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ABSTRACT 

As a neurobiological process, addiction involves pathological patterns of engagement with 
substances and a range of behaviors with a chronic and relapsing course. Neuroimaging 
technologies assess brain activity, structure, physiology, and metabolism at scales ranging 
from neurotransmitter receptors to large-scale brain networks, providing unique 
windows into the core neural processes implicated in substance use disorders. Identified 
aberrations in the neural substrates of reward and salience processing, response 
inhibition, interoception, and executive functions with neuroimaging can inform the 
development of pharmacological, neuromodulatory, and psychotherapeutic interventions 
to modulate the disordered neurobiology.  Based on our systematic search, 409 protocols 
registered on ClinicalTrials.gov include the use of one or more neuroimaging paradigms 
as an outcome measure in addiction, with the majority (N=268) employing functional 
magnetic resonance imaging (fMRI), followed by positron emission tomography (PET) 
(N=71), electroencephalography (EEG) (N=50), structural magnetic resonance imaging 
(MRI) (N=35) and magnetic resonance spectroscopy (MRS) (N=35). Furthermore, in a 
PubMed systematic review, we identified 61 meta-analyses including 30 fMRI, 22 
structural MRI, 8 EEG, 7 PET, and 3 MRS meta-analyses suggesting potential biomarkers 
in addictions. These studies can facilitate the development of a range of biomarkers that 
may prove useful in the arsenal of addiction treatments in the coming years. There is 
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evidence that these markers of large-scale brain structure and activity may indicate 
vulnerability or separate disease subtypes, predict response to treatment, or provide 
objective measures of treatment response or recovery. Neuroimaging biomarkers can also 
suggest novel targets for interventions. Closed or open loop interventions can integrate 
these biomarkers with neuromodulation in real-time or offline to personalize stimulation 
parameters and deliver the precise intervention. This review provides an overview of 
neuroimaging modalities in addiction, potential neuroimaging biomarkers, and their 
physiologic and clinical relevance.   Future directions and challenges in bringing these 
putative biomarkers from the bench to the bedside are also discussed.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.24312084doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.02.24312084
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

Substance use disorders (SUDs), including alcohol, cause significant and increasing 
mortality and morbidity worldwide 1,2.  In the United States alone, yearly costs of medical 
care, lost productivity and law enforcement associated with SUDs exceed an estimated 
$700 billion 3. As the designation suggests, SUDs have conventionally been viewed as 
disorders of “substance use” 4; but increasing evidence suggests that this harmful 
substance use is both driven by and contributes to pervasive brain alterations which 
underlie profound cognitive and behavioral manifestations broader than substance use 5. 
Since early pneumoencephalography studies revealed general brain atrophy in chronic 
alcohol users 6, decades of neuroimaging research have increasingly caused a shift 
towards a “brain disease” model of SUDs 7–9. Under this neuroimaging-informed model, 
genetic, developmental, social, and biological influences converge on combinations of 
core neurocognitive aberrations: the mesocorticolimbic reward network is sensitized by 
drugs of abuse, leading to excessive attribution of salience to drug-associated stimuli; 
anti-reward and stress systems across the basal ganglia and the extended amygdala 
become over-reactive, contributing to withdrawal symptoms and negative-affective states 
which can motivate substance use; and executive control networks centered around 
prefrontal regions are disrupted, with the degradation of top-down frontal control leading 
to disinhibited substance use 7–11.  

Considering the evidence for neural aberrations in SUDs that can be objectively assessed 
using neuroimaging technologies, there is growing interest in using neuroimaging to 
inform clinical care and intervention development for SUDs 12,13. Objective measures of 
SUDs are currently limited to measures of psychoactive substances or their metabolites 
in biological samples (National Institutes of Health, 2020a) or reflect toxic effects of use 
14. These measures of substance use are not informed by the neurocognitive processes 
which underlie addiction, and thus have limited use in distinguishing at-risk individuals, 
offering prognostic insight, or informing interventions 8. In this context, neuroimaging 
technologies provide objective measures which could be used as novel “biomarkers” for 
SUDs, enabling the translation of neuroscientific insights to the bedside 15. This echoes 
broader trends in precision psychiatry and efforts to develop and utilize so-called 
“biomarkers” in psychiatric practice and research more extensively 16,17. Neuroimaging 
biomarkers, which can indicate specific aberrations of brain structure and function in 
SUDs, bring a three-fold advantage: first, they provide a direct window into proximal 
potential neurobiological mechanisms of disease and recovery in individuals with SUDs; 
second, they suggest novel treatment targets and provide neurophysiological evidence of 
effectiveness to facilitate intervention development; and third, mechanistically-grounded 
markers could be used directly for clinical purposes: to distinguish different sub-
populations of substance-using individuals and inform personalized interventions and 
ongoing monitoring tailored for patients with specific brain abnormalities 18–22. 

It is important to note that the “brain disease” model is not the only account of addiction 
etiology. For example, alternative explanations posit that addiction is a disease of choice 

and may be caused by a lack of alternative reinforcers 23, some contest whether addiction 

is a “disease” 24, and others simply argue that neurobiological explanations cannot be 

privileged over others 25. Moreover, the “brain disease” model has faced criticism on 
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scientific, philosophical, and political grounds 26–28; and while it is generally agreed that 

alcohol and substance use disorders involve brain changes 22,29, some have argued that 
the current body of neurobiological evidence may not be sufficient to conclude that 
neurobiological dysfunctions are specific and primary causes of addiction broadly 30. 
However, while we would argue that the addiction neuroimaging literature to date both 
aligns with a “brain disease” model of addiction and supports the development of 
neuroimaging biomarkers, adherence to the former is not strictly necessary for the latter: 
According to the FDA-NIH Biomarker Working Group, a biomarker is simply “a defined 
characteristic that is measured as an indicator of normal biological processes, pathogenic 
processes, or biological responses to an exposure or intervention, including therapeutic 
interventions” 31. Regardless of whether addictive disorders are primarily caused or 
sustained by neurological dysfunction, neuroimaging biomarkers of aberrant brain 
structure or function associated with specific mechanisms of addiction and recovery could 
illuminate neural pathology, facilitate intervention development, and guide clinical care. 
A pertinent example is hypertension: the fact that the disease can be caused in large part 
by social and environmental factors does not diminish the importance of blood pressure 
as a biomarker to diagnose and monitor hypertension and develop interventions 32,33. 

To lay the conceptual framework for a discussion of potential neuroimaging biomarkers 
in SUDs, we will provide an overview of the current status of neuroimaging paradigms in 
translational addiction neuroscience, informed by a systematic review of neuroimaging 
outcome measures in 409 protocols registered on ClinicalTrials.gov between its inception 
and November 17, 2021. Together, the 409 protocols have utilized 479 imaging 
modalities, and 688 neuroimaging outcome measures and provide a broad estimate of 
the clinically-relevant uses of neuroimaging in addiction neuroscience. We supplement 
this discussion with another systematic review of 61 meta-analyses between inception and 
November 10, 2023 of neuroimaging biomarkers in SUDs, and highlight biomarkers that 
have replicated in meta-analyses across multiple contexts and diagnoses. We then discuss 
different neuroimaging biomarkers which may be developed for SUDs based on taxonomy 
developed by the FDA-NIH Biomarker Working Group 34 and highlight challenges and 
future directions to provide clinicians and researchers with an understanding of 
opportunities and challenges in neuroimaging biomarker research. 

RESULTS 

The present manuscript is informed by two systematic reviews. The first covered SUD 
clinical research protocols which include neuroimaging outcome measures, obtained by 
querying the ClinicalTrials.gov repository between inception and November 17, 2021 
(Supplementary Figure 1a). This systematic review yielded a final result of 409 protocols. 
The second systematic review was conducted on PubMed, focusing on meta-analyses of 
neuroimaging studies of SUDs and finding 61 meta-analyses from which 83 meta-analytic 
findings were extracted (Supplementary Figure 1b). In this paper, while we seek to 
structure the discussion around replicated findings that have held across SUDs, some 
findings pertain only to specific SUDs, in which cases the particular SUD is highlighted. 
It should also be noted that the neuroimaging measures and findings in included 
protocols and meta-analyses do not constitute validated biomarkers: Any objective 
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measure needs to undergo an extensive validation process to qualify as an actual 
biomarker of disease or recovery, which is not the case for any of the measures we discuss. 
Essential validation steps are discussed in the future directions. The systematic reviews 
serve to highlight replicated neuroimaging findings in SUDs and demonstrate the 
different exploratory purposes for which neuroimaging modalities are already used in 
clinical research. These purposes or “contexts of use” are grouped under corresponding 
categories of biomarkers to outline what measures might come to serve as actual 
neuroimaging biomarkers of SUDs, and motivate a discussion of challenges which need 
to be surmounted in the process. 

 

NEUROIMAGING MODALITIES IN ADDICTION MEDICINE 

Interest in clinical uses of neuroimaging paradigms for virtually all SUDs has increased 
over time, with 87.3% of the protocols in our systematic review starting in 2010 or later. 
This is particularly the case with alcohol (N=139) and nicotine use disorders, but a 
growing number of protocols are using neuroimaging as an outcome measure for cocaine 
(N=44), cannabis (N=36), and opioid use disorder (N=31) (Figure 1a and Supplementray 
Figure 2). The growing interest in using neuroimaging paradigms has also been reflected 
in the conducted meta-analyses (Note that three  of the studies are mega-analyses rather 
than meta-analyses, though we use the term meta-analysis to refer to these for simplicity). 
with all of them conducted after 2011 and more than half of them (N=31 out of 61) in the 
last 3 years. Most of the meta-analyses were conducted on multi substances (N=28)  
followed by analyzing studies focusing solely on alcohol (N=13) (Supplementary Figure 
3).  With some exceptions, neuroimaging paradigms in addiction neuroscience can be 
broadly categorized into “structural” imaging techniques which probe brain structure 
statically, “functional” paradigms which evaluate changes in a signal associated with brain 
function during the scan, and “molecular” paradigms which assess the static or changing 
distribution of important molecules/metabolites within the brain. These various 
paradigms are converging on a multi-scale perspective into brain changes in SUDs and 
may be used to develop clinically-relevant biomarkers 35,36. 

Brain Structure: Gray and White Matter 

While a few studies have utilized CT scans to interrogate brain structure alterations in 
SUDs 37, arguably the most popular structural neuroimaging paradigm in addiction 
neuroscience is structural magnetic resonance imaging (sMRI), used by 35 protocols in 
our trials database as the only neuroimaging paradigm and by 27 protocols in conjunction 
with another paradigm (Figure 1b). Among the meta-analytic findings reviewed, 22 out of 
83 were aberrations observed with structural MRI. Using MRI, algorithms such as voxel-
based morphometry can isolate and quantify gray matter 38, and meta-analyses of these 
and similar techniques have revealed wide-spread losses of gray matter across cortical 
and subcortical regions across a number of different SUDs 39–44, though there is some 

evidence that these may recover with abstinence 45. “Mega-analyses” of MRI data 
collected from thousands of individuals with a variety of SUD types have also revealed an 
overall loss of gray matter, particularly in the insula and prefrontal and parietal cortices, 
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and suggest that use severity may be correlated with lower amygdala and nucleus 
accumbens volume, particularly in alcohol use disorder 46. Simultaneously, studies of 
white matter structure with diffusion-weighted imaging have broadly revealed white 
matter degeneration in commissural tracts, the internal capsule, and corpus callosum 
across several SUDs 39,47–49. Observed structural changes in the gray and white matter 
might explain both deficits in higher-order cognitive processes and bottom-up processes 
in SUDs, with striking alterations in both frontal, parietal, and insular cortical regions 
involved in interoception, attention, and executive control and in the amygdala and 
nucleus accumbens which subtend bottom-up reward and affective processing 46,50. 
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Figure 1: Distribution of the neuroimaging protocols based on year and substance. 
a. Number of protocols starting for each substance each year (n= 409). Years are obtained from 
the ClinicalTrials.gov database indicating actual or planned start years. b. Number of 
neuroimaging modalities used in each protocol for each substance. Numbers on this figure sum 
to 479 for 409 protocols, since 70 protocols used multiple imaging modalities. ATS: 
Amphetamine-type Stimulants; sMRI: structural MRI, including whole-brain T1 imaging, gray 
matter volumetry, or diffusion tensor imaging; Perfusion: brain perfusion imaging, including 
arterial spin labeling, cerebral blood flow imaging, and magnetic resonance angiography; 
MRS: magnetic resonance-spectroscopy. Data were collected from ClinicalTrials.gov on 
November 17, 2021. 

Brain Function: Hemodynamics and Electrophysiology 

While structural neuroimaging paradigms are useful, the brain is engaged in constant 
activity during task performance and even idleness or sleep 51 and alterations in these rich 
neural dynamics underlie the cognitive-behavioral profiles typical of SUDs 52. This 
necessitates the use of “functional” neuroimaging paradigms that can measure brain 
activity either during the performance of various tasks (“task-based” imaging, 342 out of 
688 instances in protocol database and 30 out of 83 in our meta-analysis database) or 
during rest (“resting-state” imaging, 217 instances in our protocol database and 4 in our 
meta-analysis database) 53. For example, “cue-reactivity paradigms” involve the 
presentation of stimuli associated with substances, such as pictures, scents or tastes, to 
assess neural reactivity and sensitization to these cues 54, and are used by 130 protocols 
in our protocol database (and 10 meta-analytic findings in SUDs). Other tasks can be used 
to probe other aspects of reward processing (42 instances across protocols, 6 meta-
analytic findings), response inhibition (36 instances across protocols, 3 meta-analytic 
findings) and decision making (22 instances across protocols, 1 meta-analytic finding), all 
processes whose neural circuitry is impacted in SUDs 11,55 (Figure 2 and 3). 
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Figure 2: Multi-level characteristics of 688 neuroimaging outcome measures in 
409 registered protocols. These levels include the scales at which neuroimaging modalities 
have probed the nervous system (structural, biochemical, hemodynamic or electrophysiology), 
the neuroimaging modality, different paradigms in each modality, and the types of tasks used 
in task-based functional neuroimaging paradigms. All “structural” paradigms in our database 
were variants of MRI; “biochemical” paradigms include SPECT, MRS, and PET; 
“hemodynamic” paradigms include fMRI, fNIRS, less common perfusion imaging modalities, 
and ultrasound; and EEG and MEG constitute “electrophysiological” imaging paradigms. These 
modalities have been used for static structural scans of brain gray or white matter and 
vasculature, resting-state functional scans, or task-related functional scans with various tasks. 
Note that many protocols have utilized more than one neuroimaging outcome measure and the 
total number of outcome measures is 688, more than the number of protocols (n=409). Data is 
collected from ClinicalTrials.gov on November 17, 2021. 
EEG: electroencephalography; fMRI:functional magnetic resonance imaging;  fNIRS: Functional near-infrared 
spectroscopy; MEG: magnetoencephalography; MRI: magnetic resonance imaging; MRS: magnetic resonance-
spectroscopy; PET: positron emission tomography; SPECT: Single-photon emission computed tomography;  
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Figure 3: Multi-level characteristics of 83 neuroimaging outcome measures in 61 
meta-analyses. These levels include the scales at which neuroimaging modalities have probed 
the nervous system (structural, biochemical, hemodynamic or electrophysiology), the 
neuroimaging modality, different paradigms in each modality, and the types of tasks used in 
task-based functional neuroimaging paradigms. All “structural” paradigms in our database 
were variants of MRI; “biochemical” paradigms include SPECT, MRS, and PET; 
“hemodynamic” paradigms include fMRI, fNIRS, less common perfusion imaging modalities, 
and ultrasound; and EEG and MEG constitute “electrophysiological” imaging paradigms. These 
modalities have been used for assessment of people with different kinds of SUDs. These 
assessment can be categorized into different biomarker categories. Note that some meta-
analyses have utilized more than one neuroimaging outcome measure and the total number of 
outcome measures is 83, more than the number of total meta-analyses (n=61). Further, 3 of the 
83 findings are from mega-analyses rather than meta-analyses, though we use the term meta-
analysis to refer to these for simplicity. 
dMRI: diffusion magnetic resonance imaging ; EEG: electroencephalography; fMRI: functional magnetic resonance 
imaging;  fNIRS: Functional near-infrared spectroscopy; MEG: magnetoencephalography; MRI: magnetic resonance 
imaging; MRS: magnetic resonance-spectroscopy; PET: positron emission tomography; sMRI: structural magnetic 
resonance imaging; SPECT: Single-photon emission computed tomography;  SUD: Substance user disorder 

 

 

The first major group of functional neuroimaging outcomes (433 instances across 
protocols and 30 findings across meta-analyses) is “hemodynamic” techniques that 
include blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) 
functional MRI, functional near-infrared spectroscopy, and cerebral perfusion imaging 
methods 56–59. fMRI is the most commonly used neuroimaging paradigm in addiction 
neuroscience, with 412 instances of fMRI as an outcome measure in our database out of 
the 688 neuroimaging outcome measures used in the 409 protocols (Figure 1b, Figure 2). 

                

          

          

         

              

        

        

                 

                

                 

                      

                     

             

                

             

             

            

                

              

               

                   

                         

 
 
  
 
 
  
  

 
 
  
 
  
 
  
 
 
 
 
  
 
  
 
  
  
 
  
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.24312084doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.02.24312084
http://creativecommons.org/licenses/by-nc-nd/4.0/


Further, 39 meta-analytic findings across neuroimaging SUD studies are from meta-
analyses which include fMRI studies, alone (30 findings) or in combination with other 
modalities (Figure 3). There is extensive task-based fMRI evidence of disruption during 
reward-processing 60, and drug cue exposure results in a cascading hyperactivation of 
limbic circuits which subtend valuation and salience processing and disruption of 
prefrontal control, which can end in drug use 55,61. On the other hand, resting-state fMRI 
studies have revealed that SUDs are associated with weaker connections in the executive 
control network and stronger couplings within and between salience, reward, and “default 
mode” networks, suggesting that this might account for impaired response inhibition and 
the abnormal salience of drugs 11,62. Other hemodynamic paradigms have converged on 
similar findings, with aberrant function and perfusion in the middle frontal and 
orbitofrontal cortices, among others, observed in SUDs 57,63 

The second group of functional imaging modalities focuses on the brain’s 
electrophysiological properties: electroencephalography (EEG) and 
magnetoencephalography (MEG) record, respectively, the electrical and magnetic fields 
generated during brain activity using extra-cranial probes to infer the underlying brain 
activity 64,65. Owing to its low cost and portability, EEG is the more common paradigm 
with 74 instances in our protocol database (and 8 findings in our meta-analysis database) 
compared to a single protocol with MEG. Event-related potentials elicited during task 
performance are usually split into components associated with underlying cognitive 
processes. For example, There is evidence that the P300 component of ERPs elicited by 
drug cues may be associated with reward valuation and the late positive potential with 
drug use motivation in individuals with SUDs, while the error-related negativity and 
feedback-related negativity components are associated with cognitive control and self-
regulation 66,67. Another approach is to decompose the recorded EEG or MEG signal into 
specific “bands” with different frequencies, which has revealed decreases in EEG beta 
band power in opioid and alcohol use disorders 68. As with fMRI and fNIRS, EEG 
recordings also revealed network-level changes in individuals with SUDs: Examples 
include disruptions in the communication of the parietal lobe with other brain regions 69 
and reductions in global integration and locally specialized connectivity 70. 

Brain Biochemistry: Molecular Systems 

On a molecular level, positron emission tomography (PET) and single photon-emission 
computed tomography (SPECT) use radiotracers with specific patterns of distribution 
across the tissue. Psychiatric SPECT and PET imaging increasingly use complex ligands 
known to preferentially bind to molecules of interest to probe both the density and 
binding potential of a certain neurotransmitter system across the brain, and dynamic 
changes in neurotransmission induced by a pharmacological agent or during cognitive 
and behavioral tasks 71. Magnetic resonance spectroscopy (MRS) is a different approach 
to investigating molecular concentrations across the brain, using magnetic resonance 
rather than ionizing radiation to assess relative levels of different metabolites, such as 
choline and N-acetylaspartate, and neurotransmitters, such as glutamate, GABA, and 
glutamine 72. 
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All three modalities are used in our protocol database as outcome measures, with 70 
instances of PET, 7 instances of SPECT, and 40 instances of MRS (Figure 2), and 16 meta-
analytic PET/SPECT findings (7 findings from meta-analyses of studies using only 
PET/SPECT, 9 in combination with fMRI studies). PET and SPECT studies have 
demonstrated that dopamine transporter and D2 dopamine receptor availability are 
consistently downregulated in SUDs, especially D2 receptors in the striatum whose 
downregulation is associated with compulsive drug use 73. This has been extensively 
corroborated in stimulant use disorders, with several recent meta-analyses 74,75. These 
observations and further aberrations in dopamine synthesis and release are consistent 
with dysfunctional dopaminergic neuroadaptations in the reward network and 
accompany changes in other neurotransmitter systems implicated in the neuro-cognitive 
abnormalities observed in SUDs, such as serotonergic disruptions potentially related to 
affective deregulation and opioidergic down-regulation which may explain tolerance and 
dependence 76–78. At the same time, meta-analyses of MRS studies have revealed 
decreased N-acetylaspartate levels across frontal and cingulate regions, suggesting 
decreased neuronal and axonal viability 79,80; and others have reported aberrations in 
glutamate and GABA levels in the prefrontal cortex and basal ganglia which correlate with 
disease severity and cognitive function across SUDS 81,82. These findings suggest that 
neurotransmitter abnormalities may account for some neuro-cognitive abnormalities in 
attention and executive function observed in SUDs. 

NEUROIMAGING BIOMARKERS IN ADDICTION  
Given the observation of brain abnormalities across different domains in SUDs, there are 
ongoing efforts to utilize these brain aberrations as biomarkers for specific contexts of 
use. The neuroimaging technologies discussed above have distinct advantages and 
disadvantages, and thus each may be better suited for use in certain contexts and/or for 
different SUDs. The systematic review of the registered protocols discussed above 
expectedly identified mostly neuroimaging biomarkers used to measure the effect of an 
intervention in a trial. However, neuroimaging biomarkers could go beyond treatment 
response assessment. The FDA-NIH Biomarker Working Group has formally defined 
distinct biomarker types which correspond to different stages of addiction, recovery, and 
clinical intervention 34: In the context of SUDs, “susceptibility” biomarkers indicate the 
risk that individuals develop a  SUD and “diagnostic” biomarkers can distinguish 
individuals with SUDs from recreational users or between clinically relevant subtypes of 
SUDs. For individuals with an established SUD diagnosis, “prognostic” biomarkers can 
predict the future progression of patients towards relapse versus remission and 
“monitoring” biomarkers can be measured over time to assess changes. 

When developing or implementing a clinical intervention for SUDs, “predictive” 
biomarkers can predict the clinical impact of an intervention, and “safety” biomarkers can 
be measured to assess the safety of an intervention or novel substance; while “response” 
biomarkers reflect an individual’s response to an intervention and, under certain 
conditions, can be used as “surrogate endpoints”: biomarkers which can demonstrate the 
likely clinical effectiveness of an intervention before actual clinical outcomes develop 83,84. 
A schematic of the different stages of SUDs and intervention is presented in Figure 4. It 
is important to note that a single neuroimaging measure may conceivably serve multiple 
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biomarker roles in different contexts: as an example, higher baseline ventral striatal fMRI 
drug cue-reactivity can distinguish relapsing individuals with stimulant use disorder from 
non-relapsing individuals 3 months after the scan (prognosis) 85 and predict the clinical 
response of individuals with alcohol use disorder to naltrexone (prediction) 86. At the 
same time, striatal cue-reactivity in individuals with alcohol use disorder can be reduced 
through treatment (response) 87. Such converging evidence can support the clinical 
validity of a biomarker. 

 Figure 4: Schematic representation of stages in substance use and SUDs and their 
therapeutic interventions and corresponding biomarker types. Susceptibility 
biomarkers can predict transition to substance use or disorder, prognostic biomarkers can 
predict the future progression of the disorder, diagnostic biomarkers can distinguish clinically-
relevant populations, monitoring biomarkers facilitate ongoing information about the course of 
the disorder with or without intervention, predictive biomarkers can predict treatment 
response, response biomarkers can reflect the physiological impact of an intervention and 
potentially be used as surrogate endpoints in lieu of clinical outcomes, and safety biomarkers 
can help assess the potential hazards of various substances used in clinical or non-clinical 
settings. 

Based on an assessment of the structure of the reviewed protocols, the 409 protocols have 
collectively used 510 neuroimaging measures as putative SUD biomarkers. These 510 
putative neuroimaging-based biomarkers are broken down based on biomarker type, 
substances, and neuroimaging modalities in Figure 5. Based on the systematic review of 
meta-analyses, several of these markers have also been suggested across several SUDs or 
contexts of use in meta-analyses of neuroimaging studies. Such suggested findings were 
observed in 55 meta-analyses in our database and are summarized in Table 1. The 
following sections review these biomarker types in greater detail.
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Table 1: Meta-analytic neuroimaging markers that have been suggested across SUDs or contexts of use. Note that 
this table includes only findings supported by more than one meta-analyses across SUDs or contexts of use, and 
thus only 55 out of the 61 meta-analyses in the full database are included COU: Context of Use dMRI: diffusion magnetic resonance 
imaging ; EEG: electroencephalography; fMRI: functional magnetic resonance imaging;  fNIRS: Functional near-infrared spectroscopy; MEG: 
magnetoencephalography; MRI: magnetic resonance imaging; MRS: magnetic resonance-spectroscopy; PET: positron emission tomography; sMRI: structural 
magnetic resonance imaging; SPECT: Single-photon emission computed tomography;  SUD: Substance user disorder 

 
 

Modality 
Number of 

Meta-Analyses 
SUD COU Observations References 

Gray and White Matter  

dMRI 
(last study White 

Matter VBM) 
6 

Alcohol, 
Stimulants, 

Opioids 

Diagnostic, 
Response 

Macro- and microstructural evidence of white matter 
degeneration across the corpus callosum, internal 

capsule, and frontal and limbic projections. Evidence of 
white matter recovery with abstinence at least in alcohol 

use diroder 

39,47–49,221,222 

sMRI 18 

Alcohol, Nicotine, 
Stimulants, 

Opioids, 
Cannabis 

Diagnostic, 
Response 

Reduction in cortical thickness and gray matter volume 
across superior temporal, inferior parietal, precentral, 

insular, frontal, cingulate, hippocampal and 
parahippocampal cortices and the striatum and 

thalamus. Further, at least in the case of nicotine, 
agnoists impact some of the brain areas where 
reductions in gray matter volume are prominent. 

39–45,132,133,194,212,223–229  
 
 
 
 
  

Neurotransmitter Systems and Metabolites  

PET/SPECT 2 Stimulants Diagnostic 

Overall downregulation of striatal dopaminergic 
signaling, including decreases in dopamine release, 

reduced dopamine transporter density and availability, 
and reduced dopamine receptor density, availability and 

binding potential. 

74,75  

MRS 2 
Alcohol, 

stimulants 
Diagnostic 

Lower N-acetylaspartate levels across frontal and 
cingulate regions suggesting decreased neuronal and 
axonal viability, lower cortical and higher subcortical 

creatine levels. 

79,80 
  

Electrophysiological Activity  
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EEG (Response 
Inhibition) 

3 

Alcohol, General 
(Opioids, 

Stimulants, 
Nicotine, 

Cannabis) 

Diagnostic, 
Response 

SUDs are associated with the attenuation of error-
related negativity and EEG components such as N200. 
Alcohol administration leads to acute reduction of ERN. 

198,206,230 
  

EEG (Cue-
Reactivity) 

2 

General 
(stimulants, 

opioids, alcohol, 
nicotine) 

Diagnostic, 
Response 

SUDs are associated with the enhancement of the 
salience-related P300 potential in response to drug-

related cues, which also shows signs of time-dependent 
recovery with abstinence. 

197,198 
  

EEG (Attention 
and Surprise) 

2 

General (alcohol, 
opioids, nicotine, 

stimulants, 
others) 

Diagnostic, , 
Susceptibility 

Reduced P300 amplitude in response to tasks which 
involve attention and surprise (such as the oddball 

paradigm) is associated with SUDs, and may 
susceptibility to SUDs. 

204,231 
  

Hemodynamic Activity  

fMRI/PET (Cue-
Reactivity) 

11 

Alcohol, Nicotine, 
Stimulants, 

Opioids, 
Cannabis, 
General 

Diagnostic,  
Susceptibility, 

Response 

SUDs is associated with higher fMRI drug cue reactivity 
(FDCR) across mesocorticolimbic and nigrostriatal 

regions, the precuneus, cingulate and insula, various 
frontal and temporal regions, sensory cortices, and the 
cerebellum. FDCR may indicate susceptibility as well, 

particularly striatal FDCR in adolescents. 
Abstinence may lead to short-term hyperactivations in 
some of the regions, but in the long term treatment can 
normalize FDCR across regions, particularly striatum, 

insula, and prefrontal regions. 

96,135,137,195,199,200,232–236  

fMRI (Reward 
Processing) 

4 

Alcohol, General 
(alcohol, nicotine, 

stimulants, 
cannabis) 

Diagnostic 

Both anticipation and receipt of reward and loss are 
associated with pervasive hypo-and hyper-activations 

across striatal, prefrontal, orbitofrontal, sensory, insular 
and temporal cortices. 

60,136,138,237 

fMRI (Response 
Inhibition) 

3 

Alcohol, General 
(stimulant, 

alcohol, nicotine, 
opioid) 

Diagnostic,  
In SUDs compared to HCs, response inhibition is 

associated with lower activations across cingulate, 
frontal, inferior parietal, insular and temporal cortices. 

207–209 

fMRI (Rest) 2 

General 
(stimulants, 

heroin, alcohol, 
cannabis, 
nicotine) 

Diagnostic 
Aberrant resting-state functional connectivity patterns 

across limbic, salience, frontoparietal and default-mode 
networks. 

238,239  
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Neuroimaging Biomarkers for Assessment  

The most straightforward application of neuroimaging biomarkers for SUDs would be for 
assessment purposes, since any structural, functional, or biochemical brain differences 
between individuals with and without SUDs could, hypothetically, be used to at least 
support the existence of disease. Accordingly. we identified 110 putative assessment 
neuroimaging markers in our systematic review of clinical research protocols and 69 
across meta-analyses of neuroimaging studies in SUDs. However, mere diagnosis may not 
be the best use of neuroimaging biomarkers. Currently, diagnoses rely ultimately on 
relatively inexpensive clinical interviews, but these diagnostic criteria lead to 
heterogeneous patient populations, and moreover diagnoses rely ultimately on relatively 
inexpensive clinical interviews and the added benefit of biomarkers is unclear 88. More 
promising may be the use of neuroimaging biomarkers for clinically-relevant subtyping, 
prognosis, and patient monitoring. 
 

Biomarkers for diagnosis, subtyping, and susceptibility assessment: 

Conceivably useful assessment neuroimaging biomarkers for SUDs fall into a few contexts 
of use. One would be “diagnostic” biomarkers which differentiate healthy and 
disordered substance use rather than individuals with SUD and non-drug users, given 
that distinguishing dependent and recreational use purely on the basis of self-report and 
drug use quantity is difficult 89. We identified 88 instances of potential diagnostic 
biomarkers across protocols (Figure 5) and 68 across meta-analyses (Figure 3) in our 
systematic review databases. Several neuroimaging biomarkers may help distinguish 
dependent and non-dependent users. For example, dependent compared to light alcohol 
use may be associated with greater alcohol-cue-induced BOLD signal in the dorsal 
striatum but lower signal in the ventral striatum 90 and dependent cannabis users have 
lower OFC volume compared to recreational users 91. Such diagnostic biomarkers may be 
especially relevant in the staging of SUDs, given the recently proposed category of “pre-
addiction” 92. Another use of diagnostic biomarkers could be to distinguish SUD patients 
with the same diagnosis, but different underlying neuro-cognitive pathology. For 
example, heavy alcohol drinkers who drink primarily for “relief” from negative affect have 
greater alcohol-cue-induced BOLD signal in the dorsal striatum as compared to “reward” 
drinkers 93. 

Another useful class of assessment biomarkers would be markers of “susceptibility”, 
biomarkers which predict the development of SUD in at-risk individuals in the absence 
of diagnosable disease. Only two of the registered protocols and one meta-analysis had 
putative susceptibility biomarkers, which require studying healthy participants for the 
development of SUDs. Much of the previous SUD-susceptibility neuroimaging research 
has been conducted in adolescents, who are particularly at risk of initiating substance use 
and transitioning to SUDs due to reward deficits associated with the striatal dopaminergic 
reorganization and the faster development of limbic emotion and reward systems 
compared to the prefrontal control circuitry 94. Consistent with this theory, task-related 
fMRI investigations have shown that dorsal striatal hyper-activation during reward tasks 
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may be a marker of substance use vulnerability and is linked with co-existing 
externalizing psychopathology, and stronger responses of the reward-related nucleus 
accumbens and orbitofrontal regions to alcohol cues can distinguish individuals who 
transition to heavy drinking 95,96. Moreover, response inhibition fMRI studies have shown 
that blunted frontoparietal activity during inhibition and hyperactivation during 
inhibition failures predict the initiation of substance use 97. Structural MRI studies have 
converged on similar findings: Both lower volumes and lower white matter integrity in 
fronto-limbic regions involved in reward processing and decision-making may be 
markers of susceptibility to substance use initiation and the development of SUDs 98. 

 

Figure 5: Putative neuroimaging biomarkers reported in registered protocols in 
various substance use disorders (SUDs) and neuroimaging modalities. Biomarker 
types are divided between the substance of interest and neuroimaging modalities used in the 
protocol (510 biomarkers across 409 protocols). The horizontally aligned bars represent the 
total number of each biomarker type.  Note that some of the protocols include more than one 
biomarker type.  Some protocols did not report enough details for neuroimaging modalities in 
a way that fit any biomarker’s definition. Data is collected from ClinicalTrials.gov on November 
17, 2021. 

 

Biomarkers for prognosis and monitoring: 

With the rising number and larger sample sizes of studies with prospective and 
longitudinal designs, it has become possible to investigate relationships between 
neuroimaging parameters and subsequent clinical trajectories, enabling the development 
of “prognostic” biomarkers, with 20 examples in our systematic review of study 
protocols. An important clinical use of these biomarkers would be to predict relapse in 
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abstinent individuals more accurately than is possible using self-report or behavioral task 
performance alone. Task-based fMRI studies have shown that individuals who require 
high neural activation for response inhibition are more prone to relapse, even with 
normative behavioral task performance 97, and baseline nucleus accumbens drug cue-
reactivity may predict relapse with an accuracy outperforming conventional measures 85. 
Resting-state fMRI has further demonstrated that the weaker inter-regional synchrony in 
the executive control network may account for poorer response inhibition and can predict 
relapse 99. 

Neuroimaging biomarkers that are measured over time can also be used as 
“monitoring” biomarkers, offering insights into the development and abatement of 
neuro-cognitive pathology to complement the clinical picture.  These biomarkers are 
difficult to develop since they require repeated neuroimaging measurements and a model 
of their correspondence with clinical states and clinically-relevant phenotypes over time. 
None of the protocols or meta-analyses in our databases had the requisite structure to 
contribute to the development of potential monitoring biomarkers. Nevertheless, much 
of the research on using neuroimaging outcomes for putative monitoring markers has 
focused on neurological recovery during abstinence: longitudinal studies have shown that 
both gray and white matter degeneration in the frontal cortices of individuals with SUD 
can recover after abstinence 100,101, and in PET and SPECT studies striatal dopamine 
transporters downregulated in methamphetamine use disorder can recover during 
abstinence 102,103. A striking finding is the observation that individuals with SUD 
experience an “incubation” and accumulation of drug craving following abstinence which 
may predispose them to relapse. Another study has revealed that this “craving incubation” 
is reflected in the amplitude of the late positive potential, a marker of attention bias to 
drug cues which follows an expected parabolic trajectory during abstinence and a feature 
that would be missed by relying purely on self-report measures 67. 

Biomarkers for Intervention 

Perhaps even more important than diagnostic, prognostic or susceptibility assessment of 
SUDs would be the use of neuroimaging biomarkers in interventional contexts; for 
example, to develop or implement interventions, objectively assess their 
neurophysiological impact in clinical trials or psychiatric practice or predict their 
outcomes and therefore serve to guide intervention selection. Furthermore, 
neuroimaging biomarkers of cognitive processes such as cue-induced craving and reward 
processing can directly become targets for intervention. According to our systematic 
review of ClinicalTrials.gov protocols, several multi-scale brain aberrations identified in 
observational studies of SUDs are under investigation as putative interventional 
biomarkers. Some of these are illustrated in Figure 6. Protocols with potential 
interventional biomarkers constitute a majority of the protocol database and contain 400 
putative biomarkers. this is unsurprising since we reviewed ClinicalTrials.gov protocols, 
which mostly consist of interventional studies. Across meta-analyses however, there were 
only 14 examples of findings relevant to interventional contexts of use. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.24312084doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.02.24312084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 6: Multi-scale brain aberrations as putative neuroimaging biomarkers in 
trials for substance use disorders (SUDs). Seven examples of brain aberrations identified 
in SUDs (yellow boxes) that have been investigated as putative “response” or “predictive” 
biomarkers or intervention targets in protocols registered in ClinicalTrials.gov (light blue 
boxes). The relevant literature is referenced in supplementary table 2. FC: Functional 
Connectivity; FDCR: fMRI Drug Cue Reactivity; PFC: Prefrontal Cortex. tDCS: Transcranial 
Direct Current Stimulation.  

 

Biomarkers of intervention response and safety: 

The effectiveness of interventions for SUDs is generally assessed by measuring their 
impact on drug use, which provides little information about neuro-cognitive recovery 8. A 
paradigmatic group of interventional biomarkers is “response” biomarkers. In early 
phases of intervention development, “pharmacodynamic” response biomarkers can 
indicate the presence of a treatment effect on neuroimaging biomarkers of recognized 
importance in SUDs and provide some estimate of the intensity and location of this effect. 
In our systematic reviews, 365 neuroimaging outcomes were used as putative 
response/pharmacodynamic biomarkers across protocols and 13 neuroimaging response 
markers were discovered across meta-analyses. Response biomarkers can be used to 
screen candidate therapeutics and prioritize those with plausible effectiveness, as in the 
“Fast-Fail” initiative of the National Institute of Mental Health104. In this context, 
research could be focused on therapies that engage brain substrates of SUDs. For 
example, pharmaco-fMRI studies have shown that baclofen can dampen increased drug 
cue-reactivity 105,106, and PET imaging can directly measure the dose-dependent impact 
of various therapies on neurotransmitter systems 107. 

A narrower and more impactful subclass of “response” biomarkers are “surrogate 
endpoints”. These neuroimaging measures would not only correlate with the clinical 
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effect of a therapy but causally lie along the physiological route between an intervention 
and its clinical effect in SUDs. A paradigmatic example of a surrogate endpoint in 
medicine is blood pressure, widely accepted as an outcome measure in clinical trials since 
it is known that anti-hypertensive medications offer clinical benefit through lowering high 
blood pressure, even though blood pressure in itself is not a clinical endpoint 108. Rigorous 
clinical trials might be able to establish that the impact of therapies such as dlPFC 
stimulation on craving is mediated through the modulation of cue-related neural 
activation and connectivity, leading to the development of surrogate endpoints 63. 

Biomarkers assessed over time can be used as “monitoring” biomarkers in the context 
of interventions as well, establishing links between a neuroimaging biomarker and 
clinical response. For example, multiple imaging rounds in a trial of naltrexone for alcohol 
use disorder showed that naltrexone lowers ventral striatal fMRI drug cue-reactivity from 
baseline and greater reduction is associated with a larger clinical response 109, and event-
related potentials recorded with EEG or MEG can be assessed during and after treatment 
to demonstrate the normalization of ERP components associated with attention bias or 
error-processing 66.  

While we classified markers which show the neural impact of novel compounds as 
“response” biomarkers since their protocols did not explicitly use them to indicate the 
safety of interventions, neuroimaging biomarkers could also be used to gauge the safety 
and toxicity of various compounds of interest in addiction medicine. One example would 
be the use of neuroimaging to inform ongoing discussions on the safety of electronic 
cigarette products, where fMRI has been used to demonstrate that e-cigarette smoking 
may immediately induce activation across sensorimotor areas 110 and sweet-tasting 
products may synergize with nicotine content to increase the influence of e-cigarettes on 
nucleus accumbens reactivity 111. Another pertinent use-case is assessing the abuse 
potential of analgesic medications. Many such therapeutics, and in particular opioid 
medications, may lead to addictive substance use in some individuals, and neuroimaging 
biomarkers of safety may serve as early warning signs both during drug development and 
treatment 112. Neuroimaging safety biomarkers may also be useful to assess the brain 
impact of alcohol and opioid medications in individuals with genetic susceptibility to 
addiction, such as those with certain variants of dopamine and opioid receptor genes 
113,114. 

 

Biomarkers for treatment targeting and implementation: 

Data on the effectiveness of current interventions for SUDs remains inconsistent, 
necessitating the development of more consistently efficacious interventions and 
subtyping individuals with SUDs to develop personalized treatment protocols/plans 115. 
Beyond providing information about the neural impact of treatment, neuroimaging 
biomarkers could enable individually targeted SUD treatment by reflecting a patient’s 
baseline or dynamically changing neural state. An example of this is targeting brain 
stimulation at important hubs of aberrant networks in each patient since electric and 
magnetic neuromodulation have connectivity-dependent effects (Siddiqi et al., 2019; 
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Weigand et al., 2018) and it has been proposed that both structural and functional MRI 
can be used to optimally target the stimulation the inhibitory frontoparietal network in 
patients with SUD 116. The importance of targeting specific networks for intervention is 
further supported by recent observational evidence that brain lesions which affect areas 
functionally connected to cingulate, prefrontal, insular, and temporal regions can 
consistently induce remission in individuals with SUD  117. In addition to using baseline 
neuroimaging, more sophisticated technologies are paving the way for concurrent 
neuromodulation and brain imaging. These include TMS or tDCS with simultaneous EEG, 
MEG, fNIRS, or fMRI 118–122. These methods provide immediate readouts of the effects of 
neuromodulation on network activity and can be used to develop “closed-loop” 
stimulation systems where neuromodulation is dynamically adjusted for optimal impact 
123. Lastly, EEG and fMRI biomarkers that are correlated with undesirable SUD-related 
symptoms such as craving have been successfully used in neurofeedback training, where 
patients with tobacco or alcohol use disorder learned to attenuate these signals based on 
dynamic feedback 124,125. 

 

Biomarkers to predict treatment effect: 

The final potential use case of biomarkers in an interventional context would be to 
predict the impact of therapies. We identified 35 neuroimaging outcome measures in 
our systematic review of protocols that serve as putative predictive biomarkers, though 
only one relevant marker was identified in the systematic review of meta-analyses. As the 
variability in the effectiveness of interventions for SUDs may be, in part, due to distinct 
baseline neurocognitive states, neuroimaging biomarkers could help the selection of 
interventions most likely to ameliorate the underlying pathology in each patient 20,126. For 
example, among individuals with AUD, a reduction of fMRI drug cue-reactivity in both 
the left putamen and the right ventral striatum can predict the effectiveness of naltrexone 
109,127; for individuals with cocaine use disorder, greater persistence of the cue-triggered 
brain response across the cue task predicts poor drug use outcome 128. Machine-learning 
algorithms using task-related and resting-state fMRI data have been able to predict 
treatment response and completion in individuals with stimulant and heroin use 
disorders 129,130. Structural connectivity biomarkers may also have predictive value: 
reduced structural connectivity between the right anterior insula and nucleus accumbens 
at baseline can predict relapse to stimulant use up to six months after residential 
treatment 131.  

Arguably, a robust neuroimaging biomarker of SUDs would be valid in several different 
contexts of use. Further, if the biomarker reflects physiological changes which are broadly 
important in the etiogenesis of SUDs and in recovery, such physiological changes would 
likely be detectable with different neuroimaging modalities and in different substance use 
disorders. Several neuroimaging markers with converging supporting evidence across 
meta-analyses have been discussed in Table 1, but a particularly promising set of 
examples are those which reflect the structure, function and connections of the striatum. 
Textbox 1 is dedicated to a discussion of findings of striatal involvement across SUDs, 
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evidence supporting the use of striatal markers across neuroimaging modalities and 
contexts of use.  

Textbox 1: Striatal neuroimaging biomarkers in SUDs. A discussion of the 
potential of neuroimaging markers of striatal function and structure across different 
contexts of use in SUDs and important next steps. 

There is overwhelming evidence that the striatum is involved in the pathogenesis of 
SUDs. Meta-analyses have shown striatal atrophy across substance use disorders 132,133, 
impaired dopamine neurotransmission 74,75, and striatal dysfunction across substances 
and task paradigms, particularly in reward-related tasks and those which induce 
craving 60,134–138. Based on these observations and studies in animal models, major 
neuroscientific theories of addiction feature striatal dysfunction as a central cause of 
the aberrant reward processing, impulsivity, and incentive sensitization which drive 
SUDs 7,139. 

This body of literature, paired with relevant findings across contexts of use, provides an 
extensive foundation to support the clinical validation of neuroimaging biomarkers of 
striatal structure and function. As an example, striatal fMRI drug cue reactivity might 
indicate individual susceptibility to alcohol use disorder 140, diagnostically 93 and 
prognostically 85 demarcate clinically relevant subtypes of disease, predict treatment 
response 86, and reflect treatment response 141 or monitor it across time 109. An 
important next step would be investigating analyaitcal properties of striatal 
neuroimaging biomarkers, data on which is sparse. There is evidence supporting the 
longitudinal stability of striatal fMRI drug cue reactivity 142,143. There is also evidence 
for reasonable test-retest reliability of striatal PET imaging 144,145 and morphometry and 
cortico-straiatal integrity measures 146 in non-SUD samples; but these should be further 
replicated across larger samples with different SUDs. 

Further, there is little formal guidance and consensus on best methodological practices 
for striatal neuroimaging, which may differ from those for cortical neuroimaging. For 
example, a 32-channel receiving coil may be more sensitive to cortical signals than an 
8-channel coil but less sensitive to subcortical activations 147, and fMRI with higher field 
strengths seems to be more crucial for imaging the striatum than the cortex 148. Any 
striatal neuroimaging biomarker would need to be precisely specified, with 
methodological parameters, the target population, and standard operating procedures 
selected with respect to its context of use. This is since measures of striatal structure, 
function and connections are impacted by image acquisition parameters 149 and 
processing and reconstruction pipelines 150, behavioral task design 151, operating 
parameters such as time of day 152, and participant characteristics such as sex 153 and 
psychiatric comorbidity 107. Further research is required to clarify how these factors 
impact the clinical validity and analytical properties of striatal markers in different 
contexts of use and guide biomarker specification. 

Lastly, a putative striatal biomarker needs to be cost-effective, but there has been 
virtually no cost-benefit analysis of any striatal neuroimaging biomarker. While most 
of the cited literature supporting the clinical use of striatal neuroimaging in SUDs has 
used functional neuroimaging paradigms, it is difficult to assess striatal function with 
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relatively inexpensive neuroimaging modalities such as EEG and structural scans are 
both more affordable and already in widespread clinical use. Functional striatal 
biomarkers would likely be most cost-effective in clinical research settings, for example 
in facilitating the design of novel interventions and candidate screening in drug 
development 104. 

 

CHALLENGES AND FUTURE DIRECTIONS 

Despite decades of research highlighting the potential of neuroimaging technologies for 
the development and validation of biomarkers of SUDs and the proposal of several 
promising biomarkers in recent years 13,154,155, critics have noted that substantial 
investment in biomedical addiction research has not yet led to the development of 
biomarkers with substantial clinical utility 156. There is growing awareness of the myriad 
challenges ahead of pushing neuroimaging biomarkers through the “translational gap” 
and into drug development and clinical practice 54,157, and we dedicate the following 
sections to a reflection on these scientific, technical, and regulatory challenges and 
solutions which we believe are critical in developing clinically-relevant biomarkers of 
SUDs.  

Regulatory validation of neuroimaging biomarkers 

The use of neuroimaging biomarkers in clinical and drug development contexts is 
contingent on approval by relevant regulatory bodies. These include the FDA in the US 
and the EMA in the European Union, which in recent years have developed structured 
frameworks within which biomarkers can be approved and endorsed for use, primarily in 
drug development and clinical trials 158,159. In the US, the 21st Century Cures Act adopted 
the process of qualification of drug development tools (including biomarkers) into US law 
in December 2016. Before the establishment of the drug development tool qualification 
program, FDA acceptance of biomarkers as drug development tools happened on a 
sponsor-by-sponsor, drug-by-drug basis. Biomarkers qualified under the current 
framework can be used by drug developers for the qualified context of use. Neuroimaging 
biomarkers submitted for approval through the FDA framework (and with some 
differences, the EMA framework) should be precisely defined with descriptions of the 
neuroimaging protocol, target populations, and the use context for which the biomarker 
is to be approved. 

During the validation process, a biomarker’s analytical characteristics, such as reliability, 
validity, and natural variation need to be established. This is particularly important since 
despite some supporting evidence 160, there are significant concerns about the reliability 
of commonly used neuroimaging paradigms 161. Such research could also aid in the choice 
of biomarker: For example, a recent fMRI alcohol cue-reactivity study demonstrated that 
brain activations during constituting contrast conditions 'alcohol' and 'neutral' have 
higher reliability than the 'alcohol versus neutral' difference contrast 143. After analytical 
validation, the biomarker should be “clinically validated” by elucidating its etiological link 
to an SUD and establishing that it is reliably associated with current or future disease or 
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recovery, for example by presenting evidence of the existence and role of neural 
aberrations in SUDs as was attempted in this manuscript. Finally, it should be 
demonstrated that the biomarker addresses a substantial gap and demonstrates cost-
effectiveness. As an example of how these requirements can be met for a putative 
neuroimaging marker, Textbox 1 includes a brief discussion of the relevant evidence and 
important gaps in the case of markers of striatal structure and function. Besides these 
formal qualification pathways, the use of biomarkers in clinical contexts can be facilitated 
by the endorsement of a constellation of other institutions which develop relevant 
guidelines and best practice recommendations for SUDs. Meeting qualification standards 
for neuroimaging biomarkers requires broad collaboration and public-private 
partnerships, extensive resource sharing, and rigorous research practices. These 
qualification steps are outlined in Figure 7.  
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Figure 7: Major steps in the development and validation of potential neuroimaging 
biomarkers for SUDs. Initially, the context(s) of use for the biomarker is specified and the 
potential biomarker is precisely defined. Following analytical and clinical validation and cost-
benefit analysis, the compiled evidence is presented for regulatory approval. The FDA evaluates 
the use of biomarkers for drug development through a biomarker qualification process 
involving submission of a Letter of Intent, a Qualification Plan, and a Full Qualification 
Package, though a Letter of Support may be issued by the FDA to indicate its support for a 
biomarker before formal qualification. The use of neuroimgaing biomarkers in clinical contexts 
also requires initial approval by the FDA, but also the endorsement of a constellation of other 
institutions (adapted from 157, reproduced with permission). Surr. Endpoint: Surrogate 
Endpoint, COU: Context of Use. 

 

Large-scale collaboration and multiple stakeholders in biomarker 
development 

The development, validation, and impactful use of neuroimaging biomarkers of SUDs will 
depend upon the formation of large, multi-site consortia which can effectively direct 
resources towards biomarker discovery with harmonized research designs, starting with 
the “low-hanging fruit”- biomarkers with substantial bodies of supporting evidence and 
greatest potential utility, such as in intervention development. Furthermore, while 
translational research in the field is mostly conducted by academics, the developed 
biomarkers need to be cost-effective from the perspective of policymakers interested in 
reducing the societal burden of SUDs, pharmaceutical companies developing 
interventions and seeking to reduce the duration and cost of drug development, and 
regulatory bodies interested in using scientifically validated neuroimaging markers in 
approval decisions 162. 

Importantly, the use of neuroimaging biomarkers and the interventions that they are used 
to develop should also be acceptable, accessible, affordable and desirable for individuals 
with SUDs, and concerns about neuroscientific models of addiction should be addressed 
22. Multi-stakeholder engagement is complicated by gaps in knowledge and terminology 
between stakeholders, differences in expectations and interests, power imbalances and 
stigma associated with SUDs, and identifying representative stakeholders. Effective 
engagement of various stakeholders in biomarker development for SUDs requires 
designing engagement plans and collaboration roadmaps, developing common 
terminology, clarifying and communicating the purpose of the engagement and 
stakeholder roles, and investing in the necessary skills and resources 163–165. 

Rigorous research and reporting for biomarker discovery 

An essential step in the development of neuroimaging biomarkers is to harmonize best 
practices in study design, analysis, and reporting, especially given recent concerns about 
the reliability of multiple neuroimaging modalities 166–168. While there is significant 
disagreement over the best neuroimaging research design practices, certain factors would 
likely improve overall methodological quality 18. Larger sample sizes and appropriate 
statistical power analyses, for example, would improve the reproducibility of fMRI cue 
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reactivity studies and enable the ascertainment of substantive effects 169. One solution is 
the collation of neuroimaging data into “big data” repositories, such as the structural MRI 
database maintained by the NeuroImaging Genetics through Meta-Analyses (ENIGMA) 
International Consortium 170 and task-based fMRI datasets made available on platforms 
such as OpenNeuro 171, which can be used for large-scale analyses, hypothesis generation, 
and model validation. A growing number of multi-center initiatives such as the Human 
Connectome Project, UK Biobank, and the Adolescent Brain Cognitive Development 
(ABCD) project collect neuroimaging data from thousands of individuals using 
harmonized scanning and data management standards across sites and may provide 
highly useful for the identification of neuroimaging markers 172–174.       In the absence of 
large-scale studies, meta-analyses can be used to synthesise data across neuroimaging 
studies, discover convergent findings that replicate across SUDs and contexts of use, and 
disambiguate the influence of study design and confounders. A summary of neural 
markers which have replicated across SUDs or contexts of use is presented in Table 1. 

Another issue is the methodological heterogeneity of neuroimaging research. The choice 
of hardware, data acquisition protocol, pre-processing steps, and analysis pipelines can 
have unexpected and substantial effects on the results of studies using a variety of 
neuroimaging modalities 175–177. While it is impossible to prescribe a similar set of best 
practices for every study, the design should be appropriate to specific contexts of use if 
the results are to contribute to biomarker development. Furthermore, the clarity, 
interpretability, and replicability of neuroimaging research would be enhanced with pre-
registered protocols, carefully considering essential aspects of research design, and 
comprehensive reporting of methodological details 178. Various guidelines for research 
design and reporting have been developed in recent years with various degrees of 
generality, such as those developed by the Committee on Best Practice in Data Analysis 
and Sharing (COBIDAS) and COBIDAS MEEG 179,180 and the Addiction Cue Reactivity 
Initiative (ACRI) of the addiction working group of ENIGMA consortium 54. 

Technological advancements relevant to SUD biomarker discovery  

A variety of innovations in neuroimaging technology, data management, and analysis may 
pave the way for SUD neuroimaging biomarkers. Among promising advances are high-
field MRI with increasingly stronger magnetic fields, which can offer greater spatial 
resolution in structural and functional scans 181; functional magnetic resonance 
spectroscopy (fMRS), which can capture dynamic changes in metabolites 182; and new 
PET radiotracers, which can probe under-investigated neurotransmitter systems of 
interest to addiction medicine 183. Another emerging possibility is the use of neuroimaging 
to derive subject-specific “fingerprints” of brain circuitry or function, such as “precision 
functional mapping” to identify individual-level functional connectomes with fMRI 184 or 
the use of EEG to identify participant-specific electrophysiological patterns 185,186. Such 
subject-level (rather than group-level) neuroimaging markers are particularly useful for 
biomarker development since most contexts of use require biomarkers which can be used 
to make decisions for individual patients, and the heterogeneity of brain structure and 
function across individuals renders the translation of group-level findings to the 
individual-level problematic 187,188. 
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It is also increasingly possible to integrate different neuroimaging technologies 
concurrently or in series, and use multimodal data to probe multiple facets of brain 
structure and function in tandem: resting-state fMRI and MRS can be utilized together to 
assess the relationship between neuromodulation-associated brain network changes and 
neurotransmitter concentrations 189, functional diffuse correlation spectroscopy and 
functional near-infrared spectroscopy have been used along with EEG during and after 
brain stimulation to concurrently measure cerebral hemodynamics and electrical activity 
(Giovannella et al., 2018), simultaneous EEG and fMRI neurofeedback might improve the 
quality of the provided neurofeedback using bimodal data (Lioi et al., 2020), and receptor 
maps obtained by PET can inform resting-state fMRI functional connectivity analysis 190. 
These technological advances have co-occurred with rapid developments in informatics, 
data analytics, and computational infrastructure which facilitate data storage and 
sharing, biomarker discovery with increasingly sophisticated machine learning 
algorithms, and reproducible analytical practices 191,192. 

Theories and models of addiction 

A significant challenge in biomarker development and theoretical progress in both 
addiction medicine and psychiatry as a whole is the fact that the DSM is a descriptive 
diagnostic manual, and its constructs are neither domain-based nor necessarily grounded 
in neurobiology 193. SUDs are multifaceted disorders with complex comorbidity patterns 
and overlapping brain substrates 194,195, and neuroimaging biomarkers will likely reflect 
the trans-diagnostic impairment and recovery of physiological processes which undergird 
specific cognitive domains. This highlights the importance of  mechanistic models of 
disease (rather than manual-based diagnostic labels) in the development of neuroimaging 
addiction biomarkers. Under most mechanistic accounts of addiction, addiction starts 
with positive reinforcement learning before other processes are involved 7. These include 
excessive incentive sensitization 139 for example, which can explain heightened reactivity 

to drug cues in functional neuroimaging studies 96,196–200. What happens later is subject 
to some contention: some emphasize a shift from initially goal-directed behavior to 
habitual and then compulsive substance use, reflected in neuroimaging findings of a shift 
in drug cue-reactivity from the ventral to the dorsal striatum 201; while others highlight a 

shift from positive to negative reinforcement as withdrawal becomes more important, 
with some emphasizing goal-directed choice (rather than habit or compulsion) as 
individuals learn to relieve negative affect with substance use.  

Other models focus on processes such as learning and executive control. The reward 
deficiency and allostasis models 202, for example, highlight the importance of suppression 
and disruption of reward processing circuits; while others focus on core deficits in value 
updates and reward learning 203. These models can explain wide-spread neural 

aberrations when individuals with various SUDs process non-drug gains and losses 136 

and the reduced salience of novel and surprising stimuli 204. While the frameworks 

discussed above can account for frequent observations of impaired response inhibition 
205 (and corresponding neuroimaging aberrations during executive control tasks 198,206–

209), recent “dual process” accounts of addiction emphasize the broad disruption of top-
down, deliberative processes in prefrontal and parietal regions together with deregulation 
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and disinhibition of bottom-up automatic processes in mesolimbic circuits 210. Further, 
recent observations suggest that general cognitive decline and a broad depletion of 
executive control in addiction may be particularly important to the course of disease and 
treatment 211, in line with broad degenerations of cortical gray and white matter 
39,41,43,47,212. It must be emphasized that many of these contructs are not mutually 
exclusive, and multiple interacting processes may be in play in the development, 
maintenance and recovery from SUDs. 

Overall, the briefly discussed models (see 10 for detailed discussion) and theories have 
been developed in tandem with advances in addiction neuroimaging, and provide 
promising starting points for the development of neuroimaging biomarkers. Frameworks 
such as the impaired response inhibition and salience attribution model 11, the Addictions 
Neuroclinical Assessment framework 8, and the Alcohol and Addiction Research Domain 
Criteria 213 aim to map addictive disorders to specific axes of impairment and 
neuroimaging research by facilitating hypothesis generation and the development of 
interpretable neuroimaging biomarkers linked to formal theories of addiction. Despite 
differences, these frameworks converge on the involvement of positive valence, negative 
valence and cognitive control systems in SUDs, and have been used to propose 
neuroscience-informed classifications of interventions 10,214. Complementing these 
theoretical developments, computational modeling of processes of interest in addiction 
neuroscience (such as drug cue-reactivity, aberrant decision-making, etc.) can 
mechanistically represent the interplay between neural mechanisms and behavior and 
link neuroimaging markers, underlying neuro-cognitive pathology, and signs and 
symptoms of SUDs 215,216. 

CONCLUSION 

Modern neuroimaging technologies can probe brain structure and function at 
unprecedented resolution and have already produced novel insights into the 
neurocognitive mechanisms of addiction and recovery. The rapid pace of technological 
advancement, increasing availability, and growing recognition of neuroimaging 
paradigms in recent years has contributed to an explosion in their use within clinical and 
translational addiction medicine: from 2015 to 2021, an average of 35 protocols with 
neuroimaging as one of the registered outcome measures in people with SUDs were 
registered on ClinicalTrials.gov every year, more than ten times the average number from 
2000 to 2006. Especially popular are fMRI (268 protocols) and EEG (50 protocols), 
which dynamically assess brain function; PET (71 protocols) and MRS (35 protocols) 
which probe neurotransmitter systems and their interactions with radioligands; and 
structural MRI (35 protocols) which can be used to investigate brain structure at various 
scales. These paradigms can be systematically utilized to discover and develop 
biomarkers, measures that objectively reflect biological processes involved in both the 
progression of substance use and SUDs and the physiological and clinical impact of 
interventions for these disorders. Particularly promising are several neuroimaging 
markers which have replicated in meta-analyses across contexts of use and disorders. 
Technological and scientific advancements, rigorous research practices, and multi-
stakeholder engagement can facilitate the development of institutionally approved 
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neuroimaging biomarkers that enable impactful, personalized interventions for SUDs to 
be used in clinical practice in the foreseeable future. 

 

METHODS AND LIMITATIONS 

The present manuscript is informed by two systematic reviews. The first covered SUD 
clinical research protocols which include neuroimaging outcome measures, obtained by 
querying the ClinicalTrials.gov repository between inception and November 17, 2021 
(Supplementary Figure 1a). This systematic review yielded a final result of 409 protocols. 
The second systematic review was conducted on PubMed, focusing on meta-analyses of 
neuroimaging studies of SUDs and finding 61 meta-analyses from which 83 meta-analytic 
findings were extracted (Supplementary Figure 1b). Please refer to the methods section 
of the supplementary materials for more details on the methods, and to the OSF 
repository https://osf.io/79uc3/?view_only=1d92a6fd769f40119464b156f0c88912 for 
the search protocol and analysis scripts.  Although we used widely-known and inclusive 
databases of protocols and meta-analyses, we did not triangulate the results with other 
databases. Our approach likely leads to some missing protocols and papers, and in 
particular an under-representation of protocols from countries that use registration 
platforms other than ClinicalTrials.gov.  
 

 

DATA AVAILABILITY STATEMENT: 

The protocol and data for this systematic review are available on the open science 
framework (OSF) website 
(https://osf.io/79uc3/?view_only=1d92a6fd769f40119464b156f0c88912). 
The ClinicalTrials.gov search engine was used through the Study Fields query URL 
(https://ClinicalTrials.gov/api/gui/ref/api_urls) for searching the clinical trial protocols. 
For full-text screening, all available records were downloaded from the Aggregate 
Analysis of ClinicalTrials.gov (AACT) Database, Clinical Trials Transformation Initiative 
(CTTI) database 217  (https://aact.ctti-clinicaltrials.org/) for the second stage. For 
searching the systematic reviews and meta-analyses, studies were identified using the 
Medline/PubMed (https://pubmed.ncbi.nlm.nih.gov/) database. 

CODE AVAILABILITY STATEMENT: 

All codes are available on the study’s OSF project repository at the following link:  
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Data analyses and illustrations were conducted using R version 4.0.5 218, with dplyr 219 
and ggplot2 220 packages. The codes for data illustrations are freely available on the OSF 
repository of this project. 
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