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Sign epistasis caused by hierarchy within signalling
cascades
Philippe Nghe1,2, Manjunatha Kogenaru 1,4 & Sander J. Tans1,3

Sign epistasis is a central evolutionary constraint, but its causal factors remain difficult to

predict. Here we use the notion of parameterised optima to explain epistasis within a sig-

nalling cascade, and test these predictions in Escherichia coli. We show that sign epistasis

arises from the benefit of tuning phenotypic parameters of cascade genes with respect to

each other, rather than from their complex and incompletely known genetic bases. Specifi-

cally, sign epistasis requires only that the optimal phenotypic parameters of one gene depend

on the phenotypic parameters of another, independent of other details, such as activating or

repressing nature, position within the cascade, intra-genic pleiotropy or genotype. Mutational

effects change sign more readily in downstream genes, indicating that optimising down-

stream genes is more constrained. The findings show that sign epistasis results from the

inherent upstream-downstream hierarchy between signalling cascade genes, and can be

addressed without exhaustive genotypic mapping.
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Genetic interactions can render mutational effects, positive
or negative on phenotype or fitness, depending upon the
genetic background. These sign-changing epistatic inter-

actions are distinct from other forms, such as antagonistic or
synergistic epistasis, in which only the magnitude of the muta-
tional effect is changed1. Sign epistasis is a central genetic con-
straint in evolution, as mutations that together are required to
evolve a function may be deleterious when they occur individu-
ally. This results in a reduced fixation probability, because
mutations must occur in particular order or in rapid succession
within the same lineage2.

Sign epistasis can be detected by systematically combining
multiple mutations3,4, and has been observed to determine the
course of evolution in laboratory experiments5–7. Such genotype
mapping efforts are laborious and specific to the studied phe-
notype. It is therefore a central challenge to understand sign
epistasis mechanistically. Fisher’s geometric models of
phenotype–fitness relations have been used to show that muta-
tions near the fitness peak can display sign epistasis8–10, but
without addressing molecular mechanisms11. Data suggests that
sign epistasis can result from direct molecular recognition2,4,12,13,
and trade-offs between enzymatic activity and thermal stability
within single genes3. Here we surmised that genes within the
signalling cascades could exhibit sign epistasis, as they work in
concert to transmit signals faithfully14. Single and multiple gene
knock-outs have been used to identify such interactions, in order
to decipher network connectivity11. This approach has allowed to
identify redundancies between different pathways15 or clustering
in metabolic units16. However, the role of sign epistasis within the
signalling networks and its relation to evolutionary optimisation
has been addressed only scarcely17–20.

Here, we study pairwise interactions between genes within a
signal transduction cascade in Escherichia coli using a combina-
torial approach. A number of random mutants of tetR and lacI
transcription factors are paired in all combinations to produce a
library of cascades, whose ability to transduce signals is quantified
by measured input–output relations. These data indicate a sig-
nificant number of sign epistatic interactions between tetR and
lacI, with the corresponding sign change occurring pre-
dominantly for mutations in the downstream lacI. To understand
these findings, we present an approach to predict epistatic
interactions from a biochemical model of the cascade, which
relies on the notion that mutations in the repressor LacI do not
affect the biochemical parameters of the repressor TetR, and vice
versa. This method correctly predicts the observed sign epistasis,
the dependence on the amplitude or range of input variations and
the regions within phenotype space that display epistasis. Owing
to the generality of this geometric analysis, we could show that
these results apply to different types of cascades and alternative
signal transduction performance measures. Finally, the approach
provides a single criterion for the presence of sign epistasis within
the full phenotype space: it exists when the optimal value of a
phenotypic parameter of one gene depends on a phenotypic
parameter that corresponds to another gene, and hence is not
affected by the same mutations. This methodology is general and
may be applied to any pair of traits that are genetically inde-
pendent, but contribute in concert to organismal functions or
fitness.

Results
Measurements of sign epistasis within a signalling cascade. We
studied epistasis in a transcriptional signalling cascade in E. coli
(Fig. 1a). This cascade transduces the arabinose concentration
signal present in the bacterial environment (input) to a yellow
fluorescent protein (YFP) readout (output, Fig. 1a). For two genes

within the cascade (lacI and tetR), we generated mutation var-
iants, using error-prone PCR. We characterised the response of
each lacI and tetR variant individually, using additional fluor-
escent labels fused in-frame with these genes (Supplementary
Fig. 1). Based on these measurements, we selected seven lacI
variants (lacI1 to lacI7) and five tetR variants (tetR1 to tetR5),
including the wild-type forms, that displayed distinct dose-
response characteristics (Supplementary Fig. 2–3). Next, we
assembled 35 different cascade genotypes, by combining the tetR
and lacI variants (Fig. 1b). This approach allowed us to char-
acterise epistasis between two genes in a transcriptional signalling
cascade. Since our aim is to investigate epistasis caused by
functional interactions rather than by direct physical contact, we
chose regulatory proteins that are well-characterised and known
to not interact physically21,22.

For each of the resulting genotype, we assessed the signal
transduction ability by measuring the YFP response, while
varying the arabinose concentration, and quantified the output
response range R as the difference between the maximum and the
minimum YFP output values (Fig. 1c). We consider temporal
variations between two environments: one without arabinose,
where a minimal output is favoured, and one with arabinose,
where a maximal output is favoured. When these environmental
variations are fast compared to the typical lifespan of one
individual, R can be interpreted as a proxy for fitness (Methods
section). For a number of cascade genotypes, the output showed
no detectable response (ten of the 35 genotypes, p < 10−3, two-
sided Welch t-test, Methods section). These genotypes cannot
faithfully transduce the signal, as arabinose changes do not
produce significant YFP changes. However, these poorly
performing cascades can be optimised to achieve higher R,
through mutations in tetR and lacI.

The data indicated the combinations of mutations in tetR and
lacI, which exhibit sign epistasis. For instance, the rather weak
response of the cascade tetR4–lacI5 can be increased by mutating
lacI5 into lacI4 and tetR4 into tetR1 (Fig. 1c, arrows). This
optimisation depends strongly on the order in which the
mutations occur: R decreases further when mutating lacI first,
then increases when mutating tetR. In contrast, R increases in
both steps, when tetR is mutated before lacI (Fig. 1c, arrows). The
same lacI mutation thus can affect R positively or negatively,
depending on the tetR background, which indicates sign epistasis.

More specifically, we refer to this case as downstream sign
epistasis (Fig. 1d), because it is the mutation in lacI (not in tetR)
that can have a positive or negative effect on R, and lacI is
downstream of tetR within the regulatory cascade. Conversely, we
refer to upstream sign epistasis when such a sign change in the
mutational effect occurs for the tetR mutations. Reciprocal sign
epistasis occurs when both tetR and lacI mutations produce a sign
change in R. Changes in only the magnitude of R were classified
as magnitude epistasis (Fig. 1d).

There are 210 independent pairwise interactions to consider in
total, given that each of the 35 genotypes can reach 24 distinct
genotypes by combining mutations in lacI and tetR, and all the
pairwise interactions comprising the same 4 genotypes are
equivalent. We determined all the pairwise interactions and
found that a significant fraction displayed some form of sign
epistasis. Downstream sign epistasis was the most predominant
form (22%), with upstream sign epistasis being a minor fraction
(6%), and no case of reciprocal sign epistasis (Fig. 1e).

Functional relations between the repressors may explain the
observed epistasis, as their molecular properties must be tuned
with respect to each other to transduce signals. However, whether
such functional dependencies are indeed sufficient to produce
sign epistasis is unclear. For instance, the function of the cascade
as a whole depends on a large number of phenotypic parameters,
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such as binding affinities and cooperativities, while mutations are
often pleiotropic and affect more than one parameter at the same
time.

Sign epistasis resulting from geometric fitness models. In order
to analyse the origin of the observed sign epistasis, we developed a
theoretical approach inspired by geometric fitness models9,10. To
illustrate the general principles, in this section, we first consider
the abstract case of two traits X and Y whose effects on fitness F
are expressed by Gaussian functions, which are abstract in the
sense that they do not explicitly describe molecular interactions
or mechanisms. In the next section, we will apply this approach,
using an explicit biochemical function that expresses how R
depends on LacI and TetR phenotypic parameters, such as
repressor dissociation constants.

Figure 2a displays a Gaussian fitness function as a function of
phenotypes X and Y. Within this X–Y plane, mutations can be
represented by vectors that point from the original phenotype to
the mutant phenotype. An important property of the examined
systems is that, the mutations affect either X or Y, but not both.

The corresponding vectors are therefore orthogonal in the X–Y
plane. In our experimental system, mutations in LacI indeed
should not affect the phenotypic parameters of TetR, because the
two proteins do not interact directly21,22. This assumption is
further supported by sequence analysis, which did not reveal
mutations in the DNA-binding interface of TetR and LacI, and
hence no promiscuous operator binding (Supplementary Table 1).
Another important feature of this analysis is that, mutants are
characterised by phenotypic rather than genetic parameters.
Hence, they can be ranked along the corresponding axis (Fig. 2a),
also when the mapping between genotype and phenotype is
unknown, as is typically the case.

Epistasis is determined by tracking the changes in F along
the two double-mutation trajectories from XY to X′Y′, in
which either X or Y is mutated first: XY → XY' → X′Y′ and XY →

X′Y′ → X′Y′ (Fig. 2, top). Geometrically, these two trajectories
together form a rectangle in X–Y space, with start and end
phenotypes located at opposite corners. Here we focus on
trajectories ending at the absolute maximum of the landscapes,
but the approach can be generalised to other end points
(Supplementary Fig. 4b). Considering trajectories starting from
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Fig. 1 Sign epistasis in combinatorial regulatory cascades. a Experimental system: tetR and lacI genes transduce the arabinose input (in) into a YFP
expression output (out). b Mutation strategy: randomly mutated tetR and lacI variants encoded on two separate vector plasmids were transformed in
combinatorial fashion into E. coli cells. c YFP versus arabinose responses for all combinations of the five tetR and seven lacI variants, including the wild-type.
Signal transduction ability for each variant is quantified by R= outmax–outmin (see tetR1–lacI4 variant). Numbers indicate ranking of R values for each
mutant, with 1 corresponding to the highest R, and NS indicates non-significantly increasing responses, compared to measurement noise (p < 10−3, two-
sided Welch t-test, Methods section). The four black arrows indicate an example of sign epistasis: R decreases when first mutating lacI, but increases for all
other mutations. Error bars are s.d. over the mean for n= 3 biological replicates. tetR and lacI mutants are ordered by their operator dissociation constant,
with the top-left showing the most tightly binding variants. d Classes of sign epistasis between tetR and lacI mutations and associated colour code. Thick
lines have a minus sign and indicate decreases in R. e Fractions of empirically observed epistasis classes for all possible double mutants (pairwise
interactions), when R is determined over the full arabinose input range. Downstream sign epistasis is predominant
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all points within the X–Y plane and ending at the absolute
maximum, we colour-coded the initial points, according to the
observed epistasis type (Fig. 2, bottom).

In case of a non-rotated Gaussian fitness function (Fig. 2a), one
only observes fitness increases along both double-mutation
trajectories, for all starting phenotypes. Thus, such phenotype
to fitness functions yield exclusively magnitude epistasis (Fig. 2a,
bottom). Next, one may consider rotated versions of this
landscape (Fig. 2b, c). For moderately rotated landscapes, one
observes fitness decreases along the trajectories for some starting
phenotypes (Fig. 2b, top), which indicates sign epistasis (Fig. 2b,
bottom). Rotating the landscape further leads to reciprocal sign
epistasis in addition to sign epistasis (Fig. 2c). Biologically,
rotations imply that changing one phenotype can be beneficial in
one phenotypic context and deleterious in another23, as the
optimum value of X then depends on Y, and vice versa (see
below). Similar dependencies were already discussed by Haldane,
who noted that “an increase in pigmentation in an animal might
be disadvantageous, unless balanced by an increase in the capacity
of its liver for storing vitamin D during sunny weather23,24.”

To expand on these observations, an optimality perspective is
helpful25. First, we note that, having a phenotype whose effect on
fitness depends on another phenotype does not imply sign
epistasis, as seen for the non-rotated Gaussian fitness (Fig. 2a).
Instead, the optimum of one phenotype must depend on the value
of the other phenotype. We explain this notion in Fig. 2, which
shows how one can visually identify the optimum values of X by
considering the tangent of the iso-fitness lines. At points in the
X–Y space where this tangent is horizontal (Fig. 2b, white line),
the value of X is optimal for fixed Y. These points for different
fixed Y form a line that we call Xopt (dashed red lines in Fig. 2).
The key is that, phenotypes positioned on the line Xopt can only

decrease the fitness when mutating X, as they lie at the optimum.
When Xopt is non-vertical as in Fig. 2b, the same mutation can
increase fitness in another Y background, because the optimum
then shifts and hence the phenotype no longer lies at the
optimum. This is seen in Fig. 2b, where the initial point is located
close to Xopt (red dashed line), and hence the X mutation
decreases fitness, while the same mutation increases fitness after
the mutation in Y. Conversely, we refer to Yopt as the points
where the tangent to the iso-fitness lines is vertical (Fig. 2a,c,
green dashed lines).

Hence, phenotype-fitness landscapes do not produce sign
epistasis when Xopt and Yopt are straight lines that are vertical or
horizontal, respectively (Fig. 2a). Conversely, sign epistasis
domains do emerge when Xopt and Yopt deviate from such
vertical and horizontal lines. There are several uses of such an
optimality approach. First, it allows one to define a single
criterion to establish the presence of sign epistasis, given a
particular phenotype–fitness function. One may alternatively
identify sign epistasis by computationally testing pairwise
interactions between phenotypes, but this requires exhaustive
mapping of high-dimensional spaces and does not allow
analytical analysis. In contrast, the parameterised optima
approach described here (Fig. 2) allows one to formally describe
such a criterion for sign epistasis, and that it applies to
phenotypes of arbitrary dimension and a broad category of
fitness functions (Supplementary Note 1).

The phenotypic interactions we discuss here should not be
confounded with genetic correlations between traits, in which a
genetic change affects two traits at the same time. Indeed, the
phenotypes X and Y here are genetically independent—mutations
affect X or Y, but not both. A different situation arises if instead,
the latter is not true or unclear for instance, because one considers
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Fig. 2 Sign epistasis resulting from geometric fitness models. Diagrams illustrating the principles to determine sign epistasis from phenotype–fitness
relations. Here, we consider Gaussian fitness functions that do not specifically describe cascades nor molecular interactions. a Non-rotated Gaussian
fitness function indicated by colour gradient and elliptical iso-fitness lines. Importantly, we consider mutations that affect X but not Y, and mutations that
affect Y but not X, which is typically the case if X and Y have a distinct genetic basis. Mutations in X and Y are therefore described by orthogonal vectors
(arrows). We consider mutations that lead from a suboptimal phenotype XY to the optimal X′Y′(arrows). For any starting phenotype XY in this landscape,
all four mutations to X′Y' produce increase in fitness, resulting in magnitude epistasis (grey) everywhere (bottom). b Rotated Gaussian fitness function
(angle= π/12). Starting from the red dot phenotype, one mutation decreases fitness, which implies sign epistasis (see arrows). To understand in
mathematical terms, consider the dashed red line (Xopt), which indicates where the tangent of the iso-fitness lines is horizontal (white horizontal line).
When moving along this tangent (which changes X but not Y), the fitness is optimal at Xopt. Thus, starting at or around Xopt, when changing X but not Y,
fitness can only decrease. When the line Xopt is non-vertical as here, the same mutation can increase fitness in another Y background (Y’), because the
optimum then shifts, and hence the phenotype (XY’) no longer lies at the optimum. The same analysis holds for the green dashed line (Yopt). c Rotated
Gaussian fitness function (angle= π/4). When domains for sign epistasis in X- and Y-effect (red and green) overlap, one obtains reciprocal sign epistasis
(yellow dot). To link these features, such as the degree of rotation or skewness to the molecular level, one can consider a mechanistic fitness function
(Fig. 3)
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phenotypes that do not have a distinct genetic basis. Such cases
have been addressed previously by theoretical analysis9,10. The
corresponding mutational vectors are then not necessarily
orthogonal to the axis or form a rectangle, as is the case in Fig. 2.
Even for skewed landscapes like Fig. 2b, c, this additional freedom
then allows trajectories to the optimum that confer fitness
increases only, from any point within the phenotype space. Hence
one cannot attribute one particular type of epistasis to a point
within the phenotype space, which limits the predictive potential.
This is specifically the case for associated evolutionary constraint.
For instance, the yellow domain of reciprocal sign epistasis
implies the existence of phenotypes XY, which must first decrease
in fitness when moving away from the diagonal, before they can
increase again (arrows in Fig. 2c). That is possible, if X and Y are
genetically independent. If not, then this severe evolutionary
constraint is not predicted, as it can be broken by moving along
the diagonal.

In summary, sign epistasis between genetically independent
components can be understood in terms of phenotype–fitness
landscape features. In molecular terms, it is not straightforward to
identify general rules that lead to rotated landscapes and sign
epistasis. However, one can explain and predict epistasis in cases
as studied here, where a mechanistic understanding is available,
as we will discuss next. We note that for two phenotypes that
contribute jointly to fitness, but are not independent genetically
(unlike the cases considered here), a non-rotated or even a
radially symmetric fitness peak may or may not produce sign

epistasis9,10 as the mutational vectors can then point in any
direction. Indeed, the genetic independence of the functionally
interacting phenotypes is central to the current prediction of the
presence of epistasis, or lack thereof.

Sign epistasis resulting from a biochemical model. In order to
apply the above landscape analysis (Fig. 2) for understanding the
empirically observed sign epistasis (Fig. 1d), we used a bio-
chemical model of the cascade. The model aims to describe how R
depends on phenotypic parameters, such as the binding affinity of
LacI and TetR for their operators, Hill coefficients, their mini-
mum and maximum expression levels, as well as the range of
(arabinose) input values over which R is assessed (Methods sec-
tion). This R-function is based on established equations for the
equilibrium repression behaviour of transcription factors26, and
hence serves as a purely theoretical prediction of the functional
interactions between LacI and TetR. The idea is to apply the
landscape approach (Fig. 2) on this R-function to analyse and
predict epistatic interactions between LacI and TetR (Fig. 3).

Here we focus on the dependence of R on the repressor
dissociation constants KTetR and KLacI, while keeping the other
phenotypic parameters fixed (Fig. 3a). For the latter, we used
values derived by fitting the responses of the separate compo-
nents, which were measured with additional fluorescent reporters
(Supplementary Fig. 5, Supplementary Tables 2 and 3). In the
next section, we will consider mutational effects on other
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Fig. 3 Sign epistasis resulting from a biochemical model and environmental dependence. a Simplified diagram of biochemical model of the cascade. This
model expresses the output response range R as a function of phenotypic parameters and input range (Methods section). Here we indicate KTetR and KLacI,
the dissociation constants of each repressor to their operators, but other parameters like Hill coefficients are also considered. Mutations affect either the
TetR or the LacI parameters. b Theoretical prediction of R using the biochemical cascade model (Methods section), for the full 0–100 µM arabinose input
range, as a function of KTetR and KLacI. Other parameters like Hill coefficients are fixed at experimentally observed values. Curved grey lines are the
corresponding iso-R lines. The colour at a particular point indicates the type of epistatic interaction predicted between the phenotype at that point and the
optimum phenotype, as in Fig. 2. This optimum is found at the intersection of the axis (black lines). The line Kopt

TetR indicates the optimal KTetR value for fixed
KLacI. K

opt
LacI indicates the optimal KLacI value for fixed KTetR. K
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resulting in a domain of downstream sign epistasis (red). c Same as b, with R being computed for a restricted 50–100 µM arabinose input range. Here, the
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empirical data (d). d Top: stack histogram of empirical epistasis fractions for different input ranges, as determined from the data in Fig. 1c. Each vertical
stack corresponding to a different input range. Bottom: corresponding input ranges (open circle: minimum input; full circle: maximum input). The data
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phenotypic parameters as well. We found the landscape R(KTetR,
KLacI) to be skewed along one axis: the line Kopt

TetR does not deviate
from the (horizontal) axis, but the line Kopt

LacI does (from the
vertical axis). The latter deviation predicts a single epistasis
domain (Fig. 3b, red domain), and hence sign epistasis, in which
the sign change occurs for mutations in lacI and not tetR. The
latter prediction agrees with the observed predominance of
downstream (lacI) epistasis in Fig. 1e.

The biochemical model is useful to explain the functional
origins of this sign epistasis, as the latter depends on multiple
factors and hence is not intuitively understood (Supplementary
Fig. 6). The model shows that repression is sensitive only for a
window of repressor concentrations near their Kd. For a proper
signal transduction, the range of LacI expression levels must
overlap with this sensitivity window. A lower KLacI (increased
affinity) can limit this overlap, as the operator may then always be
bound by LacI and hence become insensitive to changes in LacI
concentration. However, subsequent decreases in KTetR can regain
and even increase this overlap, as the increased repression by
TetR decreases the LacI concentration and hence operator
saturation, while at the same time increasing the range of LacI
concentration variations (Supplementary Fig. 6).

The model yielded additional predictions. First, it suggested
that the upstream-downstream asymmetry is affected by the
range of input values. Specifically, when the input range is
restricted, Kopt

TetR should now also deviate from the (horizontal)
axis, leading to an extra domain of upstream sign epistasis, while
keeping the downstream sign epistasis domain intact (Fig. 3b,

Supplementary Fig. 7 & 8). One can test this assertion by
determining the types of epistasis for the pairwise interactions as
performed before (Fig. 1e), but now for different ranges of
arabinose concentrations (Fig. 3d). The experimental data, indeed
showed increased upstream and reciprocal sign epistasis for more
restricted arabinose variations, while preserving the downstream
sign epistasis (Fig. 3d).

Second, the landscape smoothness implied that epistasis
types are clustered in phenotypic domains that are arranged in
a radial butterfly-like pattern (Figs. 2a, c and 3b, c). To test for
this clustering, we mapped the experimental data onto an
angular coordinate θ (Fig. 4a), as shown previously for
Gaussian geometric models27. The curved lines, denoting the
positions of the restricted optima (Kopt

LacI and Kopt
TetR), are then

mapped onto straight lines with fixed angles (Fig. 4a). This
mapping allowed us to consider different input ranges and
phenotypic parameters. The resulting angular distributions
were indeed peaked (Fig. 4b), as is expected, and hence
supports a clustering in radially organised domains. The
peaking angles were also consistent, though to larger degree
for upstream and magnitude sign epistasis, which point to the
right and top-right directions, respectively. The observed angles
corresponded to lesser degree to the theoretical expectations for
downstream, which not only points to the top, but also to the
right, and reciprocal sign epistasis, which points mainly to the
right rather than the top right (Fig. 4a, b). Such deviations may
have different causes. For instance, the model does not always
accurately capture the functional consequences of the
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angular histograms of epistasis counts for the empirical data (Fig. 1), aggregated overall input ranges, for all possible initial and final mutants and for all
phenotypic parameters. Faded bars: non-significant counts, p < 0.05 (one-tailed binomial test, Methods section). Upstream and downstream sign epistasis
counts (resp. green and red) are grouped in peaks, which is consistent with the radial organisation of domains (a, left). Note that empirical data does not
cover the full phenotype space, and hence some angles (e.g. bottom right) are less represented in the data. Some deviations are observed, such as the
yellow peak towards the bottom right
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mutations, and the studied genotypes do not uniformly sample
the full phenotype space.

Generality of the epistasis domains. Next, we used the bio-
chemical models to examine mutational effects on other pheno-
typic parameters of the cascade, different cascades that also
contain activators, as well as alternative performance criteria.

We first considered the dependence of R on the TetR and LacI
Hill coefficients, and resulting epistasis domains. This analysis
showed a similar radial butterfly pattern, with downstream sign
epistasis again along the vertical axis, and upstream sign epistasis
along the horizontal axis (Supplementary Fig. 9a). Thus,
mutations that affect LacI and TetR Hill coefficients display
functional interactions that give rise to sign epistasis. Other pairs
of phenotypic parameters also showed a similar epistasis pattern
(Supplementary Fig. 9b, c).

One may also consider cascades in which the hierarchy is
inverted, with lacI upstream and tetR downstream (Fig. 5a, b). For
the full range of input values, one then obtains a single domain of
downstream sign epistasis, using the biochemical model (Fig. 5a),
as in the original cascade (Fig. 3b), though the domain shape
differs. Thus, the hierarchy of the cascade components rather
than their genetic or phenotypic properties are determining, as
the sign change now occurs when mutating tetR rather than lacI,
as tetR now is the downstream component. Consistently with the
results of the original cascade (Fig. 3c), we find upstream and
reciprocal sign epistasis domains added to the phenotype space
for more restricted input ranges (Fig. 5b).

Surprisingly, when the downstream lacI repressor, in the
original cascade, is exchanged with an activator, the organisation

of epistasis domains is also similar (Fig. 5c). When instead, the
upstream tetR is exchanged for an activator, this pattern is simply
mirrored against the Y-axis (Fig. 5d). These similarities of the
epistasis domain organisation for different cascades can be
understood from the sensitive window discussed earlier, as it
applies to both activators and repressors (see Supplementary
Note 2 for formal arguments). Overall, the ubiquitous presence of
epistasis in cascades can be understood intuitively from the
geometric fitness model analysis, as they emerge whenever the
fitness function is skewed and the restricted optima depends on
other phenotypic parameters.

We furthermore found that the central results are robust to
different fitness measures. We tested fitness functions, based on
the input–output fold change, nonlinear cost benefit in variable
environments, specific target input–output relations and mutual
information quantifying transmission fidelity (Supplementary
Fig. 10). The butterfly pattern results whenever the iso-fitness
lines are convex (bulge outward away from the origin), which is
often the case around fitness peaks in phenotype space. This
phenomenon can be seen from the construction of Fig. 2b, where
the vertical and horizontal white tangents, which determine the
position of the parameterised optima, alternate along the iso-
fitness ellipses. Locally concave iso-fitness lines and multipeaked
landscapes do display sign epistasis domains, but rather give rise
to more complex patterns. Sign epistasis can break down fully if
one mutation affects phenotypic parameters of both genes, as
performance decrease can then be circumvented. However,
pleiotropy within genes does not have such an effect: for instance,
sign epistasis domains still emerge in the KTetR–KLacI space, when
the changes along the KLacI axis simultaneously induces changes
in the LacI Hill coefficient (Supplementary Fig. 6d).

Discussion
At the genotype level, sign epistasis refers to cases in which the
sign of a mutational effect depends on the genetic background.
Here, we addressed epistasis at the phenotypic level. In similar
terms, sign epistasis arises when a change in a phenotype has a
positive or negative effect, depending on another phenotype, as
long as the two phenotypes are not affected by the same muta-
tions. One can formulate a criterion for this dependence: sign
epistasis is observed when one trait affects how another trait can
optimally contribute to fitness. This criterion can be used to
assess the structure of phenotype spaces as a whole, and hence
differs in definitions that consider individual pairs of genotypic or
phenotypic change. Moreover, considering epistasis at the phe-
notypic level in this fashion allows prediction of sign epistasis
from functional interactions, and to analyse empirical data that
typically do not systematically cover the full phenotype space.
These conclusions rely on, and are enabled by, the realisation that
phenotypic parameters can be genetically independent. One may
expect such genetic independence combined with interactions at
the functional level in many cases, for instance, for phenotypic
parameters that correspond to distinct genes within networks as
considered here.

We used the property of parameter-dependent optima to show
that the upstream-downstream hierarchy determines sign epis-
tasis between genes in signalling cascades. This approach could be
applied to more complex regulatory networks such as chemo-
taxis28 or osmotic regulation networks29, where feedbacks break
the notion of hierarchy, but mutations can have independent
effects on genetic modules. In these cases, reciprocal regulatory
interactions between components could render optima parameter
dependent, and thus produce sign epistasis domains within the
phenotype space. It remains unclear how the geometric analysis
of functional relations could be applied to understand sign
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Fig. 5 Generality of epistasis domain organisation. Epistasis domains
computed for alternative cascade organisations. a Epistasis domains for
exchanged tetR–lacI order (tetR now downstream), for full input range
(0–100 µM arabinose) determined using a biochemical cascade model
(Methods section). b Same as for a, using a restricted input range (50–100
µM arabinose). a and b show qualitatively the same domain organisation as
for the original cascade structure (Fig. 3b, c), indicating that repressor
hierarchy is more important than repressor phenotype. c Epistasis domains
when exchanging tetR for a generic activator. d Epistasis domains when
exchanging lacI for a generic activator. c and d indicate that the case with
activators can have a similar domain organisation, though the symmetry
can be different (see Supplementary Note 2)
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epistasis between mutations that have pleiotropic effects on
multiple genes or traits. This issue may be addressed by mapping
distributions of mutational effects on geometric fitness models,
defined by the underlying functional relations between genes or
traits.

Methods
Construction of the cascade. A synthetic signalling cascade was constructed using
araC, tetR and lacI transcription factors along with their cognate promoters. To
measure the signal propagation through the intermediate layers and levels of TetR
and LacI, we fused these transcription factors with eCFP and mCherry fluorescent
reporters, respectively, in a transcriptional-translational fusion with the linker
EFLQPGGS. The tetR-eCFP and lacI-mCherry genes are encoded on two different
vector backbones as indicated (Supplementary Fig. 1).

pAraC-TetR-eCFP. The tetR and eCFP genes were spliced in a frame, by separating
the two genes, by a linker sequence of 24-base pairs (bps), with an overlap PCR.
The resulting full-length PCR product was cloned into pAraC vector backbone
using EcoRI and XhoI restriction sites, which led to the generation of the pAraC-
TetR-eCFP construct. This vector contains a kanamycin-resistant gene for a
selection and carries a medium copy p15A origin of replication.

pLacI-mCherry-Ptrc-eYFP. This construct was created in two step. First, an
intermediate pPtrc-eYFP vector was constructed as follows: the Ptrc promoter, eYFP
gene and T0 terminator sequences were spliced by an overlap PCR. The resulting
full-length PCR product was cloned utilising XbaI and BbsI restriction enzymes
into a vector backbone, containing an ampicillin resistant selection gene and colE1
origin of replication. In the second step, the PLtetO1 promoter, the lacI gene,
mCherry gene and T1 terminator were spliced by an overlap PCR. The resulting
full-length PCR product was cloned into pPtrc-eYFP intermediate vector backbone,
using HindIII and XhoI restriction enzymes, to obtain a final pLacI-mCherry-eYFP
construct.

Creation of tetR and lacI mutants and screening. The mutations were intro-
duced into the coding regions of tetR and lacI genes by an error-prone PCR, using
the Stratagene Genemorph II Random Mutagenesis kit. By following the manu-
facturer’s protocol, a mutation rate of 1–10 mutations per kb were achieved. The
mutagenized PCR amplicons were subjected to restriction digestion, with EcoRI
and XmaI or BamHI, and ligated back into the corresponding vector backbones to
create mutant libraries. The mutant tetR and lacI libraries were transformed into E.
coli strain MK01 genetic background by the electroporation procedure. The mutant
tetR library was co-transformed into MK01 strain, carrying a wild-type encoding
lacI vector. Similarly, mutant lacI library was co-transformed into MK01 strain,
carrying a wild-type encoding tetR vector. Picked mutant clones were screened in a
96-well plate. The response to external L-arabinose concentration was measured, as
explained in the ‘fluorescence measurements’ section, and the resulting measure-
ment data was processed as explained in the ‘data processing’ section. The resulting
data is presented in Supplementary Fig. 2 and 3.

Fluorescence measurements. E. coli strain MK0122 harbouring DNA constructs,
were inoculated from a glycerol stock into EZ Rich Defined medium with glucose
(Teknova, Hollister, CA, USA, cat. nr. M2105) and appropriate antibiotics. These
cultures were grown at 37 °C until early exponential growth phase, and then diluted
to a final optical density (OD) of 1 × 10−4 at 550 nm (OD550). These diluted
cultures were grown in a 96-well optical-bottom black colour microtiter plate
(NUNC cat. nr. 165305), containing appropriate antibiotics and inducer con-
centrations in a total volume of 200 μl per well. The plate was then inserted into
Wallac Perkin Elmer Victor3 automated plate reader. The OD550 and fluorescence
intensities, from three distinct fluorescent proteins (eCFP, mCherry and eYFP),
were measured at regular interval of time at 37 °C. This instrument was equipped
with a custom-made filter set to record the fluorescence intensities from eCFP
(excitation 430/24, emission 480/20), mCherry (excitation 580/20, emission 632/
45) and eYFP (excitation 500/20, emission 535/25) fluorescent proteins. To facil-
itate the bacterial growth, the plate was under double orbital shaking, during the
non-reading hours. At every 27 min, 9 μl of sterile water was added to each well to
counteract the evaporation.

Data processing. The raw data of the OD550 and fluorescence intensities were
background subtracted from an average value of the wells containing only medium
without bacteria. The OD550 values, corresponding to the fluorescence data points,
were extrapolated from the logarithmic growth phase data points. The normalised
fluorescence was obtained from the exponential growth phase data points, by
dividing the derivative of fluorescence by OD550 ([δFluorescence/δt]/[δOD/δt]).
The normalised fluorescence for the strain without any construct were averaged
and subtracted for the auto-fluorescence from the normalised fluorescence values
of stain with constructs. All the analysis steps were performed automatically, using
custom-made data processing pipeline in the origin data analysis and graphing

software package. Experimental analyses used smooth response YFPsmooth ¼
a½ara�d

bdþ½ara�d þ c for each mutant (continuous curves of Fig. 1c), fitted on the fluores-
cence data point with lsqnonlin Matlab function for parameters a, b, c and d.

Fitness proxy. We considered a variable environment characterised by two input
values x1 and x2, leading to the respective cascade outputs y1 and y2. Each
environment has a fitness (or performance) function F1 and F2. When these
functions follow affine forms of the benefit and cost, F1 ¼ aþ c ´ y1 and
F2 ¼ b� c ´ y2. Assuming that an equal time is spent in both environments, the
average fitness is Fav ¼ ðaþ bÞ=2� c=2ðy2 � y1Þ. For any (a, b, c), the range
R ¼ y2 � y1 is a direct proxy for relative fitness changes due to mutations, as the
latter only affect y1 and y2.

Gaussian fitness function. The centred stretched Gaussian fitness functions
rotated of an angle a are of the form F ¼ expð�ðX;YÞM X;Yð ÞtÞ=ð2π detðMÞÞ,
where M the matrix defined by m11 ¼ cos að Þ2=2þ 2 sin að Þ2,
m12 ¼ m21 ¼ � sin 2a=4þ sin 2a, and m22 ¼ sin að Þ2=2þ 2 cos að Þ2.

Biochemical model and parameters. The kinetic model of the cascade consisted
of combining repressors that are described by the following input–output Hill
function26:

TetRðaraÞ ¼ MAraC �mAraC

1þ ½ara�=KAraCð ÞnAraC þmAraC;

LacIðTetRÞ ¼ MTetR �mTetR

1þ TetR=KTetRð ÞnTetR þmTetR;

OutðLacIÞ ¼ MLacI �mLacI

1þ LacI=KLacIð ÞnLacI þmLacI;

where Mi is the maximum expression level, mi the minimum, Ki the dis-
sociation constant and ni the cooperativity. For activators, we used the func-
tional form

Out ¼ ðMAct �mActÞ in=KActð ÞnAct
1þ in=KActð ÞnAct þmAct:

Prediction of epistasis. Using the notations above, sign epistasis types were
computed using the function R=Out(LacI(TetR(aramin)))−Out(LacI(TetR(ara-
max))), where aramin and aramax define the bounds of the input range.

Significance of fitness variations. To assess the typical noise in the response of

each mutant, we computed the root mean square deviation Δlac;tet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

P

i
ðYFPi � YFPsmoothÞ2

r

between the average YFPi of triplicates for 16 ara-

binose values and the smoothed input–output response. To assess the sig-
nificance of the overall YFP output range Rlac,tet of single response curves, we
tested the hypothesis 'Rlac,tet is strictly positive' using normally distributed sta-
tistics for Δlac;tet for significance p < 0.05. Given that variances between mutants
Δlac;tet are not equal, significance of fitness variations along trajectories was
evaluated with a two-sided Welch t-test for strict positivity of the fitness change
over the full paths (p < 0.001, N= 44, given the 48 measurement points and four
parameters used to fit YFPsmooth). The same test was used to determine sig-
nificantly decreasing intermediate steps.

Significance of angular distributions. To test for the specific angular localisation
of each type of epistasis, we considered the null hypothesis that, for all other
parameters fixed, epistasis type is attributed randomly, under the constraint that
the overall frequency fE of each epistasis type is the one measured over the entire
sample. Note that the angular renormalisation of mutants is exclusively deter-
mined by the fitted values of the experimental binding parameters and the
epistasis structure predicted by the model, and are independent from the
experimentally measured type of epistasis. Therefore, the null hypothesis is
equivalent to drawing epistasis type for each angular bin according to fre-
quencies fE. We thus tested significance using the binomial distribution
BðNθ ; fEÞ, where Nθ is the population of a given angular bin centred on θ, with
the condition p < 0.05 (one-tailed binomial test).

Code availability. All the codes (Matlab) used in this study are available upon
request to the authors.

Data availability. Data produced for this study is available upon request to the
authors.
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