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Abstract: Numerous pansharpening methods were proposed in recent decades for fusing
low-spatial-resolution multispectral (MS) images with high-spatial-resolution (HSR) panchromatic
(PAN) bands to produce fused HSR MS images, which are widely used in various remote sensing
tasks. The effect of misregistration between MS and PAN bands on quality of fused products has
gained much attention in recent years. An improved method for misaligned MS and PAN imagery
is proposed, through two improvements made on a previously published method named RMI
(reduce misalignment impact). The performance of the proposed method was assessed by comparing
with some outstanding fusion methods, such as adaptive Gram-Schmidt and generalized Laplacian
pyramid. Experimental results show that the improved version can reduce spectral distortions of
fused dark pixels and sharpen boundaries between different image objects, as well as obtain similar
quality indexes with the original RMI method. In addition, the proposed method was evaluated with
respect to its sensitivity to misalignments between MS and PAN bands. It is certified that the proposed
method is more robust to misalignments between MS and PAN bands than the other methods.
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1. Introduction

Due to the physical constraints of remote sensing imaging and limited bandwidth of satellite
transmission, a large number of currently operating satellites, such as SPOT, IKONOS (IK), QuickBird
(QB), and WorldView-2/3, provide both a single relative high-spatial-resolution (HSR) panchromatic
(PAN) band and several low-spatial-resolution (LSR) MS bands. Fusion of PAN and MS images is also
referred to as pansharpening [1]. It is an important pre-processing step for generating high quality HSR
MS image in various remote sensing tasks [2,3], such as land cover classification, object recognition [4,5],
water-bodies mapping [6–8], and shadow detection [9]. In recent years, the requirement for fused HSR
MS imagery is unceasingly growing, due to abundant remote sensing data sources [10].

Research on pansharpening has been done for decades and numerous algorithms have been
developed to produce HSR MS imagery. The major problem encountered by current pansharpening
methods is to reduce spectral and spatial distortions. Researchers have proposed several categorizations
to group existing pansharpening methods [11–16]. One of the categorizations classifies current
pansharpening methods into two categories: the component-substitution (CS) methods and the
methods based on multiresolution analysis (MRA) [17–20]. The CS methods can provide fused
products with good spatial quality in most cases, but they sometimes suffer from spectral distortions.
The MRA-based methods can provide fused products with good spectral quality. However, their fused
products may suffer spatial distortions [21]. Moreover, this disadvantage may be emphasized for
misaligned MS and PAN data, especially for MSA-based methods using transformations that are not
shift-invariant to achieve multiresolution analysis [21,22]. In contrast, the performances of CS methods
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are robust to possible misalignment between MS and PAN bands. In addition, they have a relative low
computational burden. These favorable characteristics lead to their widespread uses.

During the designing of pansharpening algorithms, it is commonly assumed that PAN and MS
bands are perfectly aligned. Researchers have made tremendous progress in image registration,
for both nature images [23–25] and remote sensed images [26,27]. However, it is hard to reach
perfect co-registration between PAN and MS bands. Even through PAN and MS images are often
simultaneously acquired by the same platforms, there may be misalignment, due to small angle
difference between the two sensors exists in data acquisition process. Hence, some misregistration
between PAN and MS images is unavoidable in the real world. The impact of image misalignment
on quality of fused products has been reported by several researchers. Blanc et al. [28] showed
that even a small misregistration of 0.3 pixel can cause a noticed effect on quality of fused images.
Baronti et al. [29] theoretically analyzed the effects of misregistration on pansharpened images and
concluded that misregistration degrades the performances of all pansharpening methods. In addition,
MRA-based methods are much more sensitive to registration errors than CS methods. In order to
evaluate quality of pansharpened images with reference to a true MS image, original MS and PAN
datasets are usually spatially degraded to a lower resolution. Jing et al. [30] reported that misalignments
between MS and PAN bands can be caused by some decimation approaches used to produce degraded
datasets, and thus lead to undependable performance evaluation of different pansharpening methods.
Xu et al. [13] discussed two key problems that affect quality of fused images, i.e., misregistration and
size difference caused by different resolutions between MS and PAN bands. It was found that the two
problems should be considered during the design of a fusion algorithm. Hallabia et al. [31] proposed
a modified pansharpening method based on filter banks, taking into account the case of misalignment.
Jing and Cheng [18] proposed a ratio-based method that can reduce misalignment impact, which is
denoted as RMI. It was demonstrated that the RMI method can provide good performances, in terms of
quality indexes, as well as visual inspection, for both aligned and misaligned PAN and MS images [18].
This method can achieve good performances, due to two reasons. The key reason is that it uses
a synthetic PAN band at PAN scale generated with weighted sum of up-sampled MS bands using
optimal regression coefficients obtained at MS scale. The second one is that this method also considers
to reduce the effect of image haze caused by atmospheric path radiance.

In this paper, an improved version of the RMI method is proposed. Two improvements were
made. The first one is that pixels corresponding to edge pixels identified from the PAN bands are fused
through the injection of spatial details with relative large coefficients, to sharpen boundaries between
different image objects. The second one is that dark pixels are fused using haze values lower than those
used to other pixels, in order to improve the quality of fused dark pixels. The experimental results
showed that the proposed method can reduce spectral distortions of fused dark pixels, and sharpen
boundaries between different objects. Meanwhile, it is robust to misalignments between MS and PAN
bands. The rest of this paper is organized as follows: the proposed improved method is introduced in
Section 2, a fusion experiment is reported in Section 3. Section 4 presents some related discussions,
whereas Section 5 summarizes the conclusions of this work.

2. Methodologies

2.1. The RMI Method

The RMI method is a ratio-based approach considering haze caused by atmospheric path radiances.
Let HP and Hi denote image haze values determined for PAN and ith MS bands, respectively, Ii denotes
the ith band of the up-sampled MS image, and P and PS are an original PAN band and a synthetic
version of the original PAN band, respectively. The fused ith MS band Fi generated by the RMI method
can be expressed using Equation (1):

Fi = (Ii − Hi)
P− Hp

PS − Hp
+ Hi, i = 1, · · · , N (1)
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Equation (1) can also be rewritten as (2):

Fi = Ii +
Ii − Hi

PS − Hp
(P− PS), i = 1, · · · , N (2)

in which P − PS represents spatial details derived from the original PAN band, and Ii−Hi
PS−Hp

is the
space-varying injection coefficients for the ith band.

PS is obtained by a weighted sum the up-sampled MS bands, as in (3):

PS =
N

∑
i=1

ai·Ii + b (3)

in which ai is the weight coefficient of the ith band, and b is a constant. The optimal values of ai and b
can be estimated by the least-squares approach using Equation (4):

PL =
N

∑
i=1

ai·IL
i + b (4)

where PL is a degraded version of the original PAN band, and can be obtained using an averaging
approach; IL

i is the ith original MS band.
For misaligned MS and PAN bands, the optimal regression coefficients, representing the maximum

multiple correlations between misaligned PAN with each MS band, can discount the effect of
misalignment on quality of fused images. Another factor contributing to the good performance
of the RMI method is that image haze caused by atmospheric path radiance is considered by the
method. However, haze values of PAN and MS bands give an important effect on spectral vector
directions of fused MS pixels and thus the spectral quality of the whole fusion product [32].

2.2. The Improved Version of the RMI Method

In this work, two improvements are made based on the original RMI method. For the first
improvement, boundary pixels of the PAN band are identified using edge detection operators, and then
fused using larger injection coefficients than the other pixels. Fused images generated by commonly
used methods show blurred boundaries between different objects, due to several reasons, such as
misalignments, aliasing, and the effect of mixed pixels. As this improvement aims to add more spatial
details into edge pixels, it helps to obtain fused products with sharpened boundaries between different
image objects. For an edge pixel t, the fusion version of t is calculated using (5):

Fi(t) = Ii(t) + (1 + k/10)· Ii(t)− Hi
PS(t)− Hp

[P(t)− PS(t)], i = 1, · · · , N, k = 0, 1, · · · , 4 (5)

in which k is a value determining the sharpness boundaries between different objects in pansharpened
products. The value can be set by users, according to different application purposes.

For the second improvement, relative dark pixels in the image, which mainly correspond to dark
objects such as water-bodies and shadows, are identified according to a certain threshold and then
fused using relative low haze values. As a high haze value may result in abnormal high injection
coefficients for dark pixels, this may result in over-enhancement of dark pixels. This improvement
is helpful for reducing spectral distortions of water-bodies and shadow covered regions in fused
products. In this work, a threshold T, used to justify dark pixels, were automatically determined using
the product of the standard deviation of the PAN band δP and a scale factor S.

For a pixel with a gray value higher than T in PAN, the fused version Fi can be produced using (2).
In contrast, for a pixel with a gray value lower than T in PAN, relative low haze values for MS and
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PAN bands, which are denoted as HL
i and HL

P , respectively, are employed to generate fused pixels.
In this situation, the fused version Fi can be produced using (6):

Fi = Ii +
Ii − HL

i
PS − HL

P
(P− PS), i = 1, · · · , N (6)

in which HL
i is determined using (7):

HL
i = p·Hi, i = 1, · · · , N (7)

where p is a scale constant be lower 1. A value of 0.75 was assigned to p in this work. The values of HL
P

are obtained with respect to coefficients obtained using (4), as in (8):

HL
P =

N

∑
i=1

ai·HL
i + b. (8)

The proposed method is implemented in MATLAB. The pseudocode of the proposed method
is also reported, as Algorithm 1, to facility other people to implement and use the method in remote
sensing tasks.

Algorithm 1: Improved_RMI

input: upsampled MS bands I, PAN band P, band number N
output: fused MS bands F

Let PL be a PAN band at MS scale, generating from P using an averaging approach
Let ai and b are the coefficients generated using (4) by the least-squares approach
PS← ∑N

i=1 ai·Ii + b
Let Hp and Hi be haze values for PAN and the ith MS bands, respectively
Let HL

i and HL
P be haze values for dark pixels

HL
i ← p·Hi

HL
P ← ∑N

i=1 ai·HL
i + b

Let E be the union of the edge PAN pixels identified using CANNY, let F be the other pixels no
belonging to E

Let Fi be the fused ith MS band
for each pixel t in E

for each band i in [1, 2, . . . , N]
Fi(t) is calculated using (5)

end for
end for

for each pixel t in F
Let T be the threshold used to identify dark pixels, determined using T = δP × S
for each band i in [1, 2, . . . , N]

if P(t) − Hp ≥ T
Fi(t) is calculated using (2)

Else
Fi(t) is calculated using (6)

end if
end for

end for
return F
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3. Experiments

3.1. Test Data

Three image scenes recorded by WorldView-2 (WV2), IK, and QB, respectively, were used
in the experiment to evaluate the performances of the proposed method. A subset with a size of
512 × 512 pixels for MS bands, and a size of 2048 × 2048 pixels for PAN bands, were selected from
each scene. The MS image from WV2 has eight bands, whereas those of IK and QB have four bands.
The spatial resolution ratio R for all the three datasets is 4. The MS images of three datasets are
presented in Figure 1.Sensors 2018, 18, x  5 of 16 
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Figure 1. The MS images of the WV2 (a); IK (b); and QB (c) datasets.

3.2. Comparing with Other Methods

3.2.1. Fusion Methods for Comparison and Evaluation Criteria

The proposed method was compared with adaptive Gram-Schmidt (GSA) [5,33], and Generalized
Laplacian Pyramid (GLP) with Gaussian-shaped filter adjusted by modulation transfer function using
spectral distortion minimizing model [34]. Actually, image haze can also be considered by some other
methods using similar injection models. In order to achieve impartial comparison, the GLP method
considering image haze was also achieved and included in the comparisons. It is noted as GLP-H
henceforth. The GSA method with image haze was also considered, but it was not included in this
work because it yielded the same performance as the original GSA method. Actually, it can be inferred
that the considering of image haze could not improve or decrease the performance of GSA.

Besides the original versions of the three datasets, the degraded versions of the original datasets
were also considered, as fused images generated at the degraded scale can be assessed using the
original MS images as reference. Quality of fused products of the degraded scale was assessed
using several widely used quality indexes including the relative average spectral error (RASE) [35],
dimensionless global relative error of synthesis (ERGAS) [36], spectral angle mapper (SAM) [37],
Q2n [38–40], and spatial correlation coefficient (SCC) [41]. An index named quality with no reference
index (QNR) [42], which is increasingly used in recent studies, was employed to evaluate quality of
pansharpened images produced using the original datasets. The QNR index is a comprehensive
index consisting of a spectral distortion indicator Dλ and a spatial distortion indicator DS [42].
In addition, visual inspection was also performed to comparing the quality of fused products. In order
to avoid misalignments between MS and PAN bands, an aligned version of an original PAN band
was determined using the similar approach employed in [43], and then used to replace the original
PAN bands in this experiment. The degraded MS and PAN images were generated by a box filter with
a size of 4 × 4, according to the resolution ratio of the three datasets, in order to avoid misalignment
introduced during the decimation process [30].
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3.2.2. Results and Analysis

Table 1 reports the quality indexes generate from the fused products obtained at the two scales.
The improved methods with different values for k used the same haze values as those employed by the
original RMI method, for each test image. In this table, RMI (k = n) denotes the fused images generated
by the RMI method with k = n, where n is an integer ranging from 0 to 4. In order to highlight the
performances of the comparing methods on the fusion of dark pixels, a SAM value between fused and
reference dark pixels is calculated from each fused image generated at the degraded scale. Version and
the original version of dark pixels, which are identified during the implement of the proposed method.
This index is also listed in Table 1, and it is denoted as SAMd in the table.

Table 1. Quality indexes for fused products at the two scales. Numbers in bold indicate the best
performances for each quality index along each dataset.

Image Method
Degraded Scale Original Scale

RASE ERGAS SAM Q2n SCC SAMd Dλ DS QNR

WV2

RMI (k = 0) 6.67 1.740 2.28 0.9360 0.845 1.127 0.0600 0.067 0.877
RMI (k = 1) 6.72 1.75 2.28 0.935 0.843 1.127 0.061 0.068 0.876
RMI (k = 2) 6.80 1.77 2.29 0.934 0.840 1.127 0.062 0.068 0.875
RMI (k = 3) 6.92 1.80 2.30 0.933 0.836 1.126 0.062 0.068 0.874
RMI (k = 4) 7.05 1.84 2.31 0.931 0.830 1.126 0.063 0.068 0.873

RMI 6.68 1.745 2.28 0.9357 0.844 1.148 0.0600 0.068 0.876
GSA 7.60 1.98 2.69 0.913 0.824 2.204 0.074 0.089 0.844
GLP 8.05 2.06 2.94 0.845 0.807 1.263 0.113 0.110 0.789

GLP-H 7.48 1.95 2.36 0.932 0.843 1.094 0.066 0.066 0.872
EXP 12.61 3.26 2.94 0.791 0.441 1.263 0.000 0.068 0.932

IK

RMI (k = 0) 4.63 1.214 1.677 0.9192 0.8734 0.577 0.0556 0.0919 0.8576
RMI (k = 1) 4.65 1.22 1.67 0.919 0.872 0.577 0.057 0.093 0.855
RMI (k = 2) 4.70 1.23 1.67 0.918 0.868 0.577 0.058 0.094 0.853
RMI (k = 3) 4.79 1.25 1.68 0.916 0.863 0.577 0.060 0.095 0.850
RMI (k = 4) 4.90 1.28 1.68 0.914 0.857 0.577 0.062 0.096 0.849

RMI 4.64 1.214 1.677 0.9193 0.8734 0.712 0.0556 0.0919 0.8576
GSA 6.38 1.66 1.93 0.880 0.846 2.239 0.097 0.143 0.774
GLP 6.94 1.74 2.43 0.830 0.795 0.563 0.167 0.169 0.692

GLP-H 5.29 1.38 1.72 0.912 0.868 0.574 0.068 0.091 0.847
EXP 9.63 2.52 2.42 0.661 0.453 0.567 0.000 0.099 0.901

QB

RMI (k = 0) 5.65 1.398 1.877 0.892 0.837 0.717 0.086 0.115 0.809
RMI (k = 1) 5.81 1.43 1.90 0.889 0.833 0.717 0.087 0.116 0.807
RMI (k = 2) 6.02 1.48 1.93 0.886 0.828 0.717 0.088 0.117 0.805
RMI (k = 3) 6.26 1.53 1.97 0.881 0.822 0.717 0.090 0.117 0.803
RMI (k = 4) 6.54 1.60 2.00 0.877 0.814 0.716 0.091 0.118 0.802

RMI 5.66 1.401 1.879 0.890 0.836 0.945 0.087 0.114 0.809
GSA 7.22 1.73 2.53 0.877 0.797 2.871 0.045 0.086 0.872
GLP 8.42 2.08 2.88 0.701 0.715 0.737 0.172 0.209 0.655

GLP-H 6.34 1.54 1.99 0.888 0.832 0.725 0.079 0.102 0.827
EXP 9.97 2.37 2.97 0.743 0.487 0.717 0.000 0.088 0.912

It can be observed from Table 1 that RMI (k = 0) gives slightly better or similar performances
with the original RMI method. The improved and original RMI methods provide higher Q2n and
QNR values than other methods. An exception is that GSA and GLP-H yield lower Dλ and Ds values,
and higher QNR values than other methods for the original QB dataset. For the degraded WV2 dataset,
RMI (k = 0) offers slightly lower RASE and ERGAS values, and slightly higher Q2n and SCC values
than the original RMI method. For the original WV2 dataset, RMI (k = 0) provides a slightly lower Ds

value and a slightly higher QNR value than the original RMI method. For the degraded IK dataset,
RMI (k = 0) provides slightly lower Q2n and RASE values than the original RMI method, and the
same ERGAS and SAM values as the original RMI. The former offers a slightly higher QNR value
and a slightly lower Ds value than the latter, for the original IK dataset. For the degraded QB dataset,
RMI (k = 0) provides slightly lower RASE, ERGAS, SAM values, and higher Q2n and SCC values than
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the original RMI. For the original QB dataset, RMI (k = 0) also yields a lower Dλ and a higher QNR than
the original RMI. The improved RMI methods offer lower SAMd than the original RMI for all the three
datasets, indicating that the proposed method is effective for reducing spectral distortions of fused dark
pixels. The GSA method yields the highest SAMd values for the three degraded datasets, indicating
it gives the poorest performances for dark pixels. As the three test images have different numbers
of dark pixels, it is reasonable that the proposed approach gives slightly different performances for
these images.

The Q2n and QNR values of fused products generated by the improved RMI methods descend
along with the increasing of k. However, the fused products generated by RMI (k = 4) also offer higher
Q2n and QNR values than those generated by the GSA, GLP, and GLP-H methods for the WV-2 and
IK datasets. The GLP-H method offers higher Q2n and QNR values than GSA and GLP for the three
datasets, due to the considering of image haze. The GLP method offers lower Q2n and QNR values
than GSA for the three datasets. This may due to the fact that misalignments between MS and PAN
bands occur during an down-sampling progress for obtaining a LSR PAN band at MS scale, and an
followed up-sampling progress for obtaining an expanded version of the LSR PAN band.The original
and pansharpened images of a subset selected from each original dataset are shown in Figures 2–4,
for visual inspection. For the WV-2 dataset, the images are shown in compositions of bands 5, 7, and 2.
For the IK and QB datasets, the images are shown in compositions of bands 3, 4, and 1.
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Figure 2. The original and pansharpened images of a 400 × 400 subset from the original WV2 dataset.
(a) 0.5-m PAN; and (b) the up-sampled version of 2-m MS; and fused images generated by the (c) RMI
(k = 0); (d) RMI (k = 2); (e) RMI (k = 4); (f) RMI; (g) GSA; (h) GLP; and (i) GLP-H methods.
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Figure 3. The original and pansharpened images of a 400 × 400 subset from the original IK dataset.
(a) 1-m PAN; and (b) the up-sampled version of 4-m MS; and fused images generated by the (c) RMI
(k = 0); (d) RMI (k = 2); (e) RMI (k = 4); (f) RMI; (g) GSA; (h) GLP; and (i) GLP-H methods.

Although pansharpened images generated by these methods show similar tone in each figure,
fused images produced by the improved and original RMI methods, and GLP-H show more texture
details in vegetation covered regions. This is obvious in Figure 2. This is due to the considering of
image hazes by these methods. Some artefacts can be seen from the fused images generated by the
original RMI method, as shown in Figures 2f and 4f. The artefacts occur in some regions covered
by shadows or water-bodies. In contrast, these artefacts are absent from the pansharpened images
generated by RMI (k = 0), RMI (k = 2), and RMI (k = 4), as shown in Figures 2 and 4. Although
GSA yields the highest QNR value for the original QB dataset, the GSA-fused images show obvious
spectral distortions. This can be observed from the yellow rectangle in Figure 2g, and the red and
yellow rectangles in Figure 4g. In addition, the GSA-fused WV2 image show very few texture details
for vegetation covered regions. This is because a very small amount of spatial details is injected
into the two near-infrared (NIR) bands of the WV2 dataset, due to relative low correlations between
PAN and the two NIR bands. The fused images generated by GLP and GLP-H also show noticeable
spectral distortions, as shown in yellow rectangles in Figures 2–4. Moreover, aliasing effects can be
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observed in the fused images generated by GLP and GLP-H, as shown in yellow rectangles in Figures 3
and 4. Moreover, the fused products produced by RMI (k = 2), and RMI (k = 4) offer more sharpened
boundaries between different objects than the original RMI, GSA, GLP, and GLP-H. This can be seen
from the fused subsets in yellow rectangles shown in Figures 2–4. The fused images generated by RMI
(k = 2), and RMI (k = 4) provide more sharpened boundaries than those produced by RMI (k = 0), due to
more spatial details are injected into edge pixels. Consequently, the improved approach can reduce
spectral distortions of fused dark pixels and sharpen some boundaries in fused products, as well as
obtain similar quality indexes with the original RMI method.
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Figure 4. The original and pansharpened images of a 480 × 480 subset from the original QB dataset.
(a) 0.7-m PAN; and (b) the up-sampled version of 2.8-m MS; and fused images generated by the (c) RMI
(k = 0); (d) RMI (k = 2); (e) RMI (k = 4); (f) RMI; (g) GSA; (h) GLP; and (i) GLP-H methods.

3.3. Sensitivity to Misalignments between MS and PAN Bands

The proposed method is also evaluated with respect to its sensitivity to misalignments between
MS and PAN bands using another experiment, with the degraded IK dataset. The up-sampled version
of the degraded MS image was shifted by zero to four PAN pixels on row and column, respectively,
to yield several shifted versions of the up-sampled MS image. A shift of r pixels on row, along with c
pixels on column, is denoted as a couple (r, c). Several couples including (0, 1), (1, 1), (2, 1), (2, 2), (3, 2),
(3, 3), (4, 3), and (4, 4) were employed to generated shifted MS images. These shifted up-sampled MS
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images were then fused with the degraded 4-m PAN band using the proposed method, GSA, GLP,
and GLP-H, to produce 4-m fused products.

The quality of these fused products was also assessed using ERGAS, SAM, Q4, and SCC, which are
shown in Figure 5a–d, respectively. As the improved RMI methods with different k values give very
clustered indexes, only the cases including k = 0, k = 2, k = 4 are shown in the figure for better visual
inspection. As illustrated in those figures, the original RMI, RMI (k = 0), and RMI (k = 2) offer very
similar performances, in terms of the four indexes. Actually, RMI (k = 0) offers slightly lower ERGAS
and SAM values, and slightly higher Q4 and SCC values, than the original RMI method. RMI (k = 2)
also gives lower SAM values than the original RMI method.
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Figure 5. Variations of the ERGAS (a); Q4 (b); SAM (c); and SCC (d) indices of pansharpened images
produced from the degraded IK dataset with different misalignments between PAN and MS bands.

The pansharpened images generated by the original RMI, RMI (k = 0), and RMI (k = 2) offer the
lowest ERGAS and SAM values, and the highest Q4 and SCC values, in most cases. Exceptions occur
when the misalignments are (4, 3) and (4, 4), the GSA method yields the highest Q4 values, and higher
SCC values than the RMI (k = 2). In addition, RMI (k = 4) offers lower SCC values than the GSA
and GLP-H methods in some cases, although the former offers lower ERGAS and SAM values for all
the cases. This indicates that RMI (k = 0), and RMI (k = 2) are the best choices, when misalignments
between MS and PAN bands are no more than three PAN pixels on row and column.

The GSA method gives better performances than the two GLP methods when the misalignment is
larger than two pixels. However, when the misalignment is no more than one pixel, the GSA method
offers higher ERGAS values and lower Q4 values than the GLP-H method.

The GLP-H method yields lower ERGAS and SAM values, and higher SCC values than the GLP
method for all the cases. However, it offers higher Q4 values than the GLP and GSA methods when the
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misalignment is not more than two pixels, lower Q4 values than the latter two when the misalignment
is larger. This indicates that the GLP-H gives better performances than GLP and GSA when the
misalignment is not more than two pixels.

It can also be observed that the four quality indexes decline at different rates, as the misalignment
increases. The four quality indexes of the original RMI, RMI (k = 0), RMI (k = 2), RMI (k = 4), and GSA
decrease the more slowly than GLP and GLP-H. This is due to the fact that the MRA methods are
more sensitive to misalignments between MS and PAN bands than the CS methods. Although the
curves of GSA are even gentler than those of the original RMI, RMI (k = 0), RMI (k = 2), and RMI (k = 4),
GSA offers poor performances than the latter in terms of quality indexes in most cases. In conclusion,
the proposed method is also robust to misalignments between MS and PAN bands, besides offering
comparable quality indexes to other methods.

The original and fused images of a 300 × 300 subset of the original IK dataset with a shift of
(2, 1) are shown in Figure 6. All the fused MS images were stretched to the same histogram as the
corresponding original MS bands. It can be observed that the three fused products generated by RMI
(k = 0), RMI (k = 2), RMI (k = 4), shown in Figure 6c–e, yield the best visual quality, followed by those
produced by the original RMI and GSA. It can be observed from the yellow rectangle in Figure 6g that
the GSA-fused image shows noticeable spectral distortion. In addition, aliasing effects can be observed
from the fused images generated by GLP and GLP-H, as shown in the red and yellow rectangles in
Figure 6h,i. Hence, visual inspection also indicates that the improved RMI is effective for reducing the
impacts of misalignments between PAN and MS bands on quality of pansharpened products.
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Figure 6. The original and fused images for a 300 × 300 subset of the original IK dataset with
a misalignment of (2, 1). (a) 1-m PAN; and (b) the up-sampled version of 4-m MS; and fused images
generated by the (c) RMI (k = 0); (d) RMI (k = 2); (e) RMI (k = 4); (f) RMI; (g) GSA; (h) GLP;
and (i) GLP-H methods.
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4. Discussion

The effects of misalignment on pansharpened RS images draw an increasing concern in recent
years. Although the RMI method is been proposed for several years, the advantage of this method for
fusion of misaligned MS and PAN bands is not explored yet. In addition, image haze is a non-negligible
factor for ratio-based fusion methods, especially when image fusion is performed on remote sensing
images in digital number. The determination of haze values gives an important impact on spectral
distortion of fused products [32,43,44], especially for fused pixels corresponding vegetation and
dark objects, such as shadows and water-bodies. This work proposed an improved version of the
RMI method though two improvements. The quality indexes for the proposed method, which aims
at reducing spectral distortions of fused dark pixels, did not show significant improvement in
the experiment, due to a limited amount of dark pixels included by the test datasets. However,
the proposed method shows consistent improvements in terms of SAMd, which is an SAM index
calculated using only dark pixels. It was shown that the improved RMI method is also robust to
misalignment between MS and PAN bands, as well as allowing to produce pansharpened images with
sharped boundaries. This is very useful for producing high-resolution MS images covering urban
regions. It is also helpful for local region mapping, image interpretation, and applications related to
water-bodies and shadows. As the proposed method yield rich texture details in vegetation covered
regions, it can provide comparable performances for remote sensing images covering agricultural
areas and forest areas. The proposed method also can be used to medium resolution images, i.e.,
ASTER, Landsat 7/8, and Sentinel 2A. However, it shows more advantages for high-resolution images,
as boundary information and texture details are richer in high-resolution images than in medium
resolution images.

A major difference between the proposed method and other methods is that it allows producing
fused products with more sharpened boundaries, through the determination of different values for
k. In order to give some guidelines on how to choose the optimal value for this parameter, a fusion
experiment was performed to test values ranging from 0 to 10 for k, using the degraded QB dataset.
The quality indexes calculated from the fused images generated by the proposed method are reported
in Table 2. It can be seen that the values of the Q2n index descend with the increase of k. This is because
more spatial details injected into the up-sampled MS bands may results in larger spectral distortion of
fused products. As RMI (k = 4) provides comparable indexes to other methods (as shown in Table 1),
such as GSA and GLP, we suggest that the maximum value for k can be set to 4, for the proposed
method. We think this value can yield a better balance between spectral and spatial quality of fused
pixels corresponding to edge PAN pixels.

Table 2. Quality indexes for fused products of the improved RMI using different values for k.

Image Method
Degraded Scale

RASE ERGAS SAM Q2n SCC SAMd

QB

RMI (k = 0) 5.651 1.398 1.877 0.891 0.837 0.7138
RMI (k = 1) 5.812 1.434 1.900 0.889 0.833 0.7138
RMI (k = 2) 6.017 1.480 1.930 0.885 0.828 0.7138
RMI (k = 3) 6.261 1.534 1.965 0.881 0.822 0.7138
RMI (k = 4) 6.541 1.597 2.005 0.877 0.814 0.7138
RMI (k = 5) 6.851 1.667 2.047 0.871 0.805 0.7137
RMI (k = 6) 7.187 1.743 2.093 0.865 0.795 0.7137
RMI (k = 7) 7.547 1.824 2.140 0.859 0.785 0.7137
RMI (k = 8) 7.926 1.910 2.190 0.852 0.774 0.7137
RMI (k = 9) 8.321 2.001 2.241 0.845 0.764 0.7136

RMI (k = 10) 8.731 2.094 2.294 0.837 0.753 0.7136

As introduced in Section 2.2, a threshold used to justify dark pixels were automatically determined
using the product of the standard deviation of the PAN band and a scale factor S. We used a value
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of 0.3 for S in the experiments in this work. In order to evaluate the impact of this parameter on
performances of the proposed method, values ranging from 0.1 to 1 with a step of 0.1 were tested for
S in another experiment. The degraded QB dataset was used in this experiment, and the value of k
is set to 0. The quality indexes obtained from fused images generated by the proposed method are
shown in Table 3. The proposed method with S = 0.2 yields the highest Q2n value. It can be seen that
the performance of the proposed method gets poor along with the increases of S from 0.2. However,
the changes are not significant. The fused images generated using S values ranging from 0.1 to 0.4
offer very similar Q2n values. We suggest that the value of S can be set to 0.2, or 0.3, according to the
results of this experiment.

Table 3. Quality indexes for fused products of the proposed method using different values for S.

Image S
Degraded Scale

RASE ERGAS SAM Q2n SCC

QB

0.1 5.652 1.399 1.877 0.891 0.837
0.2 5.651 1.398 1.877 0.892 0.837
0.3 5.651 1.398 1.877 0.891 0.837
0.4 5.652 1.399 1.878 0.891 0.837
0.5 5.654 1.399 1.879 0.891 0.836
0.6 5.658 1.400 1.883 0.890 0.836
0.7 5.665 1.402 1.888 0.889 0.836
0.8 5.676 1.404 1.895 0.887 0.836
0.9 5.693 1.409 1.905 0.885 0.835
1 5.718 1.415 1.917 0.881 0.834

In this work, edge pixels of the PAN band were automatically identified using the CANNY
detector with sensitivity thresholds that are automatically chosen. The proposed method may yield
better performances if an optimal sensitivity threshold is selected for each dataset.

5. Conclusions

An improved pansharpening method considering image haze caused by atmospheric path
radiance is proposed in this study, in order to further reduce spectral distortion of fused dark pixels
and sharpen boundaries between different image objects. The improved method was compared with
the original RMI, GSA, GLP, and GLP-H. The main conclusions derived from the experimental results
are as follows:

(1) The improved approach can reduce spectral distortions of fused dark pixels, thus the proposed
method is a good choice for producing high-resolution MS images in applications related to
water-bodies and shadows.

(2) The improved approach can be used to obtain fused images with sharpened boundaries between
different objects, through choosing a reasonable value for k. This is very useful for fused products
covering urban regions, and fused products used for local region mapping or image interpretation.

(3) The experiment used to evaluate the sensitivities of these method to misalignments between MS
and PAN bands showed that the proposed method is more robust to misalignments between
the MS and PAN bands than the other methods. These conclusions indicate that the improved
method is very promising to be widely used in practical remote sensing applications.
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