
In this subsection, we elaborate on the models’ structures and archi-
tectures. In all variations, the decoder consists of a fully connected
layer with dropout and sigmoid activation; however, the encoders
and input will vary. For avoiding overfitting, the GRU, transformers
and all fully connected networks are only one layer deep.

1. ICERI—GRU encoders for both antibody and virus: in the cur-

rent article, we are building on top of our previous work

(D�an�ail�a and Buiu, 2021), where we processed the antibody light

chain, heavy chain and the virus envelope sequences by three

GRUs (Cho et al., 2014) to classify viruses as resistant or sensi-

tive to a particular antibody. The hidden states resulting from

running the light chain and heavy chain-specific GRUs are con-

catenated and form the initial hidden state of the virus GRU

(D�an�ail�a and Buiu, 2021).

2. FC-ATT-GRU—Fully connected and attention for antibody and

GRU for virus: each of the antibody light and heavy chains is

processed by a separate module consisting of a fully connected

layer, dropout and attention as in Algorithm 1. The light and

heavy chains encodings are concatenated and form the initial

hidden state of the GRU. The GRU receives as input the virus en-

velope sequence.

3. 6CDR-FC-GRU—Fully connected for complementary determin-

ing regions (CDR) and GRU for virus: in this case, we do not

consider the complete sequence, only the six CDRs. Each CDR

is encoded by a separate fully connected layer and dropout.

These encodings are concatenated and form the initial hidden
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Fig. 1. The system architecture. The antibody decoder used for antibody type

prediction is applied only for multitasking
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state of the virus processing GRU network. We do not use atten-

tion since the CDRs are implicitly the most important regions.

4. TRANSF—Transformers (Vaswani et al., 2017): the antibody

sequence is input to the encoder part of the transformer and the

virus sequence to the decoder. The resulting feature vector is

processed by a fully connected layer to predict the binary

outcome.

5. MULTITASK: it is the same model as FC-ATT-GRU, but trained

with multitasking.

3.2 Data preprocessing
The aminoacid sequences are strings containing 22 letters, 20 denote
the DNA encoded aminoacids, ‘-’ for gaps and ‘X’ for unknown ele-
ments. For encoding each aminoacid element, we used the following
methods: learned embeddings, one-hot-encodings and a vector of
size seven that summarizes the properties of the aminoacid (Meiler
et al., 2001).

The potential N-linked glycosylation sites (PNGS) are of signifi-
cant importance for modeling the antibody-antigen interactions (Yu
et al., 2019). In the current work, as well in D�an�ail�a and Buiu
(2021), we represent PNGS as a binary mask that we concatenate to
the virus sequence features.

Similarly to D�an�ail�a and Buiu (2021), every time we used GRU
networks, the input consisted of encoded k-mers, which were over-
lapping substrings of length k from the aminoacid sequence.
Therefore, each step of the sequence fed to the GRU consisted of a
k-mer. Other works that used k-mers are Ren et al. (2014), Wang
et al. (2011), Choi et al. (2015), Gnanakaran et al. (2010) as cited in
D�an�ail�a and Buiu (2021). The length and stride of the k-mers were
established as in Section 3.4. If the data were input to fully con-
nected layers or transformers, k-mers were not used anymore. PNGS
binary masks were transformed in k-mers as well and concatenated
with the aminoacid sequence k-mers (D�an�ail�a and Buiu, 2021).

For models using CDRs, each of the six CDRs was modeled
by a numeric array encompassing the aminoacids of the CDR and a
continuous value denoting the position of the CDR inside the se-
quence as in Algorithm 2. We used Paratome (Kunik et al., 2012)
and AbRSA (Li et al., 2019) to find the antibodies CDRs sites.

For transformers, we constrained the antibody input se
quence to the sites between 17 to 77 and 84 to 133 for the light
chain and from 13 to 79 and 83 to 135 for the heavy chain to reduce
the data dimensionality. The intervals were established based on
the minimum and maximum positions of the CDRs aminoacids as
found through Paratome (Kunik et al., 2012) and AbRSA (Li et al.,
2019).

The binary outcomes (ground truth) were determined by com-
paring the IC50 (half maximal inhibitory concentration) with a
threshold, which in our experiments was 50, as in Rawi et al. (2019)
and Williamson et al. (2021a). However, in some CATNAP assays,
the IC50 was expressed as censored values, which means that the
precise quantity is unknown, only that it is less or more than a cer-
tain threshold; the most frequent censored quantity is ‘>50’. Also,
for some antibody-virus combinations, there are recorded multiple

IC50 values, some can be exact, and others censored. For such cases,
we estimated the mean IC50 using a popular method for censored
regression, the Tobit model (Amemiya, 1984; Olsen, 1978; Tobin,
1958). Our implementation of the Tobit model is based on
PyTorch and optimized through gradient descent.

3.3 Optimization
For optimization, the PyTorch RMSprop was used in all cases,
except for training the transformers, where we used the Noam
optimizer (Vaswani et al., 2017).

3.4 Hyperparameter optimization
The hyperparameters, such as k-mer length and stride (see Section 3.2),
batch size, learning rate, gradient clip, dropout rates, and parameters
defining the network structure were found automatically, through
hyperparameter optimization, using the Optuna implementation of
TPE (Tree-structured Parzen Estimator) (Bergstra et al., 2011). In all
cases, the TPE was univariate, except for transformers when it was
multivariate, see the TPE documentation. For efficiency, we
employed a pruner that interrupted the training for unpromising
experiments based on intermediary results or for those taking too
much time.

3.5 Multitask learning
In the multitask setting, the entire network is trained to predict the
virus-antibody sensitivity, and the antibody encoder is attached a
fully connected layer (antibody decoder) to classify the type of anti-
body as in Figure 1. Some antibodies can belong to multiple classes.
The two tasks are trained simultaneously, having as loss a
weighted sum of two binary cross-entropies.

4 Results

We are comparing with bNAb-ReP (Rawi et al., 2019) and
SLAPNAP (Williamson et al., 2021a). The two were also compared
in Williamson et al. (2021a), and bNAb-ReP recorded a median
AUC of 0.84 and SLAPNAP of 0.81; however, the two were not
evaluated in the same way. In our work, we also look at MCC,
which is a more discriminative metric than AUC.

Algorithm 1 Processing of antibody sequence by fully connected

layers

function encode_antibodyðab sequenceÞ
attfc ¼ attention fully connected layerðab sequenceÞ
attfc drop ¼ attention dropoutðattfcÞ
attention ¼ sigmoidðattfc dropÞ
abfc ¼ ab fully connected layerðab sequenceÞ
abfc drop ¼ ab dropoutðabfcÞ
return attention � abfc drop

end function

Algorithm 2 Processing of the 6 CDRs sequences of a given

antibody.

seq ¼ list containing the aminoacid strings of the 6 CDRs

max sizes ¼ list with the maximum size for each of the 6 CDRs

pos ¼ list with the positions of the centers of the 6 CDRs

pos mean ¼ list with the average position of the centers of

the 6 CDRs

pos std ¼ list with the positions std of the centers of the

6 CDRs

function pad_sequence(sequence, max size)

sequence is padded to the left and to the right (centered),

with a particular character denoting unknown aminoacids so

that we obtain a sequence of length max size.

end function

result ¼ empty array of size 6

for i ¼ 0; . . . 5 do

seqpadded¼pad_sequence(seq[i], max_sizes[i])

posnormalized ¼ ðpos½i� � pos mean½i�Þ=pos std½i�
result½i� ¼ concatenateðseqpadded; posnormalizedÞ

end for

return result
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In bNAb-ReP, the hyperparameters of the GBM were found
through grid search (Rawi et al., 2019) and the model was evaluated
by repeating for ten times a cross-validation having 10 folds (Rawi
et al., 2019).

In SLAPNAP, the Super Learner (van der Laan et al., 2007)
model is trained and evaluated on one round of five-fold cross-
validation (Williamson et al., 2021a). However, the Super Learner
algorithm performs automatic hyperparameter optimization based
on cross-validation as part of its’ training process (Williamson et al.,
2021a). Therefore, in SLAPNAP, nested cross-validation is happen-
ing, the inner cross-validation is used for hyperparameter optimiza-
tion, and the outer cross-validation is used for evaluation
(Williamson et al., 2021a). The test data from the outer cross-
validation folds is not found in any of the folds used for inner cross-
validation; therefore, the evaluation data is completely uncoupled
from the rest of the dataset.

For comparing with the other works, we follow similar evalu-
ation procedures as in the compared papers, repeated cross-
validation for bNAb-ReP and nested cross-validation for SLAPNAP.
In addition, we pretrain on the CATNAP data. We also optimize the
hyperparameters in two parts. Part one is related to pretraining on
CATNAP and finding the network structure. The second part is spe-
cific to each antibody and aims to find the learning parameters such
as batch size, learning rate, gradient clip and dropout rates. Part two
was performed in 1000 iterations per antibody and used cross-
validation. Due to the larger size of the dataset, part one optimiza-
tion was performed in over 400 iterations using a training/validation
split of CATNAP. In both cases, the hyperparameter optimization is
performed by the TPE algorithm (Bergstra et al., 2011), as described
in Section 3.4, by maximizing the MCC. The antibody-specific train-
ing occurs only for the virus encoder and decoder, while all parts for
handling antibody data remain frozen. In all training procedures, we
employed early stopping by selecting the model with the highest
MCC from all epochs. Algorithm 3 displays the complete proce-
dures for comparing with both works, which include pretraining
and antibody specific fine-tuning.Comparing with the other works
is a costly operation because it implies fine-tuning for each antibody.
Therefore, we resorted to a simplified method to select the best
model architecture. We first found the ideal hyperparameters on
CATNAP. Then, for each antibody in bNAb-ReP, we trained on the
rest of CATNAP (excluding the records having that antibody) and
evaluated using the data containing that antibody. This is similar to
the procedure used for comparing with the other works but without
fine-tuning per antibody. Table 1 displays the results for the model
selection. All models had similar results, and the best MCC is
recorded for FC-ATT-GRU and 6CDR-FC-GRU. Both networks
had aminoacid properties as input. Between the two, we selected FC-
ATT-GRU for comparison with bNAb-ReP and SLAPNAP because it

Algorithm 3 Comparison with bNAb-ReP in function evalua-

te_by_repeated_cross_validation and with SLAPNAP in func-

tion evaluate_by_nested_cross_validation.

function hyperparam_opt(data, model)

hyperparameter tuning of model

data is split into training and validation sets

return hyperparameters

end function

function cross_val_hyperparam(data, model)

cross validated hyperparameter tuning of model using data

return hyperparameters

end function

function pretrain(data, hyperparam, model)

train model on data using hyperparam

return trained model

end function

function cross_validate(data, hyperparam, model)

cross validate model on data using hyperparam

return metrics

end function

function train_test(datatrain, datatest, hyperparam, model)

train model on datatrain using hyperparam

evaluate model on datatest using hyperparam

return metrics

end function

catnap ¼ data from CATNAP

model ¼ a non-trained model

parampretr ¼ hyperparam_opt(catnap, model)

function evaluate_by_repeated_cross_validation

for antibody in evaluated antibodies do

datacv ¼ select all in catnap containing antibody

datapretr ¼ select all in catnap not containing antibody

modelpretr ¼ pretrain(datapretr, parampretr, model)

paramcv ¼ cross_val_hyperparam(datacv, modelpretr)

metrics ¼ empty array

for i ¼ 0 . . . 9 do

metricscv ¼ cross_validate(datacv, paramcv, modelpretr)

append metricscv to metrics

end for

record mean of metrics

end for

end function

function evaluate_by_nested_cross_validation

outer cross valid ¼ list of train/test dataset partitions

metrics matrix ¼ empty matrix of size 5 (folds) by 32

(antibodies)

for datatrain, datatest in outer cross valid do

for antibody in evaluated antibodies do

datapretr ¼ select all in catnap not containing antibody

modelpretr ¼ pretrain(datapretr, parampretr, model)

paramcv ¼ cross_val_hyperparam(datatrain, modelpretr)

m ¼ train_test(datatrain, datatest, paramcv, modelpretr)

insert m into metrics matrix

end for

end for

record means per antibodies from metrics matrix

end function

Table 1. Metrics averaged across the bNAb-ReP antibodies for the

pretrained models (without antibody specific fine-tuning)

Model Input MCC AUC Accuracy

ICERI Learned embeddings 0.5534 0.8207 0.7945

ICERI One-hot 0.5573 0.8314 0.7946

ICERI Aminoacid properties 0.5587 0.8301 0.8061

ICERI One-hot & aminoacid

properties

0.5518 0.8237 0.8054

FC-ATT-GRU One-hot 0.5569 0.8222 0.7970

FC-ATT-GRU Aminoacid properties 0.5770 0.8378 0.8097

FC-ATT-GRU One-hot & aminoacid

properties

0.5651 0.8321 0.7972

6CDR-FC-GRU Aminoacid properties 0.5777 0.8391 0.7956

TRANSF Aminoacid properties 0.5640 0.8277 0.8033

MULTITASK Aminoacid properties 0.5682 0.8402 0.7971
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is a more practical model; determining the CDR complicates the input
processing while providing only a minor performance advantage. Also,
an input formed out of the aminoacid properties shows better perform-
ance while lowering the dimensions of the tensors and speeding up the
computation.

Table 2 shows the results for the finetuned FC-ATT-GRU model
versus bNAb-ReP, and Table 3 compares FC-ATT-GRU with
SLAPNAP.

5 Discussion

Our approach yields substantially better results in terms of averaged
cross-validated metrics compared to the other methods: 0.75 versus
0.66 (bNAb-ReP) and 0.71 versus 0.43 (SLAPNAP) for MCC, 0.89

versus 0.84 (bNAb-ReP) and 0.88 versus 0.83 (SLAPNAP) for AUC,
0.89 versus 0.85 (bNAb-ReP) and 0.87 versus 0.83 (SLAPNAP) for
accuracy. We recommend comparing the models by the MCC since
it is a more discriminative metric that typically yields lower values.
The nested cross-validation is a very stringent evaluation method-
ology and a computationally taxing one. The results agree with this,
and we obtain slightly lower performance on this evaluation proced-
ure, 0.71 versus 0.75 for MCC, 0.88 versus 0.89 for AUC, 0.87 ver-
sus 0.89 for accuracy. If we only pretrain (without fine-tuning for a
specific antibody), we still achieve decent results, 0.55 to 0.57
MCC, 0.82 to 0.84 AUC, and 0.79 to 0.80 accuracy, as shown in
Table 1. The variate models provide very similar results.

Despite the improvements in predictive performance, several
aspects can be further explored and improved. The greatest draw-
back of our current model is that it is not explainable, unlike

Table 2. Comparison with bNAb-ReP on 100 rounds of cross-validation (10 folds cross-validation repeated 10 times)

bNAb-ReP FC-ATT-GRU

Antibody MCC AUC Accuracy MCC AUC Accuracy

gp120 CD4BS

3BNC117 0.69 (0.13) 0.88 (0.07) 0.90 (0.04) 0.77 (0.10) 0.91 (0.06) 0.92 (0.04)

b12 0.56 (0.11) 0.82 (0.05) 0.79 (0.07) 0.55 (0.08) 0.81 (0.05) 0.80 (0.04)

HJ16 0.42 (0.15) 0.67 (0.11) 0.66 (0.14) 0.47 (0.13) 0.70 (0.11) 0.76 (0.09)

NIH45-46 0.59 (0.15) 0.80 (0.14) 0.89 (0.05) 0.87 (0.12) 0.94 (0.08) 0.96 (0.04)

VRC-CH31 0.60 (0.16) 0.78 (0.15) 0.87 (0.06) 0.79 (0.14) 0.89 (0.09) 0.93 (0.05)

VRC-PG04 0.57 (0.15) 0.78 (0.10) 0.87 (0.06) 0.84 (0.10) 0.95 (0.04) 0.94 (0.04)

VRC01 0.70 (0.12) 0.89 (0.07) 0.92 (0.03) 0.81 (0.08) 0.93 (0.05) 0.94 (0.02)

VRC03 0.61 (0.14) 0.83 (0.08) 0.81 (0.07) 0.75 (0.11) 0.88 (0.06) 0.87 (0.05)

VRC07 0.66 (0.16) 0.78 (0.16) 0.93 (0.04) 0.83 (0.16) 0.93 (0.12) 0.95 (0.10)

Average 0.60 (0.14) 0.80 (0.10) 0.84 (0.06) 0.74 (0.11) 0.88 (0.07) 0.90 (0.05)

gp120 other than CD4BS

10-1074 0.86 (0.08) 0.95 (0.04) 0.94 (0.04) 0.93 (0.05) 0.98 (0.02) 0.96 (0.03)

2G12 0.75 (0.10) 0.93 (0.05) 0.91 (0.04) 0.63 (0.10) 0.88 (0.06) 0.87 (0.04)

CH01 0.56 (0.16) 0.77 (0.10) 0.77 (0.08) 0.76 (0.10) 0.88 (0.06) 0.87 (0.05)

DH270.1 0.82 (0.12) 0.92 (0.07) 0.90 (0.07) 0.87 (0.09) 0.95 (0.04) 0.93 (0.05)

DH270.5 0.83 (0.11) 0.93 (0.05) 0.91 (0.06) 0.93 (0.08) 0.98 (0.03) 0.96 (0.04)

DH270.6 0.85 (0.12) 0.93 (0.07) 0.93 (0.06) 0.91 (0.09) 0.97 (0.03) 0.95 (0.05)

PG16 0.57 (0.13) 0.79 (0.08) 0.84 (0.05) 0.67 (0.12) 0.85 (0.06) 0.86 (0.06)

PG9 0.61 (0.12) 0.85 (0.07) 0.86 (0.04) 0.78 (0.08) 0.92 (0.04) 0.91 (0.03)

PGDM1400 0.66 (0.12) 0.83 (0.10) 0.89 (0.05) 0.82 (0.09) 0.95 (0.03) 0.93 (0.04)

PGT121 0.75 (0.10) 0.92 (0.05) 0.88 (0.05) 0.84 (0.08) 0.95 (0.03) 0.92 (0.04)

PGT128 0.72 (0.08) 0.89 (0.05) 0.86 (0.04) 0.77 (0.08) 0.91 (0.04) 0.88 (0.04)

PGT135 0.54 (0.13) 0.77 (0.09) 0.74 (0.10) 0.63 (0.11) 0.82 (0.09) 0.81 (0.06)

PGT145 0.67 (0.11) 0.86 (0.06) 0.86 (0.05) 0.70 (0.11) 0.88 (0.06) 0.86 (0.05)

VRC26.08 0.70 (0.10) 0.89 (0.05) 0.85 (0.05) 0.90 (0.06) 0.97 (0.02) 0.95 (0.03)

VRC26.25 0.71 (0.13) 0.89 (0.06) 0.87 (0.06) 0.88 (0.08) 0.96 (0.03) 0.94 (0.04)

VRC38.01 0.70 (0.14) 0.87 (0.08) 0.87 (0.07) 0.66 (0.14) 0.83 (0.10) 0.86 (0.07)

Average 0.70 (0.12) 0.87 (0.07) 0.86 (0.06) 0.79 (0.09) 0.92 (0.05) 0.90 (0.04)

gp41 MPER, gp41-gp120 interface, and fusion peptide

2F5 0.89 (0.05) 0.97 (0.02) 0.95 (0.03) 0.83 (0.06) 0.94 (0.03) 0.91 (0.03)

35O22 0.38 (0.13) 0.63 (0.11) 0.66 (0.10) 0.48 (0.14) 0.70 (0.10) 0.73 (0.07)

4E10 0.63 (0.13) 0.82 (0.12) 0.94 (0.03) 0.61 (0.14) 0.78 (0.12) 0.93 (0.03)

8ANC195 0.77 (0.11) 0.90 (0.07) 0.89 (0.05) 0.58 (0.12) 0.78 (0.09) 0.79 (0.07)

PGT151 0.58 (0.13) 0.78 (0.09) 0.83 (0.06) 0.71 (0.13) 0.87 (0.08) 0.87 (0.08)

VRC34.01 0.61 (0.15) 0.78 (0.10) 0.79 (0.08) 0.51 (0.12) 0.71 (0.11) 0.73 (0.08)

Average 0.64 (0.12) 0.81 (0.08) 0.84 (0.06) 0.62 (0.12) 0.79 (0.09) 0.83 (0.06)

Global average 0.66 (0.12) 0.84 (0.08) 0.85 (0.06) 0.75 (0.10) 0.88 (0.06) 0.89 (0.05)

Note: The numbers between the parentheses are the standard deviations (calculated with N-1 degrees of freedom) of the metrics recorded on the 100 rounds of

cross-validation. The bNAb-ReP metrics are taken from the Supplementary Table S1 from Rawi et al. (2019), except for the standard deviations, which we recom-

puted by running the bNAb-ReP software to ensure the same calculation method as in our work. The boldface values highlight the best metrics between bNAb-

ReP and our model.
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bNAb-ReP and SLAPNAP. Knowing the epitope/paratope is valuable
and can provide insights into the mechanics of the antibody-antigen
interaction. Furthermore, explainable models tend to be more
trusted, and the analysis of the features might serve as an added val-
idation. NNs usually require more effort to be made explainable, but
this is something achievable. A possible solution to this challenge is
Grad-CAMþþ (Chattopadhay et al., 2018). This method makes
NNs explainable by considering the gradients that flow through the
networks’ layers. An alternative is to use methods for finding feature
importance that treat the model as a black-box, such as Williamson
et al. (2021b) and Williamson et al. (2022). The Metropolis-Hastings
algorithm from Yu et al. (2018) and Yu et al. (2019) is another
method for feature selection which the authors combined with an

SVR (Cortes and Vapnik, 1995; Drucker et al., 1997). The SVR is
used to evaluate the states sampled by the Metropolis-Hastings al-
gorithm. However, we believe this method can be combined with
other models as well, such as a NN. Another drawback of our
model is that, at the moment, it does not tackle regression.
However, this extension is also feasible. One challenge related to
regression is the handling of the censored values, which are the val-
ues expressed as open intervals, such as ‘>50’. In the current
work, we focused on recurrent networks and transformers; how-
ever, convolutional networks are another architecture that might
be useful. Experimenting with convolutional NNs for modeling
the antibody-virus interaction is a theme that could be explored in
future works.

Table 3. Comparison with SLAPNAP on nested cross-validation

SLAPNAP FC-ATT-GRU

Antibody MCC AUC Accuracy MCC AUC Accuracy

gp120 CD4BS

3BNC117 0.06 (0.14) 0.80 (0.05) 0.93 (0.00) 0.76 (0.04) 0.92 (0.03) 0.93 (0.01)

b12 0.43 (0.06) 0.78 (0.05) 0.71 (0.03) 0.51 (0.05) 0.79 (0.03) 0.79 (0.02)

HJ16 0.41 (0.09) 0.77 (0.03) 0.72 (0.04) 0.24 (0.11) 0.63 (0.11) 0.58 (0.13)

NIH45-46 0.21 (0.22) 0.82 (0.13) 0.88 (0.02) 0.86 (0.07) 0.96 (0.04) 0.96 (0.02)

VRC-CH31 0.12 (0.17) 0.74 (0.05) 0.85 (0.01) 0.79 (0.10) 0.93 (0.05) 0.94 (0.02)

VRC-PG04 0.05 (0.15) 0.80 (0.05) 0.84 (0.01) 0.79 (0.05) 0.94 (0.03) 0.92 (0.03)

VRC01 0.30 (0.30) 0.77 (0.10) 0.96 (0.01) 0.81 (0.06) 0.92 (0.05) 0.95 (0.02)

VRC03 0.41 (0.12) 0.83 (0.05) 0.75 (0.04) 0.70 (0.05) 0.89 (0.02) 0.84 (0.02)

VRC07 0.00 (0.01) 0.78 (0.17) 0.95 (0.01) 0.71 (0.12) 0.91 (0.07) 0.94 (0.02)

Average 0.22 (0.14) 0.79 (0.08) 0.84 (0.02) 0.69 (0.07) 0.88 (0.05) 0.87 (0.03)

gp120 other than CD4BS

10-1074 0.77 (0.08) 0.92 (0.02) 0.91 (0.03) 0.90 (0.05) 0.98 (0.01) 0.95 (0.02)

10-996 0.74 (0.10) 0.93 (0.07) 0.87 (0.05) 0.90 (0.13) 0.98 (0.01) 0.95 (0.07)

2G12 0.47 (0.03) 0.82 (0.01) 0.75 (0.02) 0.61 (0.10) 0.86 (0.03) 0.87 (0.04)

CH01 0.47 (0.08) 0.79 (0.02) 0.73 (0.04) 0.72 (0.13) 0.89 (0.05) 0.85 (0.06)

DH270.1 0.66 (0.11) 0.92 (0.06) 0.83 (0.06) 0.86 (0.05) 0.96 (0.02) 0.93 (0.03)

DH270.5 0.70 (0.12) 0.92 (0.04) 0.84 (0.07) 0.95 (0.03) 0.99 (0.01) 0.97 (0.02)

DH270.6 0.74 (0.12) 0.93 (0.05) 0.87 (0.06) 0.88 (0.09) 0.96 (0.02) 0.94 (0.05)

PG16 0.23 (0.17) 0.80 (0.09) 0.85 (0.02) 0.65 (0.13) 0.86 (0.07) 0.86 (0.05)

PG9 0.17 (0.12) 0.80 (0.07) 0.89 (0.01) 0.70 (0.09) 0.90 (0.04) 0.88 (0.03)

PGDM1400 0.73 (0.04) 0.91 (0.04) 0.89 (0.02) 0.82 (0.05) 0.93 (0.03) 0.92 (0.02)

PGT121 0.57 (0.09) 0.87 (0.03) 0.82 (0.03) 0.78 (0.04) 0.94 (0.02) 0.89 (0.02)

PGT128 0.31 (0.08) 0.75 (0.11) 0.82 (0.01) 0.73 (0.07) 0.90 (0.03) 0.87 (0.03)

PGT135 0.37 (0.15) 0.78 (0.08) 0.72 (0.06) 0.60 (0.04) 0.83 (0.03) 0.80 (0.03)

PGT145 0.61 (0.07) 0.79 (0.05) 0.86 (0.02) 0.75 (0.03) 0.90 (0.03) 0.89 (0.02)

VRC26.08 0.53 (0.04) 0.88 (0.01) 0.82 (0.01) 0.91 (0.05) 0.98 (0.02) 0.95 (0.03)

VRC26.25 0.57 (0.09) 0.86 (0.04) 0.88 (0.02) 0.82 (0.08) 0.95 (0.02) 0.92 (0.03)

VRC38.01 0.46 (0.11) 0.89 (0.05) 0.80 (0.04) 0.50 (0.11) 0.80 (0.07) 0.80 (0.04)

Average 0.54 (0.09) 0.86 (0.05) 0.83 (0.03) 0.77 (0.07) 0.92(0.03) 0.90 (0.03)

gp41 MPER, gp41-gp120 interface, and fusion peptide

2F5 0.72 (0.03) 0.93 (0.01) 0.86 (0.01) 0.79 (0.04) 0.93 (0.02) 0.89 (0.02)

35O22 0.33 (0.06) 0.71 (0.03) 0.68 (0.03) 0.42 (0.06) 0.71 (0.05) 0.68 (0.02)

4E10 0.00 (0.00) 0.68 (0.16) 0.96 (0.00) 0.55 (0.08) 0.75 (0.05) 0.92 (0.03)

8ANC195 0.65 (0.08) 0.90 (0.05) 0.84 (0.04) 0.50 (0.07) 0.77 (0.03) 0.73 (0.07)

PGT151 0.50 (0.13) 0.82 (0.07) 0.80 (0.04) 0.68 (0.12) 0.87 (0.07) 0.85 (0.05)

VRC34.01 0.52 (0.10) 0.80 (0.05) 0.75 (0.05) 0.50 (0.03) 0.74 (0.06) 0.73 (0.02)

Average 0.45 (0.07) 0.81 (0.06) 0.81 (0.03) 0.57 (0.07) 0.79 (0.04) 0.80 (0.03)

Global Average 0.43 (0.10) 0.83 (0.06) 0.83 (0.03) 0.71 (0.07) 0.88 (0.04) 0.87 (0.03)

Note: The numbers between the parentheses are the standard deviations (calculated with N-1 degrees of freedom) of the metrics recorded during the nested

cross-validation. The metrics for SLAPNAP were obtained by running the script available from SLAPNAP (Williamson et al., 2021a). The boldface values high-

light the best metrics between SLAPNAP and our model.
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6 Code and data availability

The code and data underlying this article are available on Git and
Zenodo (D�an�ail�a, 2022). The Git repository contains more
branches:

1. main: shows an early version of our solution and is used to com-

pute a baseline using the model from ICERI (D�an�ail�a and Buiu,

2021);

2. fc-att-fix: displays our model of choice FC-ATT-GRU, which

combines fully-connected layers, attention and recurrent net-

works and was compared with bNAb-ReP (Rawi et al., 2019);

3. fc-att-fix-nested-cv: compares the FC-ATT-GRU model with

SLAPNAP (Williamson et al., 2021a) using nested cross-validation;

4. 6cdr: shows the model and data processing based on CDRs;

5. 6cdr-trans: corresponds to the transformers architecture

(Vaswani et al., 2017); and

6. fc-att-ab-cls: contains the multitask-learning experiments.

The Zenodo project contains six versions that are snapshots of
the branches from the Git repository. For enabling reproducible
experiments, we created dataset partitions and saved them in our re-
pository in JSON format. Other researchers can use those partitions
in their experiments if they need to compare their models against
ours using identical data. Those are found in the files splits_
Rawi_comparison.json for the bNAb-ReP comparison,
splits_SLAPNAP_ comparison_nested_cross_valid
ation_X.json, where X is a number from one to five (each corre-
sponding to one of the five folds of cross-validation), for the
SLAPNAP comparison, and splits_uniform.json for hyper-
parameter tuning for pretraining. The partitions work together with
a file named catnap_flat.json. This file represents the proc-
essed CATNAP dataset and contains tuples of four elements con-
taining in order: record id, antibody id, virus id, binary ground
truth. The dataset partitions refer to the ids of the records from the
catnap_flat.json, more specifically to the first element from each
tuple. We also store a snapshot of the CATNAP data at the time of
this writing in the folder catnap_data on the branch fc-att-
fix. Also, the CDR sequences and sequence offsets were saved in
the file CDRs.json on the branch 6cdr.

The hyperparameters for different pretrained models are stored
in the python package deep_hiv_ab_pred.hyperparameter in JSON
format. We saved the hyperparameters for:

1. ICERI with all input combinations;

2. FC-ATT-GRU with one-hot encoded input;

3. FC-ATT-GRU with aminoacid properties input;

4. FC-ATT-GRU with both one-hot and aminoacid properties;

5. 6CDR-FC-GRU with aminoacid properties;

6. TRANSF with aminoacid properties; and

7. MULTITASK with aminoacid properties.

7 Conclusion

The main ideas of our article are to leverage both antibody and virus
sequences to capture more generic relationships instead of focusing
on specific antibodies, which may have less data available, and to
take advantage of the full CATNAP dataset through NNs and trans-
fer learning. It is known that NNs are versatile, and often, they may
outperform the other types of algorithms on different tasks, especial-
ly when the available data is large. Nevertheless, their training and
hyperparameter tuning are computationally expensive and complex.
In the current work, we used a modern hyperparameter tuning
method, the TPE (Bergstra et al., 2011), to automate the process and
find a suitable setup. We combined recurrent, fully-connected and
attention layers to model the relationships between the antibody and
virus sequences. We also looked into transformers and multitask-
learning, but those did not bring any meaningful advantage. While

the transformers architecture (Vaswani et al., 2017) is considered
state-of-the-art in natural language processing, for our given task,
the data might be insufficient to derive benefits from this type of net-
work. The aminoacids were expressed in multiple ways: static prop-
erties, one-hot encodings, or learned features. Overall, the static
properties gave the best results and were also the most computation-
ally efficient since they had a smaller dimension compared to the
other approaches. Considering only the CDRs instead of the whole
variable region for the antibody complicates the data preprocessing
and provides a non-significant increase in predictive performance.
Further research ideas are related to making the model explainable,
investigating convolutional architectures, handling regression and
censored data, finding additional data sources for network pretrain-
ing, and building a hybrid method that takes advantage of both se-
quence and structure data.
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