
Cancer Science. 2020;111:3893–3901.     |  3893wileyonlinelibrary.com/journal/cas

 

Received: 6 May 2020  |  Revised: 6 July 2020  |  Accepted: 6 July 2020

DOI: 10.1111/cas.14572  

O R I G I N A L  A R T I C L E

Characterization of tumors with ultralow tumor mutational 
burden in Japanese cancer patients

Keiichi Hatakeyama1  |   Takeshi Nagashima2,3  |   Keiichi Ohshima1  |   
Sumiko Ohnami2 |   Shumpei Ohnami2 |   Yuji Shimoda2,3 |   Akane Naruoka4  |   
Koji Maruyama5 |   Akira Iizuka6 |   Tadashi Ashizawa6 |   
Tohru Mochizuki1 |   Kenichi Urakami2 |   Yasuto Akiyama6  |   Ken Yamaguchi7

This is an open access article under the terms of the Creat ive Commo ns Attri butio n-NonCo mmercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

Abbreviations: CIN, chromosomal instability; CNV, copy number variation; FDR, false discovery rate; GEP, gene expression profiling; ICI, immune checkpoint inhibitor; JCGA, Japanese 
version of Cancer Genome Atlas; RIN, RNA integrity number; TCGA, The Cancer Genome Atlas; TMB, tumor mutational burden; VAF, variant allele frequency; WES, whole-exome 
sequencing.

1Medical Genetics Division, Shizuoka Cancer 
Center Research Institute, Shizuoka, Japan
2Cancer Diagnostics Research Division, 
Shizuoka Cancer Center Research Institute, 
Shizuoka, Japan
3SRL Inc, Tokyo, Japan
4Drug Discovery and Development Division, 
Shizuoka Cancer Center Research Institute, 
Shizuoka, Japan
5Experimental Animal Facility, Shizuoka 
Cancer Center Research Institute, Shizuoka, 
Japan
6Immunotheraphy Division, Shizuoka Cancer 
Center Research Institute, Shizuoka, Japan
7Shizuoka Cancer Center, Shizuoka, Japan

Correspondence
Keiichi Hatakeyama, Medical Genetics 
Division, Shizuoka Cancer Center Research 
Institute, Shizuoka, Japan.
Email: k.hatakeyama@scchr.jp

Abstract
Tumor mutational burden analysis using whole-exome sequencing highlights fea-
tures of tumors with various mutations or known driver alterations. Cancers with 
few changes in the exon regions have unclear characteristics, even though low-mu-
tated tumors are often detected in pan-cancer analysis. In the present study, we ana-
lyzed tumors with low tumor mutational burden listed in the Japanese version of The 
Cancer Genome Atlas, a data set of 5020 primary solid tumors. Our analysis revealed 
that detection rates of known driver mutations and copy number variation were de-
creased in samples with tumor mutational burden below 1.0 (ultralow tumor), com-
pared with those in samples with low tumor mutational burden (≤5 mutations/Mb). 
This trend was also observed in The Cancer Genome Atlas data set. In the ultralow 
tumor mutational burden tumors, expression analysis showed decreased TP53 inac-
tivation and chromosomal instability. TP53 inactivation frequently correlated with 
PI3K/mTOR-related gene expression, implying suppression of the PI3K/mTOR path-
way in ultralow tumor mutational burden tumors. In common with mutational bur-
den, the T cell-inflamed gene expression profiling signature was a potential marker 
for prediction of an immune checkpoint inhibitor response, and some ultralow tumor 
mutational burden tumor populations highly expressed this signature. Our analysis 
focused on how these tumors could provide insight into tumors with low somatic 
alteration that are difficult to detect solely using whole-exome sequencing.
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1  | INTRODUC TION

TMB, an emerging characteristic of human cancer, was first high-
lighted by large-scale integrated mutation analysis using next-gen-
eration sequencing.1 A TMB increase can be attributed to both 
endogenous factors and environmental damage.2,3 Common TMB is 
estimated based on the number of somatic mutations in the exon 
regions and their flanking regions using WES or target panel se-
quencing. Tumors with high mutation frequency tend to respond to 
immune checkpoint inhibitors4, therefore TMB has attracted con-
siderable attention as a biomarker for the treatment of patients with 
cancer.

Although TMB analyses across the globe are performed using 
WES, most cancers are determined to be TMB low (TMB ≤ 5 mu-
tation/Mb).1,5 Driver mutations in exon regions were occasionally 
found to be absent in diverse tumor types,6,7 implying the pres-
ence of somatic alterations that were undetectable only by WES. 
Therefore, characterization of TMB-low tumors is valuable for un-
derstanding tumorigenesis without known driver alterations.

The availability of data sets from TCGA has expanded the pos-
sibilities for mutation analysis and GEP. In analyses using surgical 
specimens, GEP reflects gene expression in both heterogenous can-
cer cells and normal tissues, including immune cells, and therefore 
enabled the extraction of tumorigenesis-related gene set informa-
tion such as TP53 inactivation,8 chromosomal instability (CIN),9-11 
methylation,12 and the PI3K/Akt/mTOR pathway13-15 as tumor sig-
natures. For instance, TP53 inactivation score derived from the ex-
pression of gene sets in multiple cancer types can be used to isolate 
cell populations with cell cycle progression or apoptosis suppression 
due to TP53 inactivation.8 Furthermore, information on the tumor 
microenvironment could be estimated from a specific gene set.16-19 
Signature analysis based on GEP has the potential to help visualize 
tumor features that cannot be distinguished by mutations.

We previously investigated TMB, driver mutation, CNV, muta-
tional signature, and gene expression in the tumor microenviron-
ment in Japanese patients with solid tumors5 and consolidated this 
data set and pipeline into the JCGA toward the progress of cancer 
research and clinical sequencing.7 These studies focused on known 
somatic alterations in the exon regions and their flanking regions. 
However, a recent integrated genome analysis revealed that other 
regions containing intergenic sites harbored important alterations, 
including genes related to tumorigenesis, despite mutation accu-
mulation in the exon regions.6 Therefore, in-depth WES and GEP 
analysis of tumors with low somatic mutations may provide a new 
perspective prior to whole genome sequencing of samples from 
Japanese patients with cancer.

In the current study, to characterize low-mutated tumors, we 
performed WES and GEP of the JCGA data set, which is composed 
of 5020 primary solid tumors. First, detection rates of known driver 
mutations and CNV were investigated in low-mutated tumors. Next, 
to clarify tumor signature based on GEP, expression levels of a tu-
morigenesis-related gene set were investigated. Finally, a potential 
expression marker for response prediction to an ICI was compared 

between low-mutated and high-mutated tumors. Our analysis could 
identify characteristics of tumors with low somatic alteration that 
are hardly detected solely by WES.

2  | MATERIAL S AND METHODS

2.1 | Ethical statement

Written informed consent was obtained from all patients, and the 
institutional review board at the Shizuoka Cancer Center approved 
all aspects of this study (authorization number 25-33). All experi-
ments using clinical samples were performed in accordance with the 
approved Japanese ethical guidelines (human genome/gene analysis 
research, 2017, provided by Ministry of Health, Labor, and Welfare; 
https://www.mhlw.go.jp/stf/seisa kunit suite/ bunya/ hokab unya/
kenky ujigy ou/i-kenky u/index.html).

2.2 | Clinical samples

Tumors and their surrounding tissue (≥0.1 g) were dissected from 
surgical specimens immediately after resection of the lesion at the 
Shizuoka Cancer Center Hospital. The tumor samples were visually 
assessed by a clinical pathologist in our hospital when tumor content 
was ≥50%, and were not filtered further by pathophysiological fea-
tures or cancer type. Tumor-adjacent tissue specimens were used as 
the normal control for microarrays. In addition, peripheral blood was 
collected as a pair control for excluding germline mutation. Details of 
experimental protocols have been described previously.5,7,20-23

2.3 | Data sets for analysis of somatic alteration

To analyze both sequencing and microarray data derived from the 
freshly frozen clinical samples, we used our own pipeline detailed 
in a previous report.7 In brief, the exome library for WES was con-
structed using an Ion Torrent AmpliSeq RDY Exome Kit (Thermo 
Fisher Scientific). The exome library supplied 292 903 amplicons 
covering 57.7 Mb of the human genome, comprising 34.8 Mb of 
exonic sequences from 18 835 genes registered in RefSeq. In the 
pipeline, blood and tumors harboring enormous differences in sin-
gle nucleotide polymorphisms (SNP) derived from the same pa-
tient were reconfirmed and retested to eliminate sampling error 
as much as possible. Furthermore, to avoid sequencer- and ampli-
con-derived errors, arbitrary somatic mutations were manually in-
spected using the Integrative Genomics Viewer (IGV), and somatic 
mutation candidates containing multiple nucleotide variations 
(~1000 sites) were validated using Sanger sequencing. This data 
set comprised 5521 tumor specimens (5020 primary tumors and 
501 metastatic tumors) derived from 5143 patients, and all sam-
ples were analyzed using WES and target panel sequencing. These 
data were then submitted to the National Bioscience Database 

https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/hokabunya/kenkyujigyou/i-kenkyu/index.html
https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/hokabunya/kenkyujigyou/i-kenkyu/index.html
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Center (NBDC) Human Database as ‘Controlled-Access Data’ 
(Research ID, hum0127.v1; https://human dbs.biosc ience dbc.jp/
en/). All data sets are scheduled to be released in January 2021. 
For this study, part of the data set was extracted for analysis of so-
matic alterations including TMB, CNV, tumor cellularity, gene ex-
pression signature, and fusion genes (Table S1). Tumor cellularity 
was estimated by averaging 2 individual algorithms (FACETS24 and 
Sequenza25) as described in a previous study.7 Somatic genomic al-
terations contributing to tumorigenesis were extracted from mul-
tiple databases, and then curated in-house as driver mutations.7 To 
analyze known fusion transcripts, a 491 fusion-gene panel for con-
structing fusion-specific amplicons was constructed.22 Somatic 
CNVs were detected using saasCNV.26 This method accounted for 
both the read-depth ratio and B allele frequency and achieved the 
best performance among 6 CNV detection tools.27 To compare be-
tween our platform and others, mutation and expression profiles 
were extracted from the public database in the TCGA project.28-33 
The list used in this study is provided in Table S2.

2.4 | Gene expression signature analysis

For RNA analysis, tumor and normal tissues were immediately im-
mersed in RNAlater solution (Thermo Fisher Scientific). Purified 
total RNA for GEP was amplified and fluorescently labeled using a 
One-Color Low Input Quick Amp Labeling Kit (Agilent Technologies). 
Cy3-labeled cRNAs were hybridized to a SurePrint G3 Human Gene 
Expression 8 × 60K v2 Microarray (Agilent Technologies), which 
contained 50 599 probes representing 29 833 genes registered in 
the Entrez Gene Database. Signature analysis based on gene expres-
sion was performed using the expression ratio of the tumor and the 
corresponding normal tissue (T/N). The expression signature/score 
was calculated from the average of genes in unique gene sets cor-
responding to each individual signature (TP53 inactivation,8 CIN,9-11  
methylation,12 PI3K/mTOR CMAP UP,13-15 and T cell-inflamed 
GEP17-19). To suppress influence of gene expression derived from 
normal tissue, the signature analysis was performed using T/N ex-
pression ratio.5

2.5 | Statistical analysis

To compare CNV size, protein length, and age, Wilcoxon signed-rank 
test was performed. Comprehensive data, such as those obtained 
from expression analysis using microarray or RNA-seq, were com-
pared using the Welch t test based on a standard protocol. To graphi-
cally assume distribution as a standard normal, a quantile-quantile 
(Q-Q) plot was employed. The log-rank test was performed for over-
all survival and progression-free survival curves. To control the FDR, 
the Benjamini-Hochberg procedure (q < .01) was carried out, and re-
sults were considered significant at P-values < .01. The CNV of each 
individual gene on each chromosome was considered significant at 
P-values < 1 × 10−6.

2.6 | Data accessibility statement

The authors declare that all the other data supporting the findings 
of this study are available within the article and its supporting in-
formation files and from the corresponding author upon reasonable 
request.

3  | RESULTS

3.1 | Tissue distribution and tumor cellularity in low-
TMB tumors

We extracted 5020 primary tumors from the JCGA data set, of which 
4070 samples (81.1%) had TMB ≤ 5 mutations/Mb (Figure 1A), de-
fined as TMB low. Tissue distribution of TMB-low tumors was similar 
to that in the data set without TMB filtering. TMB and total CNV 
size of these samples tended to decrease with low tumor cellular-
ity (Figure 1B). To avoid any influence of low tumor content on the 
detection of somatic alterations, 1394 samples with low tumor cel-
lularity (<0.3) were excluded from our main analysis (samples meet-
ing the above criteria are listed in Table S1), and then tumors with 
<1.0 mutation/Mb were defined as TMB ultralow (n = 430). Tissue 
distribution for sufficient tumor cellularity (≥0.3) was similar to that 
in the data set without TMB filtering (Figure S1A). TMB of these 
populations was estimated as abnormal distribution from the histo-
gram and Q-Q plot (Figure S1B,C). The CNV size was significantly 
low (P < 2.2 × 10−16) in TMB-ultralow tumors, implying that these 
ultralow-mutated tumors were less prone to somatic chromosome 
alterations (Figure S1D).

3.2 | Driver mutations in TMB-ultralow tumor

The frequency of TMB classes (low and ultralow) was compared 
across tumor types (Figure 1C). Benign tumors contained the highest 
TMB-ultralow frequency, exceeding 50% in gastrointestinal stromal 
tumor (GIST), thymus, and pancreas. The detection rate of driver-
mutated samples was next investigated for 6 tumor types; this in-
cluded more than 20 samples for both TMB classes (Figure 1D). The 
driver mutations were annotated as Tier 1 or 2 according to a pre-
vious report.7 The frequency of driver mutations was decreased in 
TMB-ultralow tumors compared with that in TMB-low tumors. We 
observed this tendency in the TCGA data set extracted by our analy-
sis pipeline (Figure S2A). Furthermore, we also checked known fu-
sion genes and confirmed that the number of detected fusion genes 
was decreased in TMB-ultralow tumors (Figure S2B).

To confirm whether the decrease in the number of driver muta-
tions, including fusion genes, accompanied the decline in TMB, the 
frequency of driver mutations was reanalyzed using equally seg-
mented sample populations (Figure S3A). In TMB-ultralow tumors, 
the detection rate of Tier 1/2 driver mutations dropped below 50%, 
whereas these mutations were observed in over 80% of samples for 

https://humandbs.biosciencedbc.jp/en/
https://humandbs.biosciencedbc.jp/en/
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all intervals of TMB-low tumors. To further evaluate the impact of 
high tumor cellularity on the frequency of driver-mutated samples, 
we divided samples into intermediate and high (≥0.65) tumor cellu-
larity (Figure S3B). No significant difference in frequency of each 
TMB class was observed between different degrees of cellularity, 
indicating that high tumor cellularity has an insignificant effect on 
the detection of driver mutations.

VAF is known experimentally to be influenced by tumor cellu-
larity. We checked the correlation of tumor cellularity with VAF of 
driver mutations (Figure S3C,D). The VAF score was moderately 
correlated with tumor cellularity, and was decreased in TMB-
ultralow tumors, raising the possibility that detection sensitivity 
for driver mutations in TMB-ultralow tumors may be reduced due 
to a few mutation reads in exome sequencing. To clarify the influ-
ence of VAF on detection sensitivity, driver mutations detected 
using WES were compared with those detected by target panel 
sequencing, which has a higher read-depth than WES (Figure S3E). 
Of the driver mutations, 86.3% were identified by both platforms, 

indicating that the detection of driver mutations in samples ex-
tracted based on the criterion (tumor cellularity > 0.3) was im-
pervious to VAF. Furthermore, in TMB-ultralow tumors with or 
without driver mutations, no significant differences in CNV size 
and tumor cellularity were observed (Figure S3F), suggesting that 
detection of driver mutations is not influenced by tumor cellu-
larity. These results indicated that TMB-ultralow tumors are less 
prone to accumulating known somatic alterations related to tum-
origenesis in gene coding regions.

3.3 | Impact of increasing age and malignancy on 
mutation accumulation

The number of driver mutations was positively correlated with in-
creasing age.34,35 We investigated the relationship between age and 
accumulation of known driver mutations, including fusion genes 
(Figure S4). Increasing patient age correlated with a higher number 

F I G U R E  1   Sample profile in tumor mutational burden (TMB)-ultralow and TMB-low tumors. A, Distribution of tumor types in 4070 
samples. The ‘other’ group contains multiple tumor types that comprise <20 samples. B, Influence of tumor cellularity on TMB and copy 
number variation (CNV) in whole-exome sequencing (WES). The samples were sorted in descending order by CNV size, calculated from the 
sum of loss (CNV ≤ 1.5) and gain (CNV ≥ 2.5) in the genome estimated by WES. C, Frequency of TMB-ultralow and TMB-low samples in each 
tumor type. These samples met the criteria of tumor cellularity (≥0.3). D, Detection rate of driver-mutated samples. The tumor types that 
include more than 20 samples in both TMB classes (ultralow and low) were selected. Driver mutation was defined as Tier 1 or 2 according 
to a previous report.7 Integer in parentheses represents number of samples. *Significant differences in the number of driver mutations 
detected between TMB-ultralow and TMB-low tumors (Fisher exact test, P < .01)

(A) (B)

(C) (D) TMB-ultralow TMB-low
* * * * *
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of driver mutations in 5 tumor types (colon, lung, head and neck, 
breast, and brain tumors) except stomach tumors. However, no sig-
nificant difference in age at operation was observed between TMB-
ultralow and TMB-low tumors (Table 1).

Benign tumors were mostly classified as TMB-ultralow (see 
Figure 1C). This finding raises the possibility that the number of 
mutations reflects malignancy in TMB-low tumors. Using TCGA 
data sets, we checked overall and progression-free survival in TMB-
ultralow and TMB-low tumors (Figure S5). No significant differ-
ences in Kaplan-Meier survival curves were observed between TMB 
classes. These results suggested that biases of increasing age and 
malignancy were insignificant for our TMB classification.

3.4 | Specific somatic mutations in TMB-
ultralow and TMB-low tumors

The detection rate of driver mutations, including fusion genes, dif-
fered between TMB-ultralow and TMB-low tumors. To further in-
vestigate other somatic mutations, the accumulation of mutations 
in all genes targeted by WES was measured in 6 tumor types (colon, 
lung, stomach, head and neck, breast, and brain tumors) without 
known driver alterations, including fusion genes (Figure 2). Among 
the genes with the top 10 mutations in TMB-ultralow and TMB-low 
tumors, MUC17 was consistently mutated in different tumor types. 
TP53 alterations except known driver mutations (Tier1/2) were de-
tected only in TMB-low tumors. Furthermore, 1988 cancer-related 
genes listed in the previous report7 were undetectable in TMB-
ultralow tumors. The mutated genes shown in Figure 2 were con-
firmed using IGV to avoid sequencer- and amplicon-derived errors 
(Figure S6), resulting in the exclusion of ZNF714 mutations due to 
potential sequencer-derived errors. Protein length after translating 
these genes in TMB-ultralow tumors was shorter than that in TMB-
low tumors (Figure S7), implying that the propensity of mutations 
may be dependent on the length of exons in the gene. These results 
suggested that TMB-ultralow tumors were less likely to accumulate 
known driver mutations and alterations in exon regions in cancer-
related genes.

3.5 | CNV and TP53 inactivation in TMB-
ultralow tumors

TMB-low tumors harbored more driver or cancer-related mutations 
than TMB-ultralow tumors. To find other alterations superseding 
driver mutations, we performed CNV analysis of each chromosome 
(Figure 3). In TMB-ultralow tumors, accumulation of CNV was lower 
for almost all chromosomes. Especially, the loss of chromosome 17 
encoding TP53 was observed independently of tumor type, implying 
that normal TP53 function was maintained in TMB-ultralow tumors. 
Defective TP53 function is known to contribute to CIN progress. 
Based on previous expression analysis,8 we calculated the TP53 inac-
tivation score (Figures 3 and S8A). This inactivation score was signif-
icantly decreased in TMB-ultralow tumors, and gene set enrichment 
analysis (GSEA)36,37 revealed that cell cycle pathways related to 
TP53 inactivation were enriched, this finding is consistent with that 
in a previous report8 (Figure S8B). Furthermore, the TP53 inactiva-
tion score was highly correlated with CIN signature9-11 (Figure S8C). 
Conversely, the inactivation score was not associated with methyla-
tion signature estimated from GEP12 (Figure S8D). These results sug-
gested that both CNV and TP53 inactivation related to CIN were 
suppressed simultaneously in TMB-ultralow tumors.

3.6 | Influence of TP53 inactivation on the PI3K/
Akt/mTOR pathway

To find variations in the expression of other genes related to tu-
morigenesis, we performed a volcano plot analysis. Seven genes 
were differentially expressed in TMB-ultralow tumors (Figure 4A), 
of which 3 (ECRG4, OGN, and ATP1A2) were likewise upregulated in 
the TCGA data set (Figure S9) and had moderate negative correla-
tion with TP53 inactivation (Figure S10). To elucidate the relation-
ship between TP53 inactivation and the PI3K/Akt/mTOR pathway, 
correlation analysis was performed on 134 genes upregulated during 
PI3K/mTOR activation.13,15 One-third of these genes had moderate 
positive correlation with TP53 inactivation, whereas TMB-ultralow 
tumors showed downregulation of these genes, accompanied by up-
regulation of ECRG4, OGN, and ATP1A2 (Figure 4B).

3.7 | Response prediction of ICI in TMB-
ultralow tumors

A combination of TMB and GEP related to T cell activation can im-
prove the prediction of responses to ICI.17-19 To explore a candidate 
responder to ICI therapy and further characterize TMB-ultralow tu-
mors, the distribution of the T cell-inflamed GEP signature was in-
vestigated. In our analysis, no significant correlation between this 
signature and TMB was observed, except for breast cancer, which 
showed a weak correlation (Figure 5A). TMB-ultralow samples ac-
counted for 10.3% of all Q3 (≥75-percentile) and this rate was simi-
lar to that for TMB-high samples (8.75%; Figure 5B). TMB-ultralow 

TA B L E  1   Age at operation in TMB-ultralow and TMB-low 
tumors

Tissue

Average of age at operation 
(Ave. ± SD)

P-
valuea TMB-ultralow TMB-low

Colon 70 ± 12 68 ± 11 .148

Lung 68 ± 10 69 ± 10 .470

Stomach 69 ± 10 69 ± 9 .744

Head and neck 58 ± 19 66 ± 12 .0553

Breast 54 ± 15 59 ± 13 .107

Brain 54 ± 18 57 ± 15 .970

aWilcoxon signed-rank test. 
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samples in Q3 included breast and head and neck tumors that were 
undetectable in TMB-high tumors (Figure 5C). These results indi-
cated that TMB-ultralow tumors contained T cell-inflamed GEP sig-
natures, similar to that found in TMB-high tumors, indicating that 
this signature was independent of TMB.

4  | DISCUSSION

Integrative analysis of 2658 whole-cancer genomes has recently re-
vealed the presence of various somatic alterations that were difficult 
to detect using WES.6 The features of low-mutated tumors, which 
comprise the majority of solid tumors, are still poorly understood. 
We focused on TMB-ultralow tumors and attempted to characterize 
these samples using WES and GEP. To reduce the number of false-
negative mutations in WES, mutation analysis is necessary to miti-
gate the concern for low tumor content.38 In our analysis, low tumor 
cellularity influenced somatic mutations and CNV, whereas the fre-
quency of mutation detection was almost constant for high tumor 
contents. Therefore, samples with low tumor cellularity (<0.3) were 
excluded from the mutation analysis.

Although no significant differences related to increasing age were 
observed between TMB-low and TMB-ultralow tumors, aging often 
coincided with accumulation of driver mutations (see Figure S4). The 
JCGA (not TCGA) data set was not sufficient to clarify the influence 
of mutation accumulation on malignancy based on a survival curve, 
therefore its ability to completely deny this relationship is limited. 
The impact of aging in TMB-ultralow tumors should be re-evaluated 
in further studies that include survival outcome.

Based on WES and GEP, TMB-low tumors without known driver 
alterations harbored TP53 mutations (not driver) and exhibited TP53 
inactivation correlated with CIN, a tendency that was not observed 
in TMB-ultralow tumors. Studies on cell culture, experimental an-
imal models, and human cancers have shown that defective TP53 
activation is associated with enhanced CIN.8,39-42 Recent pan- 
cancer analysis suggested that copy number changes attributed to 
CIN are delayed events.43 Therefore, TMB-ultralow tumors may be 
less prone to accumulate somatic mutations and CNV due to re-
tained TP53 activation in early tumorigenesis.

TMB-ultralow tumors usually had less variation in all chromo-
somes including TP53-encoded chromosome 17 than did TMB-low 
tumors, whereas a few cases harbored a change in CNV gain and/

F I G U R E  2   Top 10 mutated genes in 
TMB-ultralow and TMB-low tumors. To 
extract genes with somatic mutations, 
131 TMB-ultralow and 139 TMB-low 
tumors without driver mutations were 
selected. The cancer-related genes were 
determined in a previous report7

TMB

F I G U R E  3   Copy number variation (CNV) analysis in TMB-ultralow and TMB-low tumors. Samples were classified using TMB in each 
tissue. Gene symbols of oncogenes or tumor suppressor genes (TSG) with significant difference (q < 1 × 10−6) between TMB-ultralow and 
TMB-low tumors are described. TP53 inactivation score (TP53-IS) was calculated from the expression of 4 genes (CDC20, PLK1, CENPA, and 
KIF2C).8 cnLOH, copy neutral loss of heterozygosity
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or loss (see Figure 3 and Figure S1D). Recent pan-cancer analysis 
revealed that chromothripsis-(like) events often occur in tumors 
with low driver mutations.44 The large chromosomal aberration in 
TMB-ultralow tumors without driver alterations may be due to this 
event. Conversely, latest mutational analyses showed that compos-
ite mutations led to tumorigenesis.45,46 TMB-ultralow tumors may 
harbor multiple alterations with weak pathogenicity as somatic or 
germline mutations, resulting in the development of tumors without 
driver mutations. These findings implied that TMB-ultralow tumors 
may include not just populations with suppressed TP53 inactivation 
but also other tumors via another tumorigenic process. To further 
understand TMB-ultralow tumors, integration of our analysis and 
whole genome sequencing, including germline mutation analysis, is 
an issue for the future.

We identified 3 upregulated genes (ECRG4, OGN, and ATP1A2) 
that were inversely correlated with TP53 inactivation in TMB-
ultralow tumors, and their expression levels in TCGA showed the 
same trend. Upregulation of ECRG4 in esophageal carcinoma in-
creased TP53 protein expression, resulting in inhibition of cancer 
cell migration and invasion47, therefore ECRG4 may suppress TP53 
inactivation in TMB-ultralow tumors. OGN inhibited the PI3K/
Akt/mTOR pathway in breast and colorectal cancers as a tumor 
suppressor gene,48,49 and the genes related to this pathway were 
highly expressed in OGN-upregulated tumors with ultralow TMB. 
Although the molecular function of ATP1A2 in cancer remains 
unclear, this gene is affected in mouse muscle lacking mTOR ac-
tivity,50 implying an association with the PI3K/Akt/mTOR path-
way. Therefore, we concluded that the PI3K/Akt/mTOR pathway 

F I G U R E  4   Gene expression profiling (GEP) for extraction of TMB-ultralow-specific alteration in mRNA expression. A, Volcano plot 
showing the results of microarray analysis in TMB-ultralow and TMB-low tumors. Red dots represent significant differential genes (q < .01, 
fold change ≥ 2.0). B, Heatmap of PI3K/mTOR pathway-related genes, sorted by correlation profile with TP53 inactivation score (TP53-
IS). PI3K/mTOR CMAP UP signature genes were previously defined as gene transcription signature of PI3K/Akt/mTOR in pan-cancer.13-15 
ECRG4, OGN, and ATP1A2 genes extracted in Figure 4A were significantly downregulated in TCGA data set (see Figure S8). OGN expression 
was calculated from the average of OGN probes 1 and 2. The dashed line represents P = .01
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was suppressed, along with TP53 inactivation, in TMB-ultralow 
tumors.

The prediction of responses to ICI using gene expression fo-
cuses on tumors harboring some mutations (TMB ≥ 10 mutation/
Mb),17-19 although most solid tumors were categorized as TMB low. 
Our analysis revealed that the expression of the T cell-inflamed 
GEP signature was increased in low-mutated tumors. This score 
was independent of TP53 inactivation, CIN, and the PI3K/Akt/
mTOR pathway (data not shown). Notably, populations showing 
high signatures (≥75 percentile) were TMB-low and TMB-ultralow 
including breast and head and neck tumors that show the high 
T cell-inflamed phenotype without high TMB.51 Patients with 
low-mutated tumors of head and neck cancers included a few re-
sponders to ICI.52 The population with high expression of the T 
cell-inflamed GEP signature may include candidate ICI responders, 
despite low mutation numbers.

In conclusion, the present study characterized TMB-ultralow and 
TMB-low tumors in the JCGA data set, which is composed of 5020 
primary solid tumors. Detection rates of driver mutations and CNV 
were deceased in TMB-ultralow tumors, a trend that was observed 
in TCGA data set. Furthermore, several tumorigenesis-related path-
ways were not featured compared with those for TMB-low tumors. 
GEP suggested that low mutators include candidate ICI responders. 
Our analysis focusing on TMB-ultralow tumors can provide insight 
into tumors with low numbers of somatic alterations that are hardly 
detected solely by WES.
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