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Abstract: Accurate segmentation of nasopharyngeal carcinoma is essential to its treatment effect.
However, there are several challenges in existing deep learning-based segmentation methods.
First, the acquisition of labeled data are challenging. Second, the nasopharyngeal carcinoma is
similar to the surrounding tissues. Third, the shape of nasopharyngeal carcinoma is complex.
These challenges make the segmentation of nasopharyngeal carcinoma difficult. This paper pro-
poses a novel semi-supervised method named CAFS for automatic segmentation of nasopharyngeal
carcinoma. CAFS addresses the above challenges through three mechanisms: the teacher–student
cooperative segmentation mechanism, the attention mechanism, and the feedback mechanism. CAFS
can use only a small amount of labeled nasopharyngeal carcinoma data to segment the cancer region
accurately. The average DSC value of CAFS is 0.8723 on the nasopharyngeal carcinoma segmentation
task. Moreover, CAFS has outperformed the state-of-the-art nasopharyngeal carcinoma segmenta-
tion methods in the comparison experiment. Among the compared state-of-the-art methods, CAFS
achieved the highest values of DSC, Jaccard, and precision. In particular, the DSC value of CAFS is
7.42% higher than the highest DSC value in the state-of-the-art methods.

Keywords: nasopharyngeal carcinoma; deep learning; semi-supervision

1. Introduction

Nasopharyngeal carcinoma [1,2] is one of the most common cancers, wildly occurring
around the world. According to global cancer statistics, there were 133,354 new nasopha-
ryngeal carcinoma cases and 80,008 deaths in 2020 [3]. Nasopharyngeal carcinoma is an
epithelial carcinoma arising from the nasopharyngeal mucosal lining [4], which is generally
observed at the pharyngeal recess of the nasopharynx [5]. In the clinic, nasopharyngeal
carcinoma has three types: ascending, descending, and mixed [6]. The ascending type
invades the skull base crania and destroys nerves, the descending type metastasizes to distant
tissues through cervical lymph, and the mixed type has both. Thus, due to the particular
location of nasopharyngeal carcinoma, it is abnormally dangerous once it metastasizes.

Currently, radiotherapy has become one of the most effective methods for treating
nasopharyngeal carcinoma [7]. The segmentation of nasopharyngeal carcinoma images
significantly affects the effects of radiotherapy [8]. Accurate segmentation would improve
the effectiveness of radiotherapy and thus increase patient survival [9]. The traditional
method of segmentation is manually operated by the physician. However, due to the
irregularity of nasopharyngeal carcinoma tissues, it is often a time-consuming burden for
doctors to manually segment the boundaries [10]. Moreover, manual segmentation is often
so subjective that doctors with different levels of expertise may come up with different
segmentation results [11].
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To reduce the burden on physicians, more and more deep learning algorithms are
now being utilized to segment medical images [12–14]. However, it is difficult for many
deep learning models to segment nasopharyngeal carcinoma boundaries accurately. First,
lots of deep learning algorithms typically utilize the fully-supervised approach. The fully-
supervised approach is that all training data are labeled and the model is trained using
these labeled data [15]. This means that the model requires a large amount of labeled data
to obtain the expected training results [16]. However, the hardship of annotating interested
targets hinders fully-supervised learning in medical imaging. In contrast, unlabeled data
are readily available [17]. Second, the imaging characteristics of nasopharyngeal carcinoma
usually resemble the surrounding tissue [18,19], making it challenging to identify. That
leads many algorithms to mistake the surrounding tissue for nasopharyngeal carcinoma.
Third, due to the irregular shape of the nasal cavity, the shape of nasopharyngeal carcinoma
is usually very complex as well [20,21], which leads to many algorithms that do not segment
the boundaries accurately.

To address the challenges encountered in the above-mentioned conventional meth-
ods of fully-supervised segmentation of nasopharyngeal carcinoma, and therefore to im-
prove the efficacy and survival rate of nasopharyngeal carcinoma, this paper proposes
an attention-based co-segmentation semi-supervised method named CAFS for automatic
segmentation of nasopharyngeal carcinoma. The semi-supervised approach means that
only a portion of the training data contains labels, and uses these labeled and unlabeled
data to train the model collaboratively [22]. As shown in Figure 1, CAFS contains three
primary strategies: the teacher–student cooperative segmentation mechanism, the attention
mechanism, and the feedback mechanism. The teacher–student model is typically used in
knowledge distillation [23]. In general, the teacher model uses the obtained knowledge to
guide the student model training, making the student model have comparable performance
to the teacher model. Among CAFS, the teacher–student cooperative segmentation mech-
anism aims to reduce the number of nasopharyngeal carcinoma labels used. The teacher
model learns from a small amount of labeled nasopharyngeal carcinoma data and then gen-
erates pseudo-masks for the unlabeled nasopharyngeal carcinoma data. The student model
utilizes the unlabeled nasopharyngeal carcinoma data and the pseudo-mask generated by
the teacher model to train itself and segment the unlabeled nasopharyngeal carcinoma data.
This allows for reducing the use of labeled data. The attention mechanism serves to
pinpoint the location of cancer, which zooms in on the target and thus captures more infor-
mation to localize the nasopharyngeal carcinoma. The feedback mechanism aims to make
the segmentation boundaries of nasopharyngeal carcinoma more accurate. The student
model is trained on unlabeled data and pseudo-masks and then predicts the labeled data.
The prediction results are compared with the ground truth to generate feedback to up-
date the model’s parameters. We trained and validated the performance of CAFS on
3555 nasopharyngeal carcinoma images. The results demonstrate that CAFS performs well
in segmenting the nasopharyngeal carcinoma boundaries. CAFS achieved a DSC value of
0.8723, a Jaccard value of 0.7964, a precision value of 0.8849, and a recall value of 0.8796. In
addition, we also compare CAFS with state-of-the-art nasopharyngeal carcinoma segmen-
tation methods. In the comparison experiments, CAFS achieved the leading segmentation
level, which obtained the highest values of DSC, Jaccard, and precision. In addition, the
CAFS segmentation out of the nasopharyngeal carcinoma boundary compared with four
other segmentation models is closest to the ground truth.

In general, the main contribution of CAFS are as follows:

• The teacher–student cooperative segmentation mechanism allows CAFS to segment
nasopharyngeal carcinoma using only a small amount of labeled data;

• The attention mechanism could prevent confusing nasopharyngeal carcinoma with
surrounding tissues;

• The feedback mechanism allows CAFS to segment nasopharyngeal carcinoma more
accurately.
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Figure 1. The task of CAFS is to automatically segment out the nasopharyngeal carcinoma boundaries
by using only a small amount of labeled data. However, there are several challenges of segmenting
nasopharyngeal carcinoma. First, reliable labeled data are difficult to obtain. Second, the nasopharyn-
geal carcinoma resembles the surrounding tissue. Third, the boundaries of nasopharyngeal carcinoma
are irregular. The CAFS utilizes the cooperative, attention mechanism, and the feedback mechanism
to address these difficulties, respectively.

2. Related Work

In this section, related studies on Nasopharyngeal Carcinoma segmentation are cat-
egorized into fully-supervised methods and semi-supervised methods, which are to be
introduced, respectively.

2.1. Fully-Supervised

The most common method for the automatic segmentation of nasopharyngeal carcinoma
is the fully-supervised methods [24–28]. In the last few decades, deep learning methods have
been increasingly used in medical image segmentation [29–31]. Among them, many fully
supervised algorithms have been proposed for nasopharyngeal carcinoma segmentation.
Convolutional neural networks (CNN) [32] are an effective image segmentation method
that captures contextual semantics by computing high-level feature maps [33,34]. Since the
pioneering CNN algorithm by Lecun et al., in 1990, more and more improved CNN algo-
rithms for image segmentation have been proposed. Pan et al. [35] improved the typical
CNN network by designing dilated convolution at each layer of the FPN to obtain con-
textual associations, which was applied to nasopharyngeal organ target segmentation.
Some other scholars segment nasopharyngeal carcinoma by improving CNN into the CNN-
based method with three-dimensional filters [36–38]. Ronneberger et al. [39] propose in
2015 a convolutional networks called U-Net for biomedical image segmentation. After
that, many segmentation algorithms for medical images were adapted from U-Net. Some
scholars combined mechanisms such as attention mechanism and residual connectivity
with U-Net to improve segmentation performance and segment the nasopharyngeal carci-
noma [40–42]. In order to accommodate the volume segmentation of medical images, many
U-Net-based 3D models have been developed as well [43,44]. While these fully supervised
methods are capable of achieving the excellent segmentation effect, they predicate by using
a large amount of labeled data. The fact that reliable labeled data are often tough to obtain
as specialized medical knowledge and time are both demanded.

2.2. Semi-Supervised

More and more semi-supervised segmentation methods have been proposed in recent
years to confront the challenge of difficult access to annotated data [45]. Self-training is
one of the most commonly used semi-supervised methods [46]. It first trains using a small
amount of labeled data, then makes predictions on unlabeled data, and finally mixes the ex-
cellent predictions with labeled data for training [47,48]. Another common semi-supervised
method is co-training, which uses the interworking between two networks to improve
the segmentation performance [49,50]. Hu et al. [51] proposed uncertainty and atten-
tion guided consistency semi-supervised method to segment nasopharyngeal carcinoma.
Lou et al. [52] proposed a semi-supervised method that extends the backbone segmentation
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network to produce pyramidal predictions at different scales. Zhang et al. [53] then use
the teacher’s uncertainty estimates to guide the student and perform consistent learning to
uncover more information from the unlabeled data.

Sun et al. [54] also applies the teacher–student paradigm in medical image segmentation.
It is worth noting that the mixed supervision in [54] stands for partial dense-labeled su-
pervision from labeled datasets and supplementary loose bounding-box supervision for
both labeled and unlabeled data. Our work only uses partial dense-labeled supervision.
In addition, Ref. [54] applies bounding-box supervision to provide localization infor-
mation. In our work, the attention mechanism involves localizing the nasopharyngeal
carcinoma target. Moreover, Sun et al. [54] have the teacher model well-trained before
providing pseudo label guidance for the student, while we optimize both teacher and
student models simultaneously.

In addition to the self-training and the co-training, semi-supervised methods include
paradigms such as generative models, transductive support vector machines, and Graph-
Based methods as well.

3. Methodology

CAFS contains three primary strategies: the teacher–student cooperative segmentation
mechanism, the attention mechanism, and the feedback mechanism, as shown in Figure 2.
To address the challenges in the segmentation of nasopharyngeal carcinoma, each mecha-
nism plays an important role respectively.

Student 
ModelLabeled Set

Unlabeled Set Pseudo-
mask

Output for 
unlabeled set Unlabeled Set

Labeled SetOutput for 
labeled Set

Ground truth

Cooperative Segmentation

Feedback Mechanism

Attention 
Mechanism

Attention 
Mechanism Conv+Relu Max pooling Up-conv Softmax

Attention Mechanism

Attention 
Mechanism

Attention 
Mechanism

Teacher 
Model

Figure 2. This figure shows the composition of CAFS. As shown in the figure, CAFS consists of
three main parts, which are the teacher–student cooperative segmentation mechanism, the attention
mechanism, and the feedback mechanism. The teacher–student cooperative segmentation mechanism
includes both teacher and student models, each of which uses U-Net2D as the backbone network.
The attention mechanism is fused between the skip connection of the backbone U-Net. CAFS is a
novel semi-supervised segmentation method, which incorporates several impelling strategies to address
the difficulty of segmenting nasopharyngeal carcinoma and make the segmentation more effective.
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3.1. Cooperative Segmentation

CAFS contains two models, the teacher and the student models, which cooperate to
achieve the segmentation task using a small amount of nasopharyngeal carcinoma labeled data.
Although both these two models use U-Net as the structure, the parameters of each are
independent of each other at the beginning of training. First, the teacher model is trained by
a small amount of labeled data so as to update the parameters ΦTeacher of the teacher model.
The objective of the training is the Cross-Entropy Loss Function (CELF). The YGT refers to the
ground truth, and the ŶTeacher refers to the prediction of the teacher model:

ΦTeacher ∼ LCross−Entropy = −
N

∑
k=1

(YGT × ln ŶTeacher) (1)

When the training has reached the expectation, the unlabeled nasopharyngeal carci-
noma data Xunlabeled are fed into the teacher model ΦTeacher to obtain the predicted segmen-
tation pseudo-mask Ŷpseudo−mask for unlabeled nasopharyngeal carcinoma data.

The same batch of unlabeled data Xunlabeled is then fed into the student model and
utilizes the generated pseudo-mask Ŷpseudo−mask as the supervision, thus updating the
parameters ΦStudent of the student model. The CELF is used as the objective for training
the student model as well. The ŶStudent refers to the prediction of the student model:

ΦStudent ∼ LCross−Entropy = −
N

∑
k=1

(Ŷpseudo−mask × ln ŶStudent) (2)

The final prediction Ŷoutput of nasopharyngeal carcinoma segmentation was generated
by the student model:

Xinput
ΦStudent−−−−−→ Ŷoutput (3)

The teacher and student models cooperate to make CAFS require only a small amount
of labeled nasopharyngeal carcinoma data to complete the segmentation task.

3.2. Attention Mechanism

The function of the attention mechanism [55] is to sift through the many pieces of
information that are effective for segmenting nasopharyngeal carcinoma.

In recent years, more and more attention mechanisms have been used in the field of
computer vision, such as the external attention mechanism proposed by Guo et al. [56], the
self-attention mechanism proposed by Vaswani et al. [57], and the Bottleneck Attention
Module proposed by Park et al. [58]. These attention mechanisms play a role in image
segmentation to extract information about the details of the target, but they are not dynam-
ically adjustable when used. However, the fact that, in the neuroscience community, the
receptive field size of the visual cortex neurons is regulated by the stimulus [59]. Thus,
CAFS introduces the adjustable attention mechanism [60]. Thus, it can flexibly deal with
the change of target due to the difference in scale during the downsampling.

CAFS fuses the adjustable attention mechanism to the skip connection of the U-Net.
The input of the attention mechanism is the feature map output from the encoder down-
sampling layer, and the output is in the upsampling decoder layer.

Firstly, the input feature map X is transformed by grouped/depthwise convolu-
tions, batch normalization, and ReLU function by using several convolution kernels of
particular sizes. Then, different intermediate transformations U, Ũ, Û are obtained for
different sizes of convolution kernels, respectively.

The results of the transformation of these different sizes of branches are then added
together as follows:

U = U + Ũ + Û (4)
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Then, use global average pooling to process the resulting U, which generates the
channel-wise statistics Schannel . The channel-wise statistics are then processed through the
batch normalization and ReLU functions in turn to obtain a compressed feature map m:

m = FReLU((FBN(Schannel))) (5)

Then, calculate the weights of each of the these branches respectively:

α =
ea×m

ea×m + eb×m + ec×m , (a, b, c ∈ R) (6)

Finally, the attention map is obtained based on the intermediate transformation results
of the above these branches and their weights:

Y = αU + βŨ + γÛ (7)

Since feature maps of different scales generate different weights for different branches
in Equation (6), this is equivalent to a gate that controls the final attention vector generation
depending on the scale. Therefore, the attention mechanism adaptively generates attention
vectors for output to the upsampling layer under different scale feature map stimuli
generated by different downsampling layers.

CAFS fuses the attention mechanism, which enlarges the target area and reduces
the background area in the nasopharyngeal carcinoma image while keeping the image
size constant. Ultimately, more information can be captured by enlarging the target area
and avoiding the confusion of the nasopharyngeal carcinoma area with the surrounding
tissues during segmentation.

3.3. Feedback Mechanism

CAFS introduces a feedback mechanism [61], which allows for more accurate segmen-
tation of nasopharyngeal carcinoma boundaries. As stated in Section 3.1, the student model
was trained on unlabeled nasopharyngeal carcinoma data and the pseudo-masks to update
the parameters. Now have the student model make predictions on labeled nasopharyngeal
carcinoma data Xlabeled, and the predictions Ŷpred then compare with the ground truth YGT
utilizing the CELF:

LCross−Entropy = −
N

∑
k=1

(YGT × ln Ŷpred) (8)

The comparison results are fed back to the teacher model and then updates the parameters
of the teacher model. The Φ′Teacher refers to the updated parameters of the teacher model.

The prediction results of the student model for the labelled nasopharyngeal cancer data
were determined by the parameters of the student model, which relied on the pseudo-label
generated by the teacher model for optimisation. The feedback obtained from comparing
the prediction results of the student model with the ground truth guides the teacher
model to generate improved pseudo-masks, which in turn leads to the generation of more
effective student model parameters and more accurate predictions of the nasopharyngeal
carcinoma boundaries.

4. Experiments
4.1. Data

The data for this paper were obtained from 83 patients who were diagnosed with na-
sopharyngeal carcinoma. All patients were scanned by Siemens Aera MRI system on their
heads and neck, and contrast was used to enhance the display during the scanning process.
We stored the scanned MRI images in Digital Imaging and Communications in Medicine
(DICOM) file format. We used the annotation tool itk-snap for 831 images containing
nasopharyngeal carcinoma from these 83 patients to annotate and store them as 2D image
files. We applied the data augmentation method to augment the datasets. Data augmen-
tation methods include rotating, flipping, and mirroring the images. After augmentation,
the number of the images is augmented from the original 831 images to 3555 images.
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Our data are divided according to patients, though the number of slices included per pa-
tient is not exactly equal. We used 57 patients as the training set, 13 patients as the training
set, and 13 patients as the test set in a ratio of about 70%:15%:15%. This means the data
of the same patient can only appear in the training set or the test set, which avoid several
consecutive slices in the same patient appearing in the training and test sets respectively
and affect the results. In addition, we cropped the area outside the nasal cavity to reduce
the computational burden and resized the image to 256× 256.

4.2. Implementation Details

As described in Section 3.1, we use the U-Net as the network framework, and the
parameters of the teacher and the student are independent of each other at the beginning
of training. The implementation of CAFS is based on the PyTorch library, which we run on
one RTX 3090 GPU. Before formally starting the training, the teacher model should first
be pretrained to excellence. We conducted sufficient experiments on the validation set to
ultimately determine the optimal set of hyperparameter values by altering the values of
the hyperparameters (Table 1) and observing the segmentation results on the validation set.
CAFS chooses SGD as the optimizer for both pretraining and the following segmentation
training, the weight decay of which is 0.0001. The learning rate is 0.001 for training. The
training iterations are 1500. The batch size is 8. In our experiments, we selected 1000
of the total 2874 images in the training set as labeled data and the remaining 1974 as
unlabeled data. The experimental results also show that such an allocation achieves the
most optimal segmentation performance. Moreover, in the attention mechanism, we use
four convolutional kernels of different sizes: 1 × 1, 3 × 3, 5 × 5, and 7 × 7.

Table 1. The main setting of hyperparameters for CAFS.

Optimizer Weight Decay Learning Rate Training Iterations Batch Size

SGD 0.0001 0.001 1500 8

4.3. Evaluation Metrics

In this paper, the following metrics are used for evaluation. These evaluation metrics
are also used in the subsequent comparison experiments.

Dice Similarity Coefficient (DSC) is used to measure the similarity of two sets, the
value range is [0, 1], the larger the value, the more similar the two sets:

DSC =
2|A ∩ B|
|A|+ |B| (9)

Jaccard coefficient is used to calculate the similarity between two sets, defined as the
ratio of the size of the intersection of A and B to the size of the union of A and B. The value
range is [0, 1], the larger the value, the more similar the two sets:

J(A, B) =
|A ∩ B|
|A ∪ B| (10)

Precision is specific to the prediction results, and it indicates how many of the samples
with positive predictions are actually positive samples:

precision =
TP

TP + FP
(11)

where TP and FP are the numbers of true positive and false positive pixels across all images
in the valid set and test set.

Recall is for the original sample, and it indicates how many positive cases in the
sample were predicted correctly:

recall =
TP

TP + FN
(12)
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where TP and FN are the numbers of true positive, and false negative pixels across all
images in the valid set and test set.

5. Results
5.1. Performance of CAFS

As we elaborated in Section 2, the teacher model plays a guiding role in the training
process and the final prediction of CAFS is carried out by the student model. Therefore,
the results in Section 5 are generated by the student model. The results show that CAFS
performs excellently on the nasopharyngeal carcinoma segmentation task. The final test
metrics: The average DSC value is 0.8723, the average Jaccard coefficient is 0.7964, the
average precision is 0.8849, and the average recall is 0.8796. In addition, the average speci-
ficity is 0.9447. The displayed metrics and segmentation results illustrate that CAFS can
overcome the nasopharyngeal carcinoma segmentation challenges presented in Section 1.
First, the implementation of our method uses only a small amount of labeled nasopharyn-
geal carcinoma data for training. Second, Figure 3 (rows 1, 3, 7) show that, in most cases
where nasopharyngeal carcinoma resembles surrounding tissues and is easily confused,
CAFS can still accurately segment nasopharyngeal carcinoma from them. Third, Figure 3
(rows 2, 4, 5, 6) shows that CAFS can still do well in the case of irregular nasopharyngeal
carcinoma boundaries.

We explored the effect of the amount of labeled data on the experimental results.
In the experiment, we alter the amount of labeled data in the training set and observe
the metric changes in the results. The training set has a total of 2874 images. We set the
number of labeled data to 500, 1000, 1500, and 2000, respectively. The comparison results
are shown in Table 2. The experimental results showed that the best results were obtained
when the number of labeled data was 1000. It is worth being noticed that Table 2 shows
that it is not the case that the more labeled data are used, the better the model segmentation
is. The training set contains labeled data and unlabeled data. The teacher model generates
pseudo-masks for the unlabeled data in the training set. The student model utilizes the
unlabeled data and the pseudo-masks as supervision to update the parameters. If the
proportion of labeled data in the training set increases, the proportion of unlabeled data
decreases, and fewer data can be used to train the student model, thus the performance of
the student model decreases. On the other hand, the decrease in the performance of the
student model generates false feedback which misleads the teacher model to generate a
worse pseudo-mask.

Table 2. Segmentation performance of CAFS for nasopharyngeal carcinoma when different amounts
of labeled data are provided for model training. The four metrics of DSC, Jaccard, precision, and
recall were used to evaluate the performance of the segmentation. The highest value of each metric
is bolded in the table. The data show that the best training results are achieved when 1000 labeled
samples are provided for the training model.

Number of Labeled Data DSC Jaccard Precision Recall

500 0.8345 0.7234 0.8378 0.8469
1000 0.8723 0.7964 0.8849 0.8796
1500 0.8387 0.7207 0.8342 0.8479
2000 0.8420 0.7297 0.8413 0.8485

In addition, to further illustrate the superior feature extraction performance of the
adaptive attention mechanism, we conducted comparison experiments with four other state-
of-the-art attention mechanisms. In the comparison experiments of attention mechanisms,
we fused each attention mechanism into the skip connection layer of the teacher network
and the student network, respectively, with the rest of the model remaining unchanged.
The four metrics in Section 4.3 are still used to evaluate the performance, and the per-
formance of the model fusing different attention mechanism is shown in Table 3. It can
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be observed that the adaptive attention mechanism achieves optimal values for all metrics
except recall. This indicates that the adaptive attention mechanism has a superior performance.

Table 3. Segmentation performance of the model fusing different attention mechanisms. Except for
the replacement of the attention mechanism, the rest of the model and the parameter settings are
identical to CAFS. The adaptive attention mechanism achieves the highest values on all three metrics:
DSC, Jaccard, and Precision, indicating its superior feature extraction performance.

Attention Mechanism DSC Jaccard Precision Recall

Ours 0.8723 0.7964 0.8849 0.8796
CBAM [62] 0.8078 0.6303 0.6970 0.8682

SEAttention [63] 0.7986 0.6647 0.7258 0.8876
ECAAttention [64] 0.7924 0.6562 0.7187 0.8830
CoTAttention [65] 0.8200 0.6949 0.8639 0.7366

Ground Truth CAFS U-Net U-Net+Att Duo-SegNet TCSM

Figure 3. Segmentation results of five models. We selected several representative images of na-
sopharyngeal carcinoma from the test set. These images are characterized by the similarity of the
nasopharyngeal carcinoma to the surrounding tissue (rows 1, 3, 7) and the complexity of the nasopha-
ryngeal carcinoma boundaries (rows 2, 4, 5, 6). From left to right, they are ground truth, CAFS, U-Net,
U-Net + Attention, Duo-SegNet, and TCSM. The blue line in the figure represents the boundaries of
each model nasopharyngeal carcinoma segmentation result.
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5.2. Ablation Analysis

Through extensive experiments, we performed ablation analysis to demonstrate the
contribution of the modules proposed. CAFS consists of three modules: Cooperative
segmentation (C-S), Attention mechanism (Att), and Feedback mechanism (Fb). In this
section, we eliminate these three modules in turn and conduct experiments according to the
following module combinations: the complete CAFS, removing the Attention mechanism
leaving Cooperative segmentation and Feedback mechanism, removing the Feedback
mechanism leaving Cooperative segmentation and Attention mechanism, only Cooperative
segmentation, and the CAFS without pretraining. The experimental results are shown in
Table 4.

Table 4. Results of ablation experiments. Each abbreviation in the first column stands for
C-S (Cooperative segmentation), Att (Attention mechanism), and Fb (Feedback mechanism). We
use four metrics, DSC, Jaccard, precision, and recall, to evaluate the performance of segmentation
with different combinations of modules.

Model DSC Jaccard Precision Recall

C-S + Fb + Att 0.8723 0.7964 0.8849 0.8796
C-S + Fb 0.8394 0.7632 0.8425 0.8487
C-S + Att 0.8579 0.7758 0.8562 0.8478

C-S 0.8385 0.7467 0.8312 0.8335
Without Pre-training 0.5935 0.4376 0.4230 0.5226

The results demonstrate that CAFS performs the worst when only Cooperative seg-
mentation is utilized. Therefore, the attention mechanism and feedback mechanism play
an important role in the segmentation of nasopharyngeal carcinoma, which can effectively
improve the model performance. For the metric DSC, removing the Feedback mechanism
by leaving the Cooperative segmentation and Attention mechanism works better than
removing the Attention mechanism by leaving the Cooperative segmentation and Feed-
back mechanism. Thus, for the DSC, the contribution of the attention mechanism may
be greater than the contribution of the feedback mechanism. In addition, notice that, if
the teacher model is not pre-trained, the segmentation results of the network will drop
sharply. Therefore, pre-training the teacher model well is necessary for CAFS to complete
the segmentation task successfully.

5.3. Comparison with State-of-the-Art Models

We compare CAFS with four state-of-the-art models, including U-Net, U-Net with
attention mechanism, Duo-SegNet, and TCSM. Among them, the U-Net and U-Net with
attention mechanisms are the fully supervised methods. In addition, the Duo-SegNet [66]
and TCSM [67] are the semi-supervised methods. In the validation process, we first train the
model using the parameters recommended in the corresponding paper and subsequently
analyze the performance of each method on the validation set. In the process, the same
training set, test set, and validation set are used for all five methods and evaluate them by
using the metrics in Section 4.3.

Table 5 shows the metrics performance of the five methods for nasopharyngeal
carcinoma segmentation. The specific metrics values for each model are as follows: For
U-Net, the DSC is 0.7456, which is 12.67% lower than CAFS, the Jaccard is 0.6868, which is
10.96% lower than CAFS, the precision is 0.6569, which is 22.8% lower than CAFS, the recall
is 0.8822, which is 0.26% higher than CAFS. For U-Net with attentional mechanism, the
DSC is 0.8198, which is 5.25% lower than CAFS, the Jaccard is 0.7011, which is 9.53% lower
than CAFS, the precision is 0.8202, which is 6.46% lower than CAFS, the recall is 0.8309,
which is 4.87% lower than CAFS. For Duo-SegNet, the DSC is 0.8130, which is 5.93% lower
than CAFS, and the Jaccard is 0.6849, which is 11.15% lower than CAFS, the precision is
0.7966, which is 8.83% lower than CAFS, the recall is 0.8307, which is 4.89% lower than
CAFS. For TCSM, the DSC is 0.7970, which is 7.53% lower than CAFS, and the Jaccard is
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0.6987, which is 9.77% lower than CAFS, the precision is 0.8014, which is 8.35% lower than
CAFS, the recall is 0.8978, which is 1.82% higher than CAFS. Among the metrics of these
models, all metric values are highest for CAFS except for TCSM, whose recall is 5% higher
than CAFS. These metrics data suggest that CAFS has higher segmentation efficacy for
nasopharyngeal carcinoma than these models.

Table 5. Performance of CAFS and four other state-of-the-art models on the task of segmenting
nasopharyngeal carcinoma. The training, testing, and validation processes for all five methods use
the same data set distribution. We used four metrics to evaluate the performance of each model, DSC,
Jaccard, precision, and recall, respectively. The higher the value of any metric, the better the model
performs on the corresponding performance evaluation. The most optimal value of each metric is
bolded in the table. It can be seen that, except for recall, the other three metrics of CAFS achieved the
highest values.

Model DSC Jaccard Precision Recall

CAFS 0.8723 0.7964 0.8849 0.8796
U-Net [39] 0.7456 0.6868 0.6569 0.8822

U-Net + Att 0.8198 0.7011 0.8202 0.8309
Duo-SegNet [66] 0.8130 0.6849 0.7966 0.8307

TCSM [67] 0.7970 0.6987 0.8014 0.8978

To better compare the performance of each model, we plotted the contents of Table 3 as
a radar chart (Figure 4) and drew a P-R curve. The radar plot takes DSC, Jaccard, Precision,
and Recall as coordinates, and the more the coordinates are to the outside, the better the
corresponding metric is. As can be seen, except for Recall, the other three coordinates of
CAFS are all closer to the outside, indicating that CAFS works better. In the PR curve,
if the curve of one model wraps the curve of the other model, the former outperforms
the latter. Figure 4 shows that the red curve (CAFS) is in the uppermost right position,
which indicates that CAFS performs better than the other four models. It is well known
that U-Net is a fully supervised method specialized in the segmentation of medical images.
In addition, CAFS uses fewer labeled data to achieve better results than the fully supervised
methods. In addition, CAFS also achieves better performance than the semi-supervised
methods, Duo-SegNet and TCSM.

DSC Jaccard

PrecisionRecall

CAFS U-Net U-Net+Att Duo-SegNet TCSM

P-R Curve
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 4. Radar plots and P-R curve. The radar plot is based on the four metrics of DSC, Jaccard,
precision, and recall as axes. Each polygon corresponds to a model, and the four coordinate values of
each model are the values of the four metrics. The closer the vertices of the polygon are to the outside,
the better the model performs on the corresponding metrics. Each curve in the P-R curve corresponds
to a model, and if the area enclosed under the curve is larger, it means that the corresponding model
segmentation performs better.
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To intuitively compare the segmentation effect of each model on nasopharyngeal
carcinoma, we selected several representative nasopharyngeal carcinoma images in the test
set and visualized the segmentation results in Figure 3. In general, the segmentation results
of CAFS are closer to the ground truth. In addition, in the images of nasopharyngeal carci-
noma that resemble the surrounding tissue (Figure 3 rows 1, 3, 7), the segmentation results
of CAFS included the least amount of surrounding tissue, which indicates that CAFS is less
likely to confuse nasopharyngeal carcinoma with the surrounding tissue. Moreover, in the
images of nasopharyngeal carcinoma with complex boundaries (Figure 3 rows 2, 4, 5, 6),
CAFS handles detailed segmentation of complex boundaries more accurately, which shows
that CAFS is capable of handling segmentation tasks with complex boundaries.

6. Conclusions

This paper proposes a semi-supervised nasopharyngeal carcinoma segmentation
method named CAFS. CAFS employs three strategies to overcome the difficulty of na-
sopharyngeal carcinoma segmentation. The teacher–student cooperative segmentation
mechanism addresses the problem of difficulty to obtain labeled data for nasopharyngeal
carcinoma, which allows CAFS to segment using only a small amount of labeled data.
The attention mechanism addresses the problem of similarity of the nasopharyngeal
carcinoma with surrounding tissues, which prevents the model from confusing them.
The feedback mechanism allows CAFS to segment the boundaries of nasopharyngeal car-
cinoma more accurately. These three approaches have allowed CAFS to perform well in
nasopharyngeal carcinoma segmentation.

We analyzed the segmentation performance of CAFS and explored the effect of the
amount of labeled data in the training set on the final segmentation results. In addition,
we did ablation analysis and proved that each part of our method is effective. Finally, we
compare CAFS with state-of-the-art segmentation methods for nasopharyngeal carcinoma,
and the results show that CAFS outperforms other methods.

At the same time, there are some limitations of CAFS. First, CAFS uses the framework
of U-Net2D, while many medical data are now stored in volumetric, i.e., 3D, format.
This means that, when segmenting 3D nasopharyngeal carcinoma data, the volumetric
images need to be artificially converted into 2D images, which increases the time cost of
segmentation. Second, the teacher model and the student model in CAFS have the same
structure, which means that CAFS has to take up more computational resources than the
model with only one network. Thus, our future work will focus on adapting CAFS to
segmented volume medical data on the one hand, and simplifying the network structure
while maintaining excellent performance on the other hand.
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