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Abstract: Previous scoring models, such as the Acute Physiologic Assessment and Chronic Health
Evaluation II (APACHE II) score, do not adequately predict the mortality of patients receiving me-
chanical ventilation in the intensive care unit. Therefore, this study aimed to apply machine learning
algorithms to improve the prediction accuracy for 30-day mortality of mechanically ventilated pa-
tients. The data of 16,940 mechanically ventilated patients were divided into the training-validation
(83%, n = 13,988) and test (17%, n = 2952) sets. Machine learning algorithms including balanced
random forest, light gradient boosting machine, extreme gradient boost, multilayer perceptron, and
logistic regression were used. We compared the area under the receiver operating characteristic
curves (AUCs) of machine learning algorithms with those of the APACHE II and ProVent score
results. The extreme gradient boost model showed the highest AUC (0.79 (0.77–0.80)) for the 30-day
mortality prediction, followed by the balanced random forest model (0.78 (0.76–0.80)). The AUCs
of these machine learning models as achieved by APACHE II and ProVent scores were higher than
0.67 (0.65–0.69), and 0.69 (0.67–0.71)), respectively. The most important variables in developing each
machine learning model were APACHE II score, Charlson comorbidity index, and norepinephrine.
The machine learning models have a higher AUC than conventional scoring systems, and can thus
better predict the 30-day mortality of mechanically ventilated patients.

Keywords: machine learning; mechanical ventilation; mortality; prediction

1. Introduction

Acute respiratory failure is a common cause of mechanical ventilation in the intensive
care unit (ICU), which results from various medical conditions, such as pneumonia, conges-
tive heart failure, sepsis, or acute respiratory distress syndrome [1]. Although mechanical
ventilation is indicated for respiratory support or airway protection, it is associated with
higher mortality and morbidity [1–6]. Moreover, patients requiring prolonged mechanical
ventilation have high long-term mortality, and tracheostomy is often needed to main-
tain mechanical ventilation. Therefore, accurate prediction of prognosis in mechanically
ventilated patients in the ICU is important.

As such, several mortality prediction models for mechanically ventilated patients
have been suggested [4,7–11]. However, there are few models that are focused on pre-
dicting hospital mortality, and most models included only patients with pneumonia or
chronic obstructive lung disease. Conventional scoring systems such as Acute Physiologic
Assessment and Chronic Health Evaluation II (APACHE II) or Sequential Organ Failure
Assessment (SOFA) scores have been reported as a significant mortality predictor among
mechanically ventilated patients [1,10–14]. However, the discrimination ability of these
scoring systems have not been validated in large cohorts of patients with various types of
respiratory failure.
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Machine learning algorithms have been recently applied to predict various outcomes
related to mechanical ventilation. These outcomes include prolonged ventilation or tra-
cheostomy, need for mechanical ventilation, successful extubation, weaning from mechan-
ical ventilation, and monitoring lung mechanics [15–19]. However, there are no studies
yet on using machine learning models for predicting mortality in mechanically ventilated
patients. Therefore, we aimed to apply machine learning algorithms to predict the mortality
of mechanically ventilated patients. Further, we investigated whether the machine learning
models have better predictive capability than do conventional scoring systems.

2. Materials and Methods
2.1. Data Source and Study Population

In this retrospective study, data were collected from the study cohort enrolled at five
hospitals of Hallym University Medical Center, Republic of Korea. The hospitals were
located in Seoul (Kangnam Sacred Heart Hospital and Hangang Sacred Heart Hospital),
Gyeonggi Province (Hallym University Sacred Heart Hospital and Dongtan Sacred Heart
Hospital), and Gangwon Province (Chuncheon Sacred Heart Hospital). The overall bed
capacity was 3047 beds, and 2,598,544 outpatients and 835,543 inpatients were managed
in 2019.

We evaluated consecutive adult patients (≥18 years old) who required mechanical
ventilation in the ICU between 1 January 2010 and 31 December 2019. Among the 28,340 me-
chanically ventilated patients identified, 11,400 patients who underwent surgery (n = 7403)
and had missing values (n = 3997) were excluded (Figure S1). Thus, 16,940 patients were
included in the analysis.

The study was approved by the institutional review board of Chuncheon Sacred
Hospital (No. 2020-11-008). The need for informed consent was waived owing to the
retrospective nature of the study.

2.2. Data Collection and Definitions

Data were collected from the electronic medical records (EMRs) from each participat-
ing hospital using the clinical big data analytic solution Smart Clinical Data Warehouse
based on the QlikView Elite Solution (Qlik, King of Prussia, PA, USA). The following
information was collected from the time of mechanical ventilation initiation: age, sex,
body mass index, time from hospitalization to ICU admission, time from hospitalization to
mechanical ventilation initiation, APACHE II, ProVent score, Modified Early Warning Score
(MEWS) [20], status post tracheostomy, transfer from skilled nursing facility, Charlson
Comorbidity Index (CCI) and their variables [21], vital signs, continuous renal replacement
therapy (CRRT), mode of mechanical ventilation, transfusion requirement (packed red
blood cell, fresh frozen plasma, and platelet concentrate), use and type of vasopressors
and inotropes (norepinephrine, epinephrine, dobutamine, dopamine, and vasopressin),
use and type of corticosteroids (hydrocortisone, dexamethasone, and methylprednisolone),
use and type of opioids (fentanyl and remifentanil), use and type of sedatives (propofol
and midazolam), use and type of neuromuscular blockades (atracurium, cisatracurium,
rocuronium, and vecuronium), and laboratory results with arterial blood gases. For longi-
tudinal data such as vital signs or laboratory findings, we selected initial values taken on
the day mechanical ventilation was initiated. To prevent errors in the dataset, we excluded
patients with systolic blood pressure, heart rate, respiratory rate, and body temperature
outside the ranges of 30–300 mmHg, 10–300 beats/min, 3–60 breaths/min, and 30–45 ◦C,
respectively [22].

The ProVent score was calculated using five categories and their corresponding scores
as follows: (1) age ≥ 65 years, 2 points; (2) age 50–64 years, 1 point; (3) platelets ≤ 100 × 109,
1 point; (4) use of vasopressors and hemodialysis, 1 point; and (5) non-trauma, 1 point [7].
The maximum score was 7. The MEWS is a bedside tool for the prediction of increased
risk of clinical deterioration and uses five physiological parameters including systolic
blood pressure, pulse rate, respiratory rate, temperature, and level of conscious state [20].
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The allocated diagnoses for each patient were categorized using the Korean Standard
Classification of Diseases-7 codes, which is a Korean version of the International Clas-
sification of Diseases-10 (ICD-10). CCI variables were categorized according to ICD-10
codes. These variables were included as features in developing the machine learning algo-
rithms (Table S4). The primary outcome was mortality within 30 days from the initiation
of mechanical ventilation in the ICU.

2.3. Machine Learning Algorithms

The data set involved patient variables. We divided the dataset into the training-
internal validation set and external validation sets to prevent model overfitting. The test
set (17%, n = 2952) consisted of data from Chuncheon Sacred Heart Hospital to apply the
machine learning model to an independent data set. The data from other four hospitals
were used for training-validation (83%, n = 13,988). The training-internal validation
set was further divided into the training set and internal validation set at a ratio of 4:1
with the same percentage of deaths. Datasets were standardized using min–max scaling.
Supervised learning is a machine learning task that learns a function and maps inputs to
outputs based on example input-output pairs. All machine learning used in this study
was supervised learning. We used five machine learning algorithms, namely, balanced
random forest (BRF), light gradient boosting machine (LGBM), extreme gradient boost
(XBG), multilayer perceptron (MLP), and logistic regression (LR) [23,24]. LR is one of the
regression algorithms that predicts whether data will fall into a specific category with a
continuous probability between 0 and 1. Then, based on the probability, the algorithm
decides which category the specific data belongs to, and ultimately solves the classification
problem. MLP is a neural network in which one or more intermediate layers exist between
an input layer and an output layer. The intermediate layer between the input layer and
the output layer is called a hidden layer. The network is connected in the direction of
the input layer, the hidden layer, and the output layer, and there is no connection within
each layer and a direct connection from the output layer to the input layer, which is
a feedforward network. It differs from logistic regression in that there can be one or
more nonlinear layers called hidden layers. Random forest in machine learning is a
type of ensemble learning method used for classification and regression analysis and
operates by outputting classification or regression analysis from a plurality of decision
trees constructed in the training process. The biggest characteristic of random forest is
that trees have slightly different characteristics due to randomness. This property makes
the predictions of each tree uncorrelated and consequently improves the generalization
performance. In addition, randomization makes the forest robust even for noise-containing
data. Extreme gradient boost (XGB) is one of the gradient boosting methods. Optimized
gradient boosting algorithm through parallel processing, tree-pruning, handling missing
values, and regularization to void overfitting/bias. LGBM works differently from the
existing gradient boosting algorithm. Existing boosting models use a method of increasing
the tree level-wise, but LGBM uses leaf-wise tree division. Existing trees used level-wise
partitioning to reduce the tree depth, but LGBM models behave differently, and level-
wise tree analysis needs to be balanced, so the tree depth is reduced. Instead, there is a
disadvantage of adding an operation to balance it. LGBM does not balance the tree and
proceeds by continuously dividing the leaf nodes. Therefore, an asymmetric and deep
tree is created, but when creating a lost leaf, leaf-wise has the advantage of reducing loss
compared to level-wise.

Data imbalance can bias the machine-learning models and render them inaccurate.
To overcome this problem, we trained the models after balancing the training dataset via
the synthetic minority oversampling technique (SMOTE) to a 1:1 ratio in the XGB, LGBM,
MLP, and LR models. The parameters used in SMOTE is as follows: SMOTENC (categori-
cal_features = [n_fratures], k_neighbors = 5, n_jobs = None, sampling_strategy = ‘auto’).
Then, we modeled the balanced random forest. The five models were trained using the
basic hyperparameters and training sets. The model with the best performance was identi-
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fied using a validation set. We performed 10-fold cross-validation on the training dataset
and tuned the hyperparameters using grid search. The final model was validated using
the internal validation and external validation test set. Model evaluation involved receiver
operating characteristic (ROC) curve and area under the receiver operating character-
istic curves (AUCs) using Anaconda (Python version 3.7, https://www.anaconda.com
(accessed on 10 February 2021); Anaconda Inc., Austin, TX, USA), the XGBoost package
version 0.90 (https://xgboost.readthedocs.io (accessed on 10 February 2021)), the LGBM
package version 2.2.3 (https://lightgbm.readthedocs.io/en/latest/Python-Intro.html (ac-
cessed on 10 February 2021)), imbalanced-learn package version 0.5.0 (https://imbalanced-
learn.readthedocs.io (accessed on 11 February 2021)), and scikit-learn 0.24.1(MLP, LR;
https://scikit-learn.org/stable/index.html (accessed on 11 February 2021)).

2.4. Variable Importance

In BRF, XGB, and LGBM, we used the built-in function that calculates feature im-
portance. In MLP and LR, permutation feature importance was used because there was
no built-in function in the packages. Permutation feature importance provides a method
to compute feature importance for any black-box estimator by measuring how score de-
creases when a feature is not available; the method is also known as Mean Decrease
Accuracy [25,26].

2.5. Statistical Analyses

Descriptive analysis was performed to compare the characteristics between survivors
and non-survivors. Categorical variables were presented as numbers (%) and were com-
pared using the Pearson’s chi-squared test. Continuous variables were presented as mean
± standard deviation and were compared using the Student’s t test. The discrimination
powers of APACHE II, ProVent, and MEWS were assessed according to the AUC evaluated
with the ROC curve analysis. All analyses were performed using SPSS software (ver-
sion 26.0; IBM Corporation, Armonk, NY, USA). Differences were considered statistically
significant at p-values of <0.05.

3. Results
3.1. Patient Characteristics

The mean patient age was 67 years (SD ± 15), and 61.5% of the patients were male.
In total, 5061 patients (29.9%) died within 30 days, and the mortality rates of internal and
external data sets were 31.5% and 22.0%, respectively. Mortality rates of the four hospitals
included in the internal validation set were as follows: 33.7%, 30.8%, 28.9%, and 33.7%,
respectively. The baseline characteristics and laboratory values are presented in Table 1 and
Table S1. Compared with the survivor group, the non-survivor group showed significantly
higher age (69 ± 14 years vs. 66 ± 15 years, p < 0.001) and APACHE II score (26.3 ± 6.5
vs. 21.6 ± 6.8, p < 0.001). The rates of use of vasopressors, corticosteroids, neuromuscular
blockers, and CRRT were also significantly higher in the non-survivor group. The most
common type of ventilator mode was pressure control (n = 7269, 42.9%). The PaO2/FiO2
ratio was significantly lower in the non-survivor group (262 ± 176 vs. 207 ± 173) (Table 1).
Further, other laboratory findings were also significantly different between the two groups.

The 30-day mortality of the training-validation set and test set was 31.5% and 22.00%
(p < 0.001), respectively. Moreover, the medications and interventions received during
mechanical ventilations were also significantly different (Tables S2 and S3).

https://www.anaconda.com
https://xgboost.readthedocs.io
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html
https://imbalanced-learn.readthedocs.io
https://imbalanced-learn.readthedocs.io
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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Table 1. Baseline characteristics of the patients.

Variables Total (n = 16,940) Survivors (n = 11,879) Non-Survivors (n = 5061) p Value

Age (years) 67 ± 15 66 ± 15 69 ± 14 <0.001
Male sex (%) 61.5 61.3 61.8 0.567

Interval between hospitalization
and ICU admission (days) 2 ± 7 2 ± 6 3 ± 9 <0.001

Interval between hospitalization
and MV initiation (days) 1 ± 6 1 ± 6 2 ± 7 <0.001

APACHE II 23 ± 4 22 ± 7 26 ± 7 <0.001
ProVent score 3 ± 1 3 ± 1 4 ± 1 <0.001

Modified early warning score 5 ± 2 4 ± 2 6 ± 2 <0.001
Transfer from skilled nursing

facility (%) 9.2 8.8 10.1 0.007

Charlson comorbidity index 4 ± 3 4 ± 3 5 ± 2 0.006
Comorbidities a (%)

Diabetes 20.5 22.2 16.4 <0.001
Congestive heart failure 18.1 19.8 14.0 <0.001

Myocardial infarction 8.5 8.8 7.8 0.037
Chronic pulmonary disease 16.5 18.4 12.1 <0.001

Liver disease 9.3 8.5 11.4 <0.001
Moderate to severe CKD 12.6 12.6 12.6 0.998

Any malignancy 20.1 19.2 22.0 <0.001
Rheumatic disease 1.6 1.4 2.2 <0.001

Dementia 7.0 7.6 5.4 <0.001
Cerebrovascular disease 26.6 27.6 24.2 <0.001

Continuous renal replacement
therapy (%) 14.6 10.1 25.1 <0.001

Transfusion (%) 27.3 24.6 33.6 <0.001
Medications (%)

Vasopressors and inotropes 50.9 44.3 66.3 <0.001
Corticosteroids 16.4 15.1 19.4 <0.001

Opioids 33.7 33.2 34.6 0.077
Sedatives 20.8 22.1 17.8 <0.001

Neuromuscular blockades 12.4 11.9 13.8 <0.001
PaO2/FiO2 ratio 246 ± 177 262 ± 176 207 ± 173 <0.001

Length of stay (day) 29 ± 36 29 ± 36 28 ± 36 0.175
ICU stay (day) 16 ± 27 16 ± 27 17 ± 26 0.767

Duration of MV (day) 11 ± 23 11 ± 23 11 ± 22 0.592

Values are presented as the mean ± SD or as %. a Comorbidities are categorized using the Charlson Comorbidity Index. ICU, intensive care
unit; MV, mechanical ventilation; APACHE, Acute Physiology and Chronic Health Evaluation; CKD, chronic kidney disease; PaO2, partial
pressure of oxygen; and FiO2, fraction of inspired oxygen.

3.2. Model Performance

Figure 1 demonstrates the receiver operating characteristic curves for predicting
30-day mortality in mechanically ventilated patients. In the internal validation, there was
no significant difference in AUC among the BRF (0.79, 95% CI: 0.78–0.81), LGBM (0.75, 95%
CI: 0.73–0.76), XGB (0.80, 95% CI: 0.79–0.82), MLP (0.79, 95% CI: 0.77–0.80), and LR (0.76,
95% CI: 0.74–0.78) models. In the test set (external validation), the discrimination functions
of BRF (AUC: 0.78, 95% CI: 0.76–0.80), XGB (AUC: 0.79, 95% CI: 0.77–0.80), and MLP (AUC:
0.76, 95% CI: 0.74–0.78) were superior to those of LGBM (AUC: 0.70, 95% CI: 0.68–0.72) and
LR (AUC: 0.71, 95% CI: 0.69–0.74). The other performance indicators of the algorithms are
presented for each model in Table 2. BRF showed the highest sensitivity (84%), while XGB
showed the highest positive predictive value (46%) as well as accuracy (76%).
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Figure 1. Receiver operating characteristic (ROC) curves for predicting 30-day mortality in mechani-
cally ventilated patients: (a) in the internal validation, machine learning models showed AUCs from
0.75 to 0.80. (b) In the external validation, AUCs of XGB, BRF, MLP, LR, and LGBM were 0.79, 0.78,
0.76, 0.71, and 0.70, respectively. AUC, area under the receiver operating characteristic curve; BRF,
balanced random forest; LGBM, light gradient boosting machine; XGB, extreme gradient boosting;
MLP, multilayer perceptron; and LR, logistic regression.

Table 2. Performance metrics of 30-day mortality prediction models in the external validation set.

Models AUC Positive Predictive Value Sensitivity Accuracy

BRF 0.78 0.37 0.84 0.65
LGBM 0.70 0.37 0.52 0.70
XGB 0.79 0.46 0.58 0.76
MLP 0.76 0.41 0.62 0.72
LR 0.71 0.40 0.55 0.72

AUC, area under the receiver operating characteristic curve; BRF, balanced random forest; LGBM, light gradient
boosting machine; XGB, extreme gradient boosting; MLP, multilayer perceptron; and LR, logistic regression.

In the test set, APACHE II (AUC: 0.67, 95% CI: 0.65–0.69), ProVent (AUC: 0.69, 95% CI:
0.67–0.71), and MEWS (AUC: 0.63, 95% CI: 0.60–0.65) showed lower predictive performance
for 30-day mortality than did the machine learning algorithms (Figure 2). In the overall
cohort, APACHE II, ProVent, and MEWS showed AUCs of 0.69 (95% CI: 0.68–0.70), 0.66
(95% CI: 0.65–0.67), and 0.67 (95% CI: 0.66–0.68), respectively (Figure S2).

Figure 2. Receiver operating characteristics curves showing the performance of APACHE II (AUC:
0.67, 95% CI: 0.65–0.69), ProVent (AUC: 0.69, 95% CI: 0.67–0.71), and MEWS (AUC: 0.63, 95% CI:
0.60–0.65) for predicting 30-day mortality in mechanically ventilated patients, in the test set. APACHE,
Acute Physiology and Chronic Health Evaluation; AUC, area under the curve; MEWS, Modified
Early Warning Score.
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3.3. Variable Importance

The top 10 variables in the machine learning algorithms are listed in Table 3. The most
important features in the models were APACHE II in BRF and LGBM, CCI in MLP and
LR, and norepinephrine in XGB. APACHE II and norepinephrine were the top predictors
common across all models. Variables of ABGA including base excess and bicarbonate,
and pH were considered important values in BRF. Age and comorbidities, such as chronic
pulmonary disease, congestive heart failure, and diabetes were important variables in the
development of the models. The results of SHapley Additive exPlanations (SHAP) of the
each model were demonstrated in Supplementary Figures S3–S7.

Table 3. Top 10 most important variables for predicting 30-day mortality in the machine learning models.

Machine Learning Models

Ranking BRF LGBM XGB MLP LR

1 APACHE II APACHE II Norepinephrine CCI CCI
2 Base excess SpO2 CHF APACHE II APACHE II

3 HCO3 Respiratory rate Chronic pulmonary
disease CHF Age

4 Platelet Chronic
pulmonary disease Diabetes Chronic

pulmonary disease CHF

5 Norepinephrine Midazolam APACHE II Diabetes Chronic pulmonary
disease

6 pH CHF SpO2 Norepinephrine Diabetes
7 PaO2/FiO2 Norepinephrine Midazolam Age Age group of CCI

8 Blood urea
nitrogen Age Disease of the nervous

system Age group of CCI Malignancy

9 eGFR HCO3
Endocrine, nutritional,
and metabolic disease

Transfer from
skilled nursing

facility
Remifentanil

10 FiO2 Diabetes Mental and behavioral
disorders Malignancy Norepinephrine

AUC, area under the receiver operating characteristic curve; BRF, balanced random forest; LGBM, light gradient boosting machine; XGB,
extreme gradient boosting; MLP, multilayer perceptron; and LR, logistic regression; CCI: Charlson Comorbidity Index; CHF: congestive
heart failure; eGFR: estimated glomerular filtration rate.

4. Discussion

Few studies have evaluated the validity of predictive models of mortality in cohorts
with varying types of disease conditions. This multicenter study found that machine
learning models based on EMR data on the day of mechanical ventilation initiation can
predict the 30-day mortality of the patients receiving mechanical ventilation in the ICU
regardless of the disease condition. Although the mortality of these patients are difficult
to predict, the machine learning models better predicted 30-day mortality than did the
conventional scoring systems of APACHE II, ProVent, and MEWS. The BRF and XGB
models showed adequate discrimination abilities (AUC, 0.78 and 0.79). The most important
features in the models were APACHE II, CCI, and norepinephrine. Although APACHE II
did not reveal excellent discrimination power, (AUC 0.67), the conventional scores are still
useful in developing machine learning models to predict outcomes.

Machine learning models have been developed to predict mortality in patients un-
dergoing CRRT [27], critical trauma patients [28,29], and patients in the ICU [30]. Other
studies have also used these models to predict in-hospital cardiac arrest [22] and real-time
mortality [31,32]. Thorsen-Meyer et al. developed a machine leaning model using a recur-
rent neural network in a cohort of 15,615 ICU patients with a 33% 90-day mortality [30].
The AUC at ICU admission was 0.73, and performance improved over time from AUC 0.82
after 24 h to AUC 0.85 after 72 h. Kang et al. reported that machine learning model using
random forest predicted ICU mortality in 1571 patients undergoing CRRT [27]. The AUC
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of the machine learning model was 0.78, which was higher than those of the APACHE II
and SOFA scores.

Mortality among mechanically ventilated patients are associated with factors related to
patient management and complications during mechanical ventilation as well as the factors
at the initiation of mechanical ventilation [1]. As such, predicting mortality in patients
with mechanical ventilation can be challenging. However, our model, which used clinical
data within 24 h of the mechanical ventilation initiation, showed good discrimination
ability. Further, the predictive capabilities were similar to those of machine learning models
described previously. In addition, unlike previous studies, the results of our study are
derived from external validation in a completely independent hospital dataset.

Mechanical ventilation is one of the crucial life support devices provided in the ICU.
However, mechanical ventilation is associated with markedly increased ICU costs [33].
Worldwide, there is a shortage of ICU beds because of the coronavirus disease 2019 pan-
demic [34]. Therefore, in terms of priority of mechanical ventilation application, rapid
and accurate prediction of mortality in mechanically ventilated patients is important. Our
machine learning models were trained on all ICU patients who received mechanical venti-
lation regardless of the disease condition. We used clinical variables that are commonly
available in mechanically ventilated patients. This improved the generalizability of our
machine learning models for application in the clinical setting. Furthermore, our machine
learning models can predict mortality with high accuracy compared with conventional
scoring systems in patients receiving mechanical ventilation. These models can be easily
developed using clinical variables from electronic medical records, and therefore, can be
used even in the emergency room setting though. We suggest that our machine learning
models should be utilized by physicians in making clinical decisions for judging mechanical
ventilation priority.

Machine learning is like a black box in that we cannot explain the processes between
input and output [35]. However, it is helpful to understand variables that play a significant
role in predicting performance. Although there were some discrepancies between the ma-
chine learning models, APACHE-II, norepinephrine, age, and CCI contributed significantly
to the development of our machine learning models. The variables selected in each model
tended to be similar to conventional studies’ results. Age, type of respiratory failure, use of
inotropes, and severity scoring systems such as APACHE II and SAPS II have been consid-
ered important predictors of outcomes in patients receiving mechanical ventilation [1,12].
The models showed better discrimination abilities than the conventional scoring systems.
However, APACHE II and CCI also were important factors for the development of the
machine learning models. It is notable that the machine learning algorithms identified
variables that were considered significant in previous studies. As machine learning for big
data processing becomes more advanced, the systems for outcome prediction in critically
ill patients will evolve. However, our results suggest that the conventional scoring systems
will remain useful even in the big data era.

This study has some limitations. First, other variables associated with mechanical
ventilation such as PEEP or plateau pressure were not included because they were not
collected during the mechanical ventilation, and data were only analyzed retrospectively.
Moreover, the retrospective nature of the study precluded collection of data regarding the
reasons of mechanical ventilation initiation or cause of respiratory failure. Second, the
AUC of SOFA score, which is one of the most used outcome prediction scores, was not
presented. Third, we did not demonstrate information regarding lung heterogeneity related
to the outcomes of acute respiratory distress syndrome [36]. Adding this information to
the machine learning models can be beneficial to improve the prediction accuracy. In terms
of the mechanical properties of the lungs, fractional order model is emerging as a tool to
characterize lung function [37]. Forced oscillation technique is a non-invasive and reliable
method to evaluate the lung function, and this showed a great potential in healthy, asthma,
and chronic obstructive pulmonary disease patients [37–39]. These can be further used in
machine learning algorithms for the evaluation of the respiratory systems of mechanically
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ventilated patients. Fourth, there is a possibility that historical bias exists due to the long
duration of patient enrollment. Fifth, although the AUC of our machine learning models
have shown acceptable discriminatory ability, model performance, however, needs to be
improved. Therefore, further prospective studies including a large cohort with various
scoring systems and variables over time are needed to improve the efficacy of machine
learning models for predicting outcomes in mechanically ventilated patients. Mortality
prediction in mechanically ventilated patients can be further improved if longitudinal data
can be collected.

5. Conclusions

Compared with previous scoring models, our machine learning models of BRF, LGBM,
XBG, MLP, and LR can better predict 30-day mortality in mechanically ventilated patients.
Although APACHE II did not reveal excellent discrimination power, machine learning
algorithms showed that the conventional scoring systems and CCI remain important factors
for predicting outcomes in mechanically ventilated patients. Our findings suggest that
improving discrimination power of machine learning models can help make crucial clinical
decisions for patients who are less likely to benefit from mechanical ventilation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10102172/s1, Figure S1: Flow chart of the patients, Figure S2: Receiver operating character-
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