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Abstract

Ataxia-telangiectasia mutated (ATM) is an apical kinase of the DNA damage response fol-

lowing DNA double-strand breaks (DSBs); however, the mechanisms of ATM activation are

not completely understood. Long noncoding RNAs (lncRNAs) are a class of regulatory mol-

ecules whose significant roles in DNA damage response have started to emerge. However,

how lncRNA regulates ATM activity remains unknown. Here, we identify an inhibitor of ATM

activation, lncRNA HITT (HIF-1α inhibitor at translation level). Mechanistically, HITT directly

interacts with ATM at the HEAT repeat domain, blocking MRE11-RAD50-NBS1 complex–

dependent ATM recruitment, leading to restrained homologous recombination repair and

enhanced chemosensitization. Following DSBs, HITT is elevated mainly by the activation of

Early Growth Response 1 (EGR1), resulting in retarded and restricted ATM activation. A

reverse association between HITT and ATM activity was also detected in human colon can-

cer tissues. Furthermore, HITTs sensitize DNA damaging agent–induced cell death both in

vitro and in vivo. These findings connect lncRNA directly to ATM activity regulation and

reveal potential roles for HITT in sensitizing cancers to genotoxic treatment.

Introduction

Cells are inevitably challenged by endogenous or exogenous sources of DNA damage [1]. To

preserve genetic integrity, organisms have evolved elegant mechanisms to cope with various

forms of DNA damage, collectively known as the DNA damage response (DDR) [2]. Defi-

ciency in the DDR is associated with genomic instability, predisposition to cancer, or cell

death in cases when damage is irreparable [3]. DNA damage also represents the backbone of

cancer treatment. In this context, activation of DNA damage repair pathways promotes geno-

toxic resistance, which remains a major obstacle in successful cancer treatment [4,5]. Thus,

unveiling the mechanisms underlying the DDR may not only inform our knowledge of tumor-

igenesis but also provide predictive markers for the patients’ responses to therapeutic DNA

damage and offer new opportunities for the improvement of treatment efficiency.
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Double-strand breaks (DSBs) are the most toxic DNA lesion that can arise following ioniz-

ing radiation (IR) or DNA-based chemotherapy [4]. Cells utilize two prominent pathways to

repair DSBs: homologous recombination (HR) and nonhomologous end joining (NHEJ) [6].

Ataxia-telangiectasia (A-T) mutated (ATM) is an apical kinase of phosphorylation cascades in

the HR pathway, at the heart of the cellular response to DSBs [7]. One of the most striking fea-

tures of patients with A-T, a disorder caused by somatic ATM mutation, is their sensitivity to

IR and DNA-damaging agents that induce DSBs [8]. Conversely, activation of ATM is linked

to the survival of cancer cells following therapy [9,10]. ATM is an attractive target for cancer

treatment. Several highly selective small molecule inhibitors of ATM have entered clinical tri-

als in patients with advanced cancers [11,12].

Given its physiological and pathological significance, the regulation of ATM activity

remains a major focus of the field. The MRE11-RAD50-NBS1 (MRN) complex is vital for the

ATM-dependent DDR [13,14]. MRN is the first complex to be recruited to DSB sites, where it

provides a platform for ATM recruitment and facilitates the autophosphorylation of ATM at

serine (S) 1981, leading to optimal ATM activation that subsequently triggers the phosphoryla-

tion of a variety of ATM effectors essential for the DDR, such as checkpoint kinase 2 (Chk2)

and Breast Cancer gene 1 (BRCA1) [15]. Interestingly, mutations in MRN component genes

Meiotic Recombination 11 (Mre11) or Nijmegen Breakage Syndrome 1 (NBS1), which are

linked to A-T-like disorder and Nijmegen breakage syndrome, respectively, are accompanied

by defective ATM activity with symptoms resembling those of A-T patients [16,17], suggesting

that MRN is required for the activation of ATM in vivo.

MRN is clearly involved in ATM activation at DSBs; however, how it activates this is still

not fully understood. In addition, it has recently become apparent that multiple layers of regu-

lation exist to ensure that the ATM signal is accurate and restricted to appropriate cellular con-

texts. For example, posttranslational modifications of MRN components, such as NBS1

ubiquitination [18] or MRE11 UFMylation [19], promote MRN-mediated ATM recruitment

to DSB sites and thus play important roles in initiating or amplifying the ATM signal. It has

also been noted that the rise and fall of ATM activity are equally important for the proper exe-

cution of DSB repair [6,20,21]. However, compared with the mechanisms of ATM activation,

much less is known about the mechanisms of ATM inhibition.

To complicate the matter, evidence is steadily accumulating that long noncoding RNAs

(lncRNAs), a class of transcribed RNA molecules greater than 200 nucleotides (nt) in length

with extremely limited protein-coding capabilities, play essential roles in a wide range of physi-

ological and pathological processes [22,23]. Interestingly, lncRNA integrates contextual and

environmental cues not only during development but also under multiple stresses [24]. A vari-

ety of lncRNAs are DNA damage responsive and able to modulate the DNA repair program in

turn, which highlights the essential roles of lncRNAs in the DDR. For example, lncRNAs

DINO (Damage Induced Noncoding) [25], PANDA (P21 associated ncRNA DNA damage

activated) [26], and linc-p21 [27] are induced upon DNA damage and are engaged in a feed-

back loop to regulate apoptosis or DNA repair by modulating p53 protein stability or p53’s

transcriptional activity. However, despite being a master regulator of the DDR, whether and

how ATM activation is directly regulated by lncRNAs remains to be determined.

We recently identified an lncRNA, linc00637, which is a 2,056-nt intergenic lncRNA con-

taining three exons mapped at 14q32, a chromosome region that has been associated with the

early onset and metastatic recurrence of colon cancer and many other types of cancers [28–

30]. We found that linc00637 is down-regulated in multiple types of cancers. Further func-

tional studies reveal that it is a hypoxia-responsive lncRNA, whose expression is reduced in

the face of hypoxic stress and which plays essential roles in inhibiting hypoxia-inducible factor

1α (HIF-1α), mainly by repressing its translation; thus, we named it HITT (HIF-1α inhibitor
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at translation level) [31]. Besides hypoxia, cancer cells are also constantly insulted by DNA

damage, particularly when receiving conventional genotoxic treatments. Thus, we wondered

whether HITT is a stress responsive gene that plays roles in regulating the DDR. To this end,

we explored the expression, function, and mechanisms of HITT upon DSBs. Interestingly, we

identify HITT as a physiological brake of ATM activation, which is induced and maintained at

high levels after DSBs and contributes to the promoted chemosensitization. Mechanistically,

HITT is physiologically associated with ATM protein, thereby blocking MRN-mediated ATM

recruitment. Thus, HITT represents the first RNA molecule that is directly involved in ATM

regulation and may be a potential treatment for anticancer chemosensitization.

Results

DSB-induced HITT expression represses HR repair

To understand whether HITT is a DNA damage-responsive lncRNA, expression levels of HITT

were measured after exposing HCT116 cells to a panel of cytotoxic agents. HITT was significantly

increased by drugs that have been reported to induce DSBs, such as doxorubicin (Dox), etoposide

(Eto), the radiomimetic compound bleomycin (Bleo), and calicheamicin (CLA) [32–34], but not

DSB-independent pro-death treatments, such as tumor necrosis factor-α (TNF-α)/cycloheximide

(CHX) and taxol, although similar death rates were induced (Fig 1A). In addition, the induction

of HITT was dose-dependent with an approximately 5- to 7-fold increase at 4 μg/ml Dox in both

HeLa and HCT116 cells (Fig 1B). Time-course analysis revealed that HITT was increased with

prolonged Dox treatment and reached a plateau after 2 h (Fig 1C). Similar time- or dose-depen-

dent HITT expression patterns were detected after CLA, Eto, and Bleo exposure (S1A and S1B

Fig). Furthermore, DSB-induced HITT expression occurred in a panel of cancer cells with differ-

ent tissue origins, regardless of p53 status (S1C and S1D Fig). Therefore, DSB-induced HITT up-

regulation is likely a common phenomenon that is independent of p53.

This inspired us to investigate whether HITT plays roles in regulating DSB repair progress.

In a DNA comet assay, significant increases in comet tail scores were detected after Dox treat-

ment, and this damage was rapidly repaired in a time-dependent manner after washing out of

Dox (Figs 1D, 1E and S1E). Interestingly, stable HITT transfectants markedly attenuated the

DDR process (Figs 1D and S1E). Two independent small interfering RNAs (siRNAs) specifi-

cally targeting HITT reduced HITT expression by approximately 50%. Accordingly, DNA

repair progress was significantly accelerated (Figs 1E and S1E).

HR and NHEJ are two prominent pathways in regulating DSB repair. Thus, the efficiencies

of HR and NHEJ were further compared after HITT overexpression or knockdown (KD)

using cell lines containing the indicated integrated green fluorescent protein (GFP) reporters

upon I-SceI-induced breaks [35]. RAD51 [36] and X-Ray Repair Cross Complementing 4

(XRCC4) [37] are key regulators of HR and NHEJ pathways, respectively. siRNA-mediated

RAD51 and XRCC4 KD, respectively, reduced HR and NHEJ as expected (S1F Fig). Under

such conditions, we found that HITT overexpression markedly inhibited HR, as indicated by

Direct Repeat (DR)-GFP, but not NHEJ, as indicated by EJ2- and EJ5-GFP (Fig 1F and 1G).

HITT KD by two independent siRNAs constantly and significantly increased HR but not

NHEJ (Fig 1F and 1G). These data demonstrate that HITT is up-regulated upon DSBs inde-

pendently of p53 and plays important roles in restraining HR repair.

HITT reduces HR repair by repressing ATM activation

We next sought to understand the mechanisms by which HITT impairs HR. ATM activation

is needed for the initiation of DSB repair by HR [38]. In line with this widely accepted notion,

two independent ATM inhibitors (ATMi), KU-60019 (ATMi-1) and KU-55933 (ATMi-2),
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significantly reduced DNA repair in general (Fig 2A) and HR (Fig 1F). Interestingly, HITT

completely lost its ability to regulate HR repair in the presence of ATMi (Figs 1F and 2A).

ATMi had no obvious impacts on HITT expression levels (S2A Fig). In addition, it has been

recently proposed that ATM inhibits HR by repressing DNA resection [39]. In line with this

idea, we found that HITT inhibits DNA resection in an ATM activity–dependent manner by

assessing the accumulation of RPA2 into nuclear foci, a well-established resection marker [40]

(S2B Fig). Therefore, we reasoned that HITT inhibits DSB repair by interfering with HR

through blocking ATM-dependent pathways.

To this end, the activity of ATM, as indicated by the autophosphorylation of ATM at S1981

and the phosphorylation of the well-documented ATM target Chk2, was first compared in

Fig 1. DSB-induced HITT expression attenuates HR repair. (A) Expression of HITT (left) and cell death rates (right) were determined by real-time RT-PCR and trypan

blue exclusion assay, respectively, in HCT116 cells with the indicated treatments for 24 h: Dox (1 μg/ml), Eto (10 μM), Bleo (1 μg/ml), CLA (10 nM), TNF-α (10 ng/ml)

+ CHX (10 μM), taxol (10 nM). (B, C) Expression of HITT was determined by real-time RT-PCR after treating HeLa and HCT116 cells with different concentrations of

Dox for 24 h (B), with 1 μg/ml Dox at different time periods (C). (D, E) Representative real-time RT-PCR bar graph showing the efficiency of HITT overexpression (D) or

KD (E) in HCT116 cells (left). DNA damage was monitored by comet assay after DMSO or Dox (1 μg/ml) treatment, or at different periods of time following Dox washout

(middle). Tail moment per cell is analyzed as described in the Materials and methods and presented in the bar graph (right), scale bar, 10 μm. (F, G) HR or NHEJ

efficiencies of ISce-I–induced DSBs in U2OS cells containing DR-GFP (HR, F) or EJ2- or EJ5-GFP reporter (NHEJ, G) were determined by measuring GFP-positive cells

by flow cytometry (FACS) after overexpression or KD of HITT in the presence or absence of 10 μM ATMi-1 or ATMi-2. Data are derived from three independent

experiments and presented as mean ± SEM in the bar graphs. Values of controls were normalized to 1. �P< 0.05; ��P< 0.01; relative to the untreated control (“Ctl.”) (A,

B, C, F, and G); #P< 0.05; ##P< 0.01; relative to vector (“vect.”) or si-Ctl. with the indicated treatment (D and E). See also S1 Fig. The raw data see Fig 1A-G in S1 Data.

ATMi-1, KU-60019; ATMi-2, KU-55933; Bleo, bleomycin; CHX, cycloheximide; CLA, calicheamicin; Dox, doxorubicin; DR, Direct Repeat; DSB, double-strand break;

Eto, etoposide; FACS, fluorescence-activated cell sorting; GFP, green fluorescent protein; HITT, HIF-1α inhibitor at translation level; HR, homologous recombination;

KD, knockdown; NHEJ, nonhomologous end joining; N.S., not significant; RT-PCR, reverse transcription PCR; si-, small interfering; TNF-α, tumor necrosis factor-α.

https://doi.org/10.1371/journal.pbio.3000666.g001
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control and HITT overexpression cells. The specificity of anti-p-ATM antibody was verified

by treating cells with ATMi (S2C Fig). p-ATM and p-Chk2 were induced after Dox treatment,

which was largely abolished in HITT overexpression in a HITT dose-dependent manner (Figs

2B and S2D). In contrast, HITT KD mediated by two independent HITT siRNAs or HITT

CRISPR/Cas9 elevated Dox-induced p-ATM and p-Chk2 (Figs 2C and S2E). The effect of

HITT on ATM activity was also validated by detecting the expression levels of another ATM

substrate γ-H2A.X (Fig 2B and 2C). Inhibition of HITT in HITT overexpression cells rescued

Dox-induced p-ATM and p-Chk2 (S2F Fig). Neither HITT expression nor KD affected total

protein levels of ATM and Chk2 (Fig 2B and 2C). In contrast to ATM, the activation of

another phosphatidylinositol 3-kinase–related protein kinase family member, Ataxia Telangi-

ectasia And Rad3-Related Protein (ATR), did not change with HITT expression (Fig 2B and

2C). Therefore, HITT specifically inhibits ATM activity.

A time-course experiment was further performed. A mild induction of p-ATM occurred as

early as 5 min after Dox treatment and kept rising in a time-dependent manner with the pro-

longed treatment, reaching plateau 2 h after treatment (Fig 2D), whereas HITT was increased

relative late, 1 h after Dox treatment (S3A Fig). Dynamic induction of p-ATM was significantly

delayed and attenuated by HITT overexpression (Fig 2D) and accelerated and elevated by

HITT KD (Fig 2E).

It is also noteworthy that inhibition of HITT-mediated ATM activation was not specific to

cell type or p53 status, with similar phenomena observed in p53 null H1299 and SW620 cells

(S3B Fig). Similar to what was observed upon Dox treatment, HITT-inhibited ATM activation

was further confirmed in Bleo-treated HeLa and HCT116 cells (S3C and S3D Fig) and Eto-

treated HeLa cells (S3E Fig). Therefore, HITT restrains p-ATM upon DSBs, and it is a com-

mon phenomenon independent of p53 status.

It is known that HR is more prevalent after DNA replication [6]; however, HITT expression

was not related to cell cycle (S3F Fig). HITT overexpression did not alter the levels of bromo-

deoxyuridine (BrdU) (S3G Fig) or cell-cycle distribution under basal conditions (S3H Fig),

suggesting that HITT suppresses HR by affecting signaling in HR pathway per se, rather than

by arresting the cell cycle. Despite detecting delayed entrance into S and G2/M phases in HITT

overexpression cells upon Dox treatment compared with control cells, ATMi completely abol-

ished this effect (S3H Fig). Thus, we deduced that the retarded S and G2/M phase entrance in

HITT overexpression cells was due to decreased ATM activation, which is consistent with pre-

vious reports that ATM regulates cell-cycle progression [41].

These data collectively suggest that HITT is an important inhibitor of ATM activation and

therefore plays essential roles in attenuating HR repair upon DSBs.

HITT inhibits MRN-mediated ATM recruitment to the DSB sites

We next investigated the underlying mechanisms by which HITT inhibits ATM activity. MRN

is a sensor of DSBs and integral to ATM-dependent DNA repair signaling [42]. NBS1 is an

Fig 2. HITT reduces HR repair by inhibiting ATM activation. (A) DNA damage was monitored by comet assay after Dox treatment (1 μg/ml, 30 min) or 12

h after Dox (1 μg/ml) washout in the presence or absence of ATMi-1 (10 μM) and ATMi-2 (10 μM) (left). Tail moment per cell is analyzed as described in the

Materials and methods and presented in the bar graph (right), scale bar, 10 μm. (B, C) The expression levels of the indicated proteins were determined by WB

in HITT stable lines (B) or HITT KD cells (C) after Dox treatment (1 μg/ml, 24 h). (D, E) The expression levels of p-ATM and ATM were detected by WB in

HITT stable lines Hela cells (D) or HITT KD cells (E) with 1 μg/ml Dox the indicated time courses. Data are derived from three independent experiments and

presented as mean ± SEM in the bar graphs (A, D, and E). Values of controls (“Ctl.”) were normalized to 1. �P< 0.05; ��P< 0.01 relative to the untreated

control (A, D, and E); see also S2 and S3 Figs. For the raw data, see Fig 2A, 2D, and 2E in S1 Data, Fig 2B–2E in S1 Raw Images. ATM, Ataxia-telangiectasia

mutated; ATMi-1, KU-60019; ATMi-2, KU-55933; ATR, Ataxia Telangiectasia And Rad3-Related Protein; Chk2, checkpoint kinase 2; Dox, doxorubicin;

HITT, HIF-1α inhibitor at translation level; HR, homologous recombination; KD, knockdown; N.S., not significant; NBS1, Nijmegen Breakage Syndrome 1; si-

, small interfering; Vect., vector; WB, western blot.

https://doi.org/10.1371/journal.pbio.3000666.g002
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MRN component that plays key roles to recruit ATM to the DSB sites. As expected, NBS1 KD

reduced ATM activity. Interestingly, despite no obvious impacts on HITT levels (S4A Fig),

NBS1 KD completely abolished the effect of HITT on ATM activity (Fig 3A). These data sug-

gest that HITT inhibition of ATM is dependent on MRN action. However, neither HITT over-

expression nor KD produced a significant impact on MRN proteins (Fig 2B and 2C). In

addition, cell-staining and chromatin fractionation assays revealed that HITT does not influ-

ence the formation of nuclear foci by NBS1 (Fig 3B) and RAD50 (S4B Fig) or the association

of MRN components (NBS1 and RAD50) with chromatin (S4C Fig). In contrast, DNA dam-

age–induced p-ATM foci were barely detectable in HITT overexpression HeLa cells (Figs 3B

and S4B). In agreement, the chromatin-associated ATM was decreased with HITT overexpres-

sion and increased with HITT KD, whereas the association of chromatin with ATR was not

affected by either HITT expression or KD (S4C Fig). These data suggest that HITT may inhibit

ATM activation by regulating MRN-mediated ATM recruitment to sites of DNA damage.

Indeed, a coimmunoprecipitation (co-IP) assay revealed that the association of p-ATM or

ATM with NBS1, a key component of MRN that has been reported to be directly associated

with ATM [43], was detected and was dramatically decreased upon ectopic HITT expression;

however, the association of NBS1 with another MRN component, RAD50, remained unaf-

fected (Fig 3C). Therefore, HITT appears to specifically interfere with the association of ATM

with MRN upon DSBs.

HITT is physically associated with ATM at an essential NBS1-binding site

We next asked how HITT inhibits the association between ATM and NBS1. lncRNA may act

by interacting with proteins. We have previously shown that HITT is distributed both in the

cytoplasm and in the nucleus [31] and therefore wondered whether HITT binds with ATM or

MRN. To this end, an in vitro RNA-binding assay was first applied. As shown, the assay

revealed that ATM coprecipitated with Biotin-HITT but not Biotin-antisense-HITT (Fig 3D),

whereas none of the MRN components bound with HITT or antisense-HITT (Fig 3D). UV

cross-linking and immunoprecipitation (CLIP) is standard in RNA research used to determine

the direct interactions between proteins and nucleic acids. As revealed by CLIP assay, HITT

was present in ATM, but not immunoglobulin G (IgG) or RAD50, immunoprecipitates (Fig

3E). The association between ATM and HITT was not only significantly enhanced with

ectopic HITT expression but also increased with Dox treatment (Fig 3E and 3F). These data

suggest that HITT is physically and specifically associated with ATM, which may be biologi-

cally significant in regulating the DDR.

We further investigated what the molecular mechanism by which HITT binds with ATM is.

HITT does not have a homolog in mice, which thus provides a convenient tool to map the

HITT sequence that contributes to its association with ATM, without interference from

endogenous HITT. Different HITT fragments (F) were generated and similar levels of HITT

were introduced into the mouse cell line 4T1. CLIP of endogenous ATM revealed that compa-

rable rates of FL and F3 were present in ATM immunoprecipitates, whereas F1 and F2 were

unlikely to contribute to the interaction (Fig 3G). The binding sites within F3 were further nar-

rowed down to F3–1 (1,030–1,247 bp) (Fig 3G). In line with this result, we found that F3 (F3–

1), but not the other fragments, inhibited ATM activity (Fig 3H). Full-length HITT and F3 elic-

its similar effect in inhibiting HR efficiency (Fig 3I).

We also examined which domain in ATM contributes to the interaction with HITT. To

answer this question, we generated different ATM truncations as indicated in Fig 3I. ATM

mutant types (MTs) that lost the MT3 sequence within the HEAT repeat domain failed to bind

with HITT (Fig 3J). The direct interaction between HITT and ATM-MT3 was further verified
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by in vitro RNA pull-down assay using in vitro–translated ATM-MT3 protein and in vitro–

synthesized sense-HITT (Fig 3K). Interestingly, MT3 has been identified to be an essential

NBS1-binding site [43], suggesting HITT may mask the NBS1-binding sites, leading to the

repressed association between ATM and NBS1. In agreement, we found that NBS1 bound

with MT2 and MT3, which contain NBS1-binding domain, but not with MT4. Such interac-

tion was dramatically reduced in cells overexpressing HITT compared with control cells

(Fig 3L).

It is thus logical to propose that HITT binds the NBS1-binding site in ATM (MT3) via F3–1

(1,030–1,247 bp) and prevents NBS1-mediated ATM recruitment to DSBs.

HITT is transcriptionally activated by the induction of EGR1 upon DSBs

Considering the functional significance of HITT in regulating the response to DSBs, we next

explored the underlying mechanisms of HITT up-regulation in response to chemotherapeutic

treatment. Actinomycin D, an RNA synthesis inhibitor, completely abolished Dox-induced

HITT expression, suggesting that HITT up-regulation is not due to RNA stabilization (S5A

Fig). Interestingly, an approximately 2- to 3-fold increase of HITT luciferase activity was

detected after Dox treatment in a dose-dependent manner (Fig 4A), which was similar to the

extent of HITT induction, suggesting that the up-regulation of HITT is predominately due to

the promoted RNA synthesis.

By searching potential binding motifs of transcription factors located at promoter regions

of HITT in the UCSC Genome Browser chromatin immunoprecipitation (ChIP) sequencing

(ChIP-seq) database, the most potent transcription factors were Early Growth Response 1

(EGR1) and TATA-box binding protein associated factor 1 (TAF1) (S5B Fig), both of which

have been implicated in the DDR previously [44,45]. However, the expression of EGR1, but

not TAF1, was found to be elevated by Dox (Figs 4B and S5C); thus, EGR1 was subjected to

Fig 3. HITT binds to ATM and prevents its association with NBS1. (A), ATM, p-ATM, Chk2, p-Chk2, and NBS1 protein levels

were analyzed in HITT stable HeLa cells after si-mediated NBS1 KD in the presence of 1 μg/ml Dox. (B) The expression levels and

patterns of NBS1 and p-ATM were determined by immunofluorescence staining after treatment of Dox in HITT stable HeLa cells.

Representative images are presented (left). The average rates of NBS1 or p-ATM nuclear foci-positive cells were counted and are

presented in the bar graph (right), scale bar, 10 μm. (C) The interactions of NBS1 with ATM, p-ATM, and MRN components

Mre11 and RAD50 were determined by co-IP assay in vector (“Vect.”) control and HITT stable HCT116 cells upon treatment

with Dox (1 μg/ml, 24 h). (D) ATM, Mre11, RAD50, and NBS1 levels in protein complexes pulled down by Biotin-HITT or

Biotin-antisense-HITT from whole-cell extracts of HeLa cells were determined by in vitro RNA pull-down assay combined with

WB. (E, F) HITT levels were determined by real-time RT-PCR following ATM or RAD50 CLIP in the control and HITT stable

HeLa cells (E), or in HeLa cells before and after Dox (1 μg/ml, 24 h) treatment (F). IgG and U1 RNA were used as controls. (G) A

CLIP assay was used to detect the binding of ATM with ectopically expressed full-length or HITT fragments, as indicated in the

diagram, in 4T1 (a cell line without endogenous HITT expression). (H) ATM and p-ATM expression levels were analyzed by WB

after introducing HITT or HITT fragments, as indicated, into HeLa cells followed by Dox (1 μg/ml, 24 h) treatment. (I) HR

efficiency of ISce-I-induced DSBs in U2OS cells containing DR-GFP was determined by measuring GFP-positive cells by flow

cytometry (FACS) after overexpression of full-length or fragmented HITT in HeLa cells. (J) HITT levels were determined by real-

time RT-PCR following Flag CLIP in HeLa cells after transfection of Flag-tagged MT1–MT5, as indicated in the diagram shown

above. IgG and U1 RNA were used as controls. (K) Direct interactions between ATM and HITT were verified by in vitro RNA

pull-down assay using in vitro–translated Flag-ATM-MT3 and in vitro–synthesized HITT. (L) The interaction between ATM

truncates and NBS1 was determined by a co-IP assay in HITT stable HeLa cells and corresponding controls after introducing the

indicated ATM truncates. Data are derived from three independent experiments and represented as mean ± SEM in the bar

graphs. �P< 0.05; ��P< 0.01 (B, E-G, I, and J). ##P< 0.01; relative to vector control or DMSO control (E and F). See also S4 Fig.

For the raw data, see Fig 3B, 3E-3G, 3I, and 3J in S1 Data and Fig 3A, 3C, 3D, 3H, 3K, and 3L in S1 Raw Images. ATM, Ataxia-

telangiectasia mutated; ATR, Ataxia Telangiectasia And Rad3-Related Protein; Chk2, checkpoint kinase 2; CLIP, UV cross-linking

and immunoprecipitation; Dox, doxorubicin; DR, Direct Repeat; DSB, double-strand break; FACS, fluorescence-activated cell

sorting; GFP, green fluorescent protein; HITT, HIF-1α inhibitor at translation level; HR, homologous recombination; HRP,

horseradish peroxidase; IgG, immunoglobulin G; IP, immunoprecipitation; KD, knockdown; Mre11, Meiotic Recombination 11;

MRN, MRE11-RAD50-NBS1; MT, mutant type; N.S., not significant; NBS1, Nijmegen Breakage Syndrome 1; PI3K,

phosphatidylinositol 3-kinase; qRT-PCR, quantitative reverse transcription PCR; si-, small interfering; Vect., vector; WB, western

blot.

https://doi.org/10.1371/journal.pbio.3000666.g003
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Fig 4. HITT is transcriptionally activated by EGR1 upon DSBs. (A) Relative pGL3-HITT-promoter-luc activities were determined by luciferase reporter assay in HeLa

and HCT116 cells treated with different concentrations of Dox as indicated in the figure. (B) EGR1 levels were analyzed by WB in HeLa and HCT116 cells after Dox (1 μg/

ml) treatment for the indicated time periods. (C) HITT expression level and pGL3-HITT-promoter-luc activity were determined by real-time RT-PCR or luciferase

reporter assay in EGR1 KD cells. EGR1 KD efficiency were validated by WB. (D) Relative pGL3-HITT (FL or MT)-promoter-luc activity was determined by luciferase
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the further analysis. As shown, induction of EGR1 appeared 1 h after Dox treatment, was fur-

ther elevated with prolonged incubation until 6 h (Fig 4B). EGR1 by specific siRNAs abrogated

Dox-induced HITT luciferase reporter activity and HITT expression (Fig 4C). These data sup-

port the idea that EGR1 is required for Dox-induced HITT transcription.

We further investigated whether HITT is a direct target of EGR1. First of all, we found that

transfection with increasing doses of EGR1-expressing plasmids led to increasing HITT

expression (S5D Fig). Two independent siRNAs specifically targeting EGR1 diminished the

expression of the target and also reduced HITT expression (S5E Fig). Additionally, consistent

with bioinformatics prediction, the MT1 reporter, which did not have the predicted EGR1-

binding sites, failed to respond to EGR1 expression (Fig 4D). In contrast, the activity of the

MT2 mutant reporter was as effective as the wild-type reporter in response to EGR1 (Fig 4D).

A ChIP assay further revealed that EGR1 was associated with the HITT promoter at the corre-

sponding sites, and such interaction was significantly promoted by Dox (Fig 4E). Therefore,

HITT is a direct target of EGR1, which is critical for maintaining high levels of HITT after

exposure to DNA damage. In line with this notion, siRNA-mediated EGR1 KD abolished

Dox-induced HITT expression and facilitated ATM activation (Figs 4F and S5F).

Collectively, EGR1 is required for HITT induction upon DSBs.

HITT down-regulation may contribute to ATM activation in vivo in

human colon cancers

Given the significance of HITT in regulating ATM’s activity, we further investigated their asso-

ciation in vivo in human colon cancers. HITT levels were commonly decreased in colon can-

cer tissues to approximately 32% of their paired adjacent normal controls (n = 40 pairs, S6A

Fig). p-ATM was increased in 27 out of 40 colon cancer tissues when compared with their

matched controls (S6B and S6C Fig), whereas total ATM was not changed in cancer (S6D Fig).

Although NBS1 levels were also increased in a subset of colon cancer tissues (29/40, S6E Fig),

no significant association between NBS1 overexpression and p-ATM enhancement was

observed (S6F Fig). Interestingly, the fold of p-ATM induction was significantly higher in the

lower HITT expression group than in the higher expression group (S6G Fig). p-ATR level, also

an indicator of DNA damage, was increased in colon cancers, whereas it was not related to

HITT fold-change (S6B, S6H, S6I and S6J Fig). These clinical data, combined with those of our

in vitro studies, suggest that HITT down-regulation may contribute to the activation of ATM

in vivo.

HITT sensitizes Dox-induced apoptosis by inhibiting ATM activation both

in vitro and in vivo

Many chemotherapeutic drugs remove cancer cells by inducing severe DNA damage. The acti-

vation of ATM and the subsequent DNA damage repair can limit the effectiveness of DNA-

reporter assay after transfection with the indicated reporter plasmids together with EGR1 constructs. (E) Interaction of EGR1 with the HITT promoter was determined by

ChIP assay after treating HeLa cells with or without Dox (1 μg/ml, 6 h). PCR band intensities were quantified using ImageJ and presented in the bar graph (right). (F) p-

ATM and EGR1 levels were analyzed by WB in HITT stable lines or vector (“Vect.”) controls (“Ctl.”) (HeLa, left and HCT116, right) with the indicated transfection and/or

Dox (1 μg/ml, 24 h) treatment. Data are derived from three independent experiments and represented as means ± SEM in the bar graphs. Values in control cells were

normalized to 1. �P< 0.05; ��P< 0.01; compared with vector or siRNA control. (A, C, D, and E). ##P< 0.01; relative to the Dox-treated control (C). See also S5 Fig. For

the raw data, see Fig 4A, 4C–4E in S1 Data, Fig 4B–4D, 4F in S1 Raw Images. ATM, Ataxia-telangiectasia mutated; ChIP, chromatin immunoprecipitation; Chk2,

checkpoint kinase 2; Dox, doxorubicin; DSB, double-strand break; EBS, EGR1 Binding Site; EGR1, Early Growth Response 1; GAPDH, glyceraldehyde 3-phosphate

dehydrogenase; HITT, HIF-1α inhibitor at translation level; KD, knockdown; MT, mutant type; N.S., not significant; RT-PCR, reverse transcription PCR; si-, small

interfering; WB, western blot.

https://doi.org/10.1371/journal.pbio.3000666.g004
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damaging reagents [32]. Considering the important function of HITT in regulating ATM

activity and the DDR, its effects on chemotherapy-induced cell death were explored using the

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Our results show

that cell viability was reduced by Dox in a much more dramatic manner in HITT stable lines

than in corresponding vector controls (Fig 5A), whereas HITT KD dramatically alleviated

Dox’s inhibitory effect on cell viability (Fig 5B). ATMi-1/2 reduced cell viability in the pres-

ence of Dox and also completely abolished the impact of HITT (Fig 5A and 5B). Supportively,

HITT F3, which is shown to contribute to ATM activity and HR inhibition, produced similar

effect to increase Dox-induced cell death (S7A Fig). Under unstressed basal conditions, HITT

had no obvious effect on clonal number and size when cells were grown on soft agar, whereas

Dox treatment produced a much more dramatic effect on the inhibition of clonal growth in

HITT-overexpressing cells than in controls (Fig 5C). Furthermore, HITT significantly elevated

apoptosis rates, as indicated by Annexin V–positive staining and cleaved caspase 3/7 after Dox

treatment in both HeLa and HCT116 cells (Fig 5D and 5E). The effects of HITT on clonal for-

mation and apoptosis were completely abolished by ATMi (Fig 5C and 5E). KD HITT regula-

tors, EGR1, inhibited Dox-induced apoptosis (Fig 5F and 5G). Similar results were obtained in

Bleo- and Eto-treated HCT116 and HeLa cells (S7B–S7E Fig) and Dox-treated p53-null H1299

cells (S7F and S7G Fig). These data collectively suggest that HITT facilitates DNA damaging

agent–induced apoptosis by inhibiting ATM in a p53-independent manner.

The impact of HITT on the effect of Dox was also evaluated in vivo using a nude mice xeno-

graft model. To avoid big initial tumor volume differences on HITT overexpression and con-

trol xenografts before Dox treatment, more HITT-overexpressing HCT116 cells than vector

controls were inoculated into nude mice. The mice with similar tumor volumes (about 200

mm3) were subjected to the indicated treatments (n = 6 for each group). Even more HCT116/

HITT cells were injected, with the growth rates of HITT xenografts still slightly lower than

those of vector controls (Fig 6A–6C). Dox treatment only slightly reduced tumor growth in

the vector control xenografts, and no statistical significance was obtained in comparison with

the untreated vector controls (Fig 6A–6C). Remarkably, Dox reduced tumor weight by

approximately 4-fold in HITT overexpression xenografts compared with vector xenografts

(Fig 6A and 6B). Furthermore, ATMi-1, which has been tested in preclinical [46], produced a

mild inhibitory effect on tumor growth (Fig 6A–6C). Consistent with previous reports, the

effect of ATMi-1 was more evident when combined with the DNA-damaging agent Dox.

Interestingly, no synergistic effect was observed with the combination of HITT overexpression

and ATMi-1 (Fig 6A–6C), which further supports the idea that HITT inhibits tumor growth

by preventing the activation of ATM. Dox treatment led to a mild decrease of body weight in

mice (Fig 6D).

In agreement with the in vitro data, HITT was elevated by Dox in vivo (Fig 6E). Western

blot (WB) assays revealed that ATM activity was increased by Dox and was diminished by

HITT (Fig 6F). ATMi-1 produced a similar effect with ectopic HITT expression on ATM activ-

ity. Neither HITT expression nor ATMi-1 had an obvious effect on the expression of total

ATM and MRN components.

Discussion

DNA repair inhibitors have been developed as clinical agents to reverse radiation or genotoxic

drug resistance [32]. Basic research into understanding the regulatory mechanisms underlying

DNA damage repair is crucial for the identification of tumor markers, to allow for more-effec-

tive targeted cancer treatment.
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Fig 5. HITT sensitizes Dox-induced apoptosis by inhibiting ATM in vitro. (A, B) The survival rates of cells with the indicated treatments with or without 10 μM ATMi-

1 and ATMi-2 were determined by MTT assay. (C) The survival of cells grown on soft agar was determined by clonogenic survival assay with the indicated treatments in

control (“Ctl.”) and HITT stable HeLa cells, scale bar, 100 μm. (D-G) Apoptosis levels revealed by Annexin V staining (D, F) or caspase 3/7 activity assay (E, G) in vector

(“Vect.”) and HITT stable HCT116 and HeLa cells after the indicated treatments with Dox (1 μg/ml) or 10 μM ATMi-1 and ATMi-2. Data are derived from three

independent experiments and represented as mean ± SEM in the bar graphs. Values in control cells were normalized to 1 (A, B, E, G). �P< 0.05; ��P< 0.01 (A-G);

#P< 0.05; ##P< 0.01; relative to Dox-treated control (F, G); $ $P< 0.01; compared with Dox-treatment HITT stable line (F, G). See also S7 Fig. For the raw data, see Fig

5A–5G in S1 Data. ATM, Ataxia-telangiectasia mutated; ATMi-1, KU-60019; ATMi-2, KU-55933; Dox, doxorubicin; EGR1, Early Growth Response 1; HITT, HIF-1α
inhibitor at translation level; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; N.S., not significant; si-, small interfering.

https://doi.org/10.1371/journal.pbio.3000666.g005
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Fig 6. HITT axis sensitizes Dox-induced apoptosis by inhibiting ATM in vivo. (A-C) Tumor images (A) and tumor weight at day 28 (B), as well as tumor volumes at

the indicated time points (C) of HCT116 vector (“Vect.”) and HITT stable cells were injected to the nude mice; when the tumor volume reached about 200 mm3, the mice

were randomly divided into four groups and subjected to the treatment of DMSO and Dox alone (10 mg/kg, intraperitoneal) once per week for 2 wk or in combination

with ATMi-1 (60 mg/kg, intraperitoneal) daily for 5 d. The average values are present in the bar graphs (mean ± SD) (J) (n = 6 for each group). (D) The body weights of

different groups of mice measured at the time points when tumor volumes were measured. (E, F) HITT levels were measured by real-time RT-PCR (E) and expression

levels of the indicated proteins were determined by WB (F) in samples derived from HCT116 xenografts. �P< 0.05; ��P< 0.01 (B, C, and E). ##P< 0.01; compared with

HITT stable xenograft DMSO group (E). For the raw data, see Fig 6B-E in S1 Data, Fig 6F in S1 Raw Images. ATM, Ataxia-telangiectasia mutated; ATMi-1, KU-60019;

Chk2, checkpoint kinase 2; Dox, doxorubicin; HITT, HIF-1α inhibitor at translation level; N.S., not significant; NBS1, xxxx; RT-PCR, reverse transcription PCR; si-, small

interfering; WB, western blot.

https://doi.org/10.1371/journal.pbio.3000666.g006
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Here, we identify a novel intrinsic inhibitor of ATM activation that is a key and apical event

in initiating DDR cascades. Unlike previous reported ATM regulators, this molecule brake is

an RNA, namely HITT, that specifically and physiologically binds with ATM. Upon DSBs,

HITT expression is elevated and its association with ATM is increased accordingly, thereby

retraining MRN-mediated recruitment of ATM to the DNA damage sites and compromising

DNA repair mediated by HR (Fig 7). Two independent ATMi completely abrogates HITT’s

effect on the DDR program and HR. HITT does not further chemosensitize cells treated with

ATMi, supporting the idea that HITT mainly interferes with the same prosurvival signals as

ATMi.

Of note, no less important than the activation of the ATM-mediated DDR network is to

limit its activation after DNA damage repair. This process may also be complex and highly

structured. The mechanisms underlying ATM inhibition have emerged recently. It has been

shown that H1.2 and Bridging Integrator 1 (BIN1) attenuate ATM activation by directly inter-

acting with ATM [47] or by indirect mechanisms involving E2F1 [48]. Notably, HITT expres-

sion is elevated 1 h after Dox treatment, which is later than ATM activation is detected (5

min). It is reasonable to propose that cells limit ATM from overactivation by enhancing HITT

after DNA damage repair. HITT may represent an important brake in controlling the ATM-

mediated DDR network, which is a key cell fate determinant, particularly upon prolonged

exposure to DNA-damaging agents in cancer treatment. We also made an interesting observa-

tion that HITT binds with ATM under basal conditions (Fig 7), suggesting that it may provide

Fig 7. Proposed model of HITT regulation of ATM activity in cancer cells. Under unstressed conditions, EGR1 contributes to the basal expression levels of HITT,

which can be directly associated with ATM. In response to DSBs—e.g., following Dox treatment—EGR1 is elevated and then play roles in promoting HITT expression by

binding at particular regions of the HITT promoter. Elevated HITT may transiently bind ATM at the HEAT repeats domain at the typical NBS1-binding sites, via bases

1,030–1,247. Such activity of HITT changes the ability of ATM in binding with MRN complex, leading to reduced HR and the promotion of apoptosis. si-HITT-mediated

HITT inhibition or HITT down-regulation facilitates ATM recruitment by NBS1 to the sites of DSBs, leading to ATM autophosphorylation and optimal activation

followed by effective HR, which prevents server DNA damage and apoptosis. ATM, Ataxia-telangiectasia mutated; Chk2, checkpoint kinase 2; Dox, doxorubicin; DSB,

double-strand break; EGR1, Early Growth Response 1; HITT, HIF-1α inhibitor at translation level; HR, homologous recombination; Mre11, Meiotic Recombination 11;

MRN, MRE11-RAD50-NBS1; N.S., not significant; NBS1, Nijmegen Breakage Syndrome 1; si-, small interfering.

https://doi.org/10.1371/journal.pbio.3000666.g007
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quality control to counteract toxic HR. Indeed, a deficiency in ATM inhibition has been asso-

ciated with carcinogenesis, resistance to DNA damage–induced cancer treatment, and loss of

mitotic checkpoint [49–51]. It is reasonable to propose that the expression of HITT may allevi-

ate and loss of HITT expression may reinforce such effects. In addition, it has become apparent

that ATM is active in response to multiple conditions involved in the maintenance of cellular

homeostasis [7]. It would be interesting to investigate the physiological significance of the

newly identified HITT-ATM interaction in a DNA damage–independent context.

MRN is a sensor for cells to recognize DSBs [52]. Recruitment and optimal activation of

ATM is mainly dependent on its interaction with the MRN component NBS1 [43]. Consistent

with this notion, the mutation of ATM-binding sites in NBS1 completely abrogates ATM accu-

mulation at DSB sites [43]. Interestingly, the regulation of ATM by HITT is MRN(NBS1)-

dependent. We further defined the ATM site that facilitates HITT binding to a previously

identified NBS1-binding site (the HEAT repeats domain), raising the possibility that HITT

competes with NBS1 in binding with ATM. Indeed, ectopic HITT expression led to increased

association of HITT/ATM and reduced association of NBS1/ATM, without influencing total

ATM or NBS1 protein levels. Also notably, NBS1 is essential to induce ATM monomerization

and activation [13,53]. HITT and NBS1 bind with ATM at the same sites, although eliciting

opposite effects on ATM activity. It remains to be investigated whether HITT plays roles in

influencing ATM monomerization and, if so, whether such activity of HITT is dependent on

its inhibitory effect on NBS1/ATM interaction.

Notably, lncRNA is normally expressed at lower levels than protein-coding genes [54]. One

potential explanation for the robust effect of HITT on ATM activity is that HITT may tran-

siently interact with ATM to modulate ATM modification to render it inactive. Indeed, it has

been reported that ATM modification may influence its activation [20,55]. In addition,

although HITT itself may have no catalytic activity, its effect on ATM downstream signaling

can be amplified and is not necessarily linearly associated with its expression levels. It will be

interesting to test the above models in future studies.

We also suggest that HITT’s inhibition of ATM may be of clinical significance. A small pep-

tide containing the evolutionarily conserved region of NBS1, which binds with ATM, disrupts

the interaction between NBS1 and ATM. This peptide also prevents DNA damage signaling

and radiosensitization of cells, underscoring the notion that blocking the NBS1/ATM interac-

tion is a potential target for anticancer treatment [56]. Indeed, we found that HITT-mediated

ATM inhibition leads to increased cell death when cells are treated with Dox both in vitro and

in vivo. Because of its significant effects regarding improving chemosensitivity, our data

encourage the future development of lncRNA-based cancer therapies for patients resistant to

genotoxic treatments.

Furthermore, p53 is an important gene in regulating genome stability and the DDR [57].

However, we made an interesting observation that the induction of HITT upon DSB- and

HITT-dependent DDR activity is p53-independent. This is important, as p53 is the most com-

monly mutated tumor suppressor gene in human cancers [58]. The discovery of a p53-inde-

pendent function of HITT implies that HITT could be utilized to sensitize cells to cytotoxic

drug treatments that are applicable to a wide range of human cancers, regardless of their p53

status.

Moreover, HITT expression is commonly decreased, whereas p-ATM levels are increased,

in colon cancer tissues. Despite being elevated in a subset of cancer samples, NBS1 overexpres-

sion is not likely to be important for ATM activation, which suggests that additional layers of

regulation exist for NBS1-mediated ATM activation. Importantly, the extent of the reduction

of HITT expression is significantly associated with increasing p-ATM, which suggests that

HITT down-regulation may contribute to the activation of p-ATM in vivo. This is important,
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because ATM activation has been associated with treatment failure in multiple cancers. Detec-

tion of ATM variance or its protein expression has been suggested to be a potential predictive

marker for drug response [5], and our findings provide an effective marker, HITT, for the pre-

diction of ATM activity. In addition, BRCA1- and BRCA2-mutated cells are defective in HR

repair and are thus highly sensitive to poly ADP-ribose polymerase (PARP) inhibitor treat-

ment [12]. In addition, ATM deficiency has been shown to increase sensitivity to PARP and

ATR inhibitors [59]. HITT specifically inhibits the ATM-dependent HR pathway. The syner-

gistic effects of HITT and PARP inhibitors warrant future investigation. ATMi has also been

shown to be a promising single agent for the treatment of human cancers with defects in par-

ticular oncogene signals, such as a loss of PTEN (phosphate and tension homology deleted on

chromosome ten) [60]. Further work is thus necessary to decipher whether HITT could be

applied alone in subtypes of cancers.

We have also found that Dox-induced HITT up-regulation is predominately controlled by

EGR1. EGR1 can be rapidly up-regulated by a wide variety of extracellular stimuli, including

the activation of growth and differentiation signals, tissue injury, and apoptotic signals, such as

IR. Despite its transient activation, the expression of EGR1 is likely required for HITT up-reg-

ulation, since EGR1 KD completely abolishes Dox-induced HITT. These data are consistent

with the fact that HITT is involved in regulating the initiation steps of the DDR. In addition,

EGR1 KD is accompanied by impaired DDR and p53 activation [61]. Here, we provide the

first evidence that EGR1 exerts its effect on the DDR by modulating lncRNA expression. How-

ever, HITT is maintained at high levels, even when EGR1 expression drops back down to

unstressed levels, suggesting that additional transcriptional regulation of HITT also exists.

Indeed, a number of additional transcription factors have been indicated to bind with HITT

promoter as shown in UCSC Genome Browser ChIP-seq database. It will be interesting to

investigate the impacts of these candidate transcription factors on HITT expression in the con-

text of DSB.

Altogether, our results demonstrate that HITT plays essential roles in inhibiting the HR

pathway by restraining ATM activity and thus may be an effective adjuvant therapy for geno-

toxic or radiomimetic compounds or a predictive marker for treatment efficiency in cancer.

Materials and methods

Ethics statement

Human colorectal cancer tissues and their corresponding adjacent normal controls (40 pairs)

were collected from the Fourth Affiliated Hospital of Harbin Medical University in China.

Written informed consent was obtained from all patients. The study has been approved by the

Research Ethics Committee of Harbin Medical University, China. All animal procedures were

performed according to protocols approved by the Rules for Animal Experiments published

by the Chinese Government (Beijing, China) and approved by the Research Ethics Committee

of Harbin Institute of Technology, China (IACUC number: IACUC-2018005).

Cell culture and chemicals

HeLa, SiHa, T24, and 293T cells were grown in Dulbecco’s modified Eagle’s medium

(DMEM) (Gibco, Carlsbad, CA, United States of America), supplemented with 10% (v/v) fetal

bovine serum (Biological Industries). HCT116, HCT116 (p53-/-), H1299, and SW620 were

maintained in RPMI-1640 medium (Gibco, Carlsbad, CA, USA) supplemented with the 10%

FBS. HITT sequence was subcloned into a lent-virus vector, pLnc-KP. Virus was packaged in

HEK-293T cells and then infected HCT116 and HeLa cells. Single clones were selected by

puromycin and the selected clones with HITT overexpressed similar to the normal cells were

PLOS BIOLOGY lncRNA HITT sensitizes genotoxic treatment by attenuating ATM activation in cancers

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000666 March 23, 2020 17 / 28

https://doi.org/10.1371/journal.pbio.3000666


used to do further experiments. DR-U2OS, EJ2-U2OS, and EJ5-U2OS were kindly provided

by Prof. Jeremy M. Stark [35]. All cells were grown at 37˚C in the humidified incubator

(Thermo Scientific) with 5% CO2. Cell lines were routinely tested to exclude mycoplasma con-

tamination, and all cells have never been passaged longer than 1 mo. All drugs used in this

study were as follows: Doxorubicin (Selleck, #S1208); Calicheamicin (MedChemExpress,

#HY-19609); Bleomycin (Apexbio, #A8331); Etoposide (Apexbio, A1971); ATM inhibitor

Ku60019 (Apexbio, #A8336); ATM inhibitor Ku55933 (MedChemExpress, #HY-12016); and

Actinomycin D (MedChemExpress, #HY-17559).

Colorectal cancer tissues samples

The specimens were collected and stored in liquid nitrogen immediately after surgery. The

total proteins and RNAs were extracted and then subjected to WB and real-time RT-PCR

analysis.

In vivo xenograft mouse study

HITT expression was stably restored in HCT116 cells, by using empty vector as a control. The

female nude mice between 4 and 5 wk old were purchased from Beijing HFK Bioscience. To

avoid the initial big volume difference between the HITT overexpression and control groups,

the 1 × 107 vector cells and 1.5 × 107 HITT stable HCT116 cells were inoculated subcutane-

ously. The tumor volumes were measured every week and calculated as length × width2 × 0.5.

When the tumor volume reached about 200 mm3, the mice were randomly divided into four

groups and subjected to the treatment of DMSO and Dox alone (10 mg/kg, intraperitoneal)

once per week for 2 wk or in combination with ATMi-1 (60 mg/kg, intraperitoneal) daily for 5

d (n = 6 for each group). The tumor size and the body weights of the mice were measured

every 2 d. After treatment for 2 wk, the mice were anesthetized and culled. The tumor was

carefully removed, photographed, and weighed.

WB assay

Cells or tissue specimens were lysed in UREA buffer (8 M Urea, 1 M Thiourea, 0.5% CHAPS,

50 mM DTT, and 24 mM Spermine). Same amount of proteins were separated by SDS-PAGE.

After being incubated with the indicated antibodies, the immune complex on membrane

was detected by an ECL kit (Thermo Scientific, #32106). Antibodies used for WB were

shown as follows: Antibodies against p-ATM (S1981) (#Ab81292), ATM (#Ab32420), NBS1

(#Ab32074), and RAD50 (#Ab89) were from Abcam. Antibodies against p-Chk2 (T68)

(#2197), Mre11 (#4847), ATR (#13934), and p-ATR (S428) (#2853) were from Cell Signaling

Technology. Antibodies against Chk2 (#13954-1-AP), FLAG (#20543-1-AP, for WB), RAD51

(#14961-1-AP), XRCC4 (#15817-1-AP), α-tubulin (#66031-I-Ig), β-actin (#60008-1-Ig), and

GAPDH (#60004-1-Ig) were obtained from Proteintech. Additional antibodies included EGR1

(sc-189, Santa Cruz), Histone3.1 (#KM9005T, Sungene), FLAG (#MCA4764, Bio-Rad, for IP),

mouse IgG (#A7028, Beyotime), and Rabbit IgG (#A7016, Beyotime).

siRNA and transfection

siRNA specifically targeting HITT, NBS1, EGR1, or nonspecific control (Ctl.) were synthesized

by GenePharm and their sequences are as follows: si-Ctl (UUUUCCGAACGUGUCACGU

TT); si-HITT#1 (CCAGGAAGGCGAUUUACAATT); si-HITT#2 (CCUCAUGAAUGGG

AUUAAUTT); si-NBS1 (GGAGGAAGAUGUCAAUGUU); si-EGR1#1 (GGCAUACCAA

GAUCCACUU); si-EGR1#2 (AGAGGCAUACCAAGAUCCA). HITT promoter sequence
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was amplified by PCR using HEK-293 genomic DNA as a template. DNA sequence was veri-

fied and subcloned into pGL3 vector, generating pGL3-HITT-promoter (−896 to +164),

pGL3-HITT-promoter (−896 to −215), and pGL3-HITT-promoter (−216 to +164) plasmids.

ATM plasmid was bought from Addgene, and all truncated ATM MTs were generated by PCR

using full-length ATM as a template. The truncated ATM sequence were subcloned into

pCDNA3.1-3xFlag vector. ISce-I plasmid was kindly provided by Prof. Jun Huang, Zhejiang

University. siRNA and plasmids were transfected into cells by Lipofectamine 2000 (Invitrogen,

#11668027).

RNA extraction and real-time RT-PCR

Total RNA was extracted using Trizol Reagent according to the manufacturer’s instructions

(Invitrogen, #15596018). cDNA was synthesized by using PrimeScript reverse transcription

(RT) reagent kit (TaKaRa, #RR047A) in presence of gDNA Eriser. Quantitative real-time PCR

was carried out in the ViiA7 real-time PCR (Applied Biosystems) using SYBR Premix Ex Taq

II kit for Real-Time (Takara, #RR820L). The primer sequences used in RT-PCR are as follows:

HITT forward 50-ACACAAATGCTGGCCTCTGTCA-30, reverse 50-GGCAAGTGGCAAAG

CCTCTC-30, 18 s forward 50-AACTTTCGATGGTAGTCGCCG-30, reverse 50-CCTTGGAT

GTGGTAGCCGTTT-30, U1 forward 50-GGGAGATACCATGATCACGAAGGT-30, reverse

50-CCACAAATTATGCAGTCGAGTTTCCC-30.

IP

Cells were lysed in NETN buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1% NP-40, 1 mM

EDTA), with Proteinase Inhibitor Cocktail (MedChemExpress, #HY-K0010) added freshly

before use. After being precleaned by protein G sepharose beads 4 Fast Flow (GE Healthcare,

#17061802), specific antibodies or control IgG was added to the supernatant, which was incu-

bated with FBS blocked beads for at least 20 h at 4˚C. Beads with the bound immunoprecipi-

tates were collected following four washes with cold NETN. The subsequent

immunoprecipitates were extracted for WB assay.

Luciferase reporter assay

After the indicated transfection, the luciferase activities were detected with the luciferase assay

system (Promega, #E1910) according to the manufacture’s introduction. The relative luciferase

activities were normalized with the Renilla luciferase activities.

Apoptosis assay

After the indicated treatments, both suspended and attached cells were collected. Cell suspen-

sion in binding buffer were incubated with 5 μL Annexin V/FITC for 10 min and then with

5 μL propidium iodide (PI) (Sungene) for 5 min at room temperature in the dark. The rate of

apoptosis was determined by flow cytometry.

Caspase3/7 activity assay

Following the indicated treatments, cells were subjected to the caspase 3/7 activity assay by

Caspase-Glo_3/7 Assay Systems (Promega, #G8091) according to the manufacturer’s instruc-

tions. The assay was conducted in triplicates and repeated independently for three times,

which was represented as a fold increase of fluorescence calculated by comparing cells with

untreated control cells.
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Comet assays

Following the indicated treatments, comet assays with EB (Sigma) staining were performed as

reported previously [62]. The quantification of comet rate and tail moment were performed

with CASP software (http://www.casp.of.pl).

NHEJ assay and HR assay

DR-U2OS, EJ2-U2OS, and EJ5-U2OS cells were transfected with HITT expression plasmids

or two independent siRNA oligos specifically targeted HITT, together with ISce-I plasmid.

Forty-eight to 72 h after transfection, cells were harvested and resuspended in 0.5 ml of PBS

(pH 7.4). GFP signal was analyzed by flow cytometry (FACS).

ChIP

Cells were incubated with formaldehyde to yield protein-DNA cross-link complexes, which

were purified and sheared by sonication. The chromatin was divided equally into two groups

for further IP reaction with anti-EGR1 antibody or IgG control. The immunoprecipitates were

pelleted by centrifugation and then incubated at 65˚C to reverse the protein-DNA cross-link-

ing. The DNA was extracted by the Axygen product purification kit and subjected to PCR

analysis.

CLIP

UV-irradiated cells were collected in lysis buffer (5 mM PIPES [pH 8.0], 85 mM KCl, 0.5%

NP40 and 1% SDS, 10 mM EDTA, 50 mM Tris-HCl [pH 8.1]) and supplemented with Prote-

ase Inhibitor Cocktail and RNase inhibitor (Thermo Fisher). The cell lysates were precleaned

with protein G sepharose beads and then incubated with the indicated antibodies or IgG con-

trol, rotating at 4˚C overnight. The antibody-RNA complexes were collected. The immunopre-

cipitated RNA was eluted and extracted for further real-time RT-PCR analysis.

In vitro RNA pull-down assay

Biotin-labeled HITT and its antisense were in vitro synthesized by Biotin RNA Labeling Mix

(Roche, 11685597910). After treatment with RNase-free DNase I, secondary structure of Bio-

tin-labeled RNA was recovered and incubated with streptavidin agarose beads (Invitrogen)

overnight. The fresh cell lysates or in vitro–translated protein (TNT T7 Quick coupled tran-

scription/translation system, Promega) were collected and incubated with RNA-captured

beads at 4˚C for 1 h. The associated proteins were detected by WB.

Clonogenic survival assay

HITT stable HeLa cells were treated with Dox (1 μg/ml) with or without Ku60019 (10 μM) or

Ku55933 (10 μM) for 24 h. The untreated and the treated cells were trypsinized and subjected

to a typical clonogenic survival assay. A total of 5 × 104 cells were mixed with 2×DMEM

medium with 20% FBS containing 0.7% agar and then spread on the top of a bottom agar layer

(1% agar in drug-free DMEM full growth medium) in a 6-well plate. DMEM medium (2 mL)

was added and refreshed every 3–4 d. Cells were grown for 1 mo. Colonies were counted and

photographed after stained with 1% Crystal Violet. The colony numbers and relative colony

size were analyzed by ImageJ.
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Chromatin fraction

Cells were fractionated as previously described [63]. As brief, cells were resuspended in buffer

A (10 mM HEPES [pH 7.9], 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol, 1 mM

DTT). Triton X-100 (0.1%) was added and incubated on ice for 5 min. Cell lysates were centri-

fuged at 1,300g for 4 min, and the remaining pellet (enriched with nuclei) was washed with

buffer A (10 mM HEPES [pH 7.9], 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol,

1 mM DTT) once and then lysed in buffer B (3 mM EDTA, 0.2 mM EGTA, 1 mM DTT) on

ice for 5 min. The nuclei lysate was then centrifuged at 1,700g for 4 min and the supernatant

(soluble nuclear fraction) was removed. The final pellet is the chromatin fraction that is ready

for further analysis.

MTT assay

Cell viabilities after the treatment were assessed by the colorimetric MTT (Sigma-Aldrich)

assay. The absorbance was measured with a spectrometer at 490 nm. Each experiment was

conducted in triplicates and repeated independently for three times.

Cell-cycle synchronization assay

To synchronize the cell cultures, HeLa cells were exposed to 2.5 mM TdR (Sigma) for 16 h

(first block) and then placed on fresh medium supplemented with 10% FBS for 12 h (first

release). After that, cells were subjected to another round of TdR treatment (second block)

before incubation with fresh medium for an additional 0, 6, 8, and 10.5 h, respectively. The

cells were collected at different time points for cell-cycle analysis by flow cytometer, and HITT

expression was measured by real-time RT-PCR.

Immunofluorescence staining and BrdU incorporation assay

Cells grown on cover slips in a 24-well plate were fixed in 4% paraformaldehyde for 20 min

and then treated with 0.1% Triton X-100 solution on ice for 4 min. Cells were then blocked by

3% BSA for 1 h followed by the antibody incubation at 4˚C overnight. After that, cells were

washed 3 × 5 min in PBS and then incubated with the fluorescently labeled secondary antibody

for 1 h. DAPI was stained for 3 min for visualizing the nucleus. The slices were mounted by

90% glycerinum and images were captured by a Zeiss Axio Observer confocal microscope.

BrdU (Sigma, #B5002) incorporation assay was carried out by following the protocol pro-

vided by Cell Signaling Technology. Briefly, BrdU was diluted to a final concentration of 0.03

mg/mL with fresh DMEM and then applied onto the cells grown on slices. Cells were incu-

bated with 1.5 M HCl followed by 5-min fixation in 70% cold ethanol. Immunostained with

anti-BrdU antibody was then conducted as shown above. The antibody dilution ratio are as

follows: p-ATM (#Ab81292, 1:100), p-ATM (10H11.E12) (#NB100-306, 1:1,000), NBS1

(#Ab32074, 1:100), RAD50 (#Ab89, 1:100), RPA2 (#10412-1-AP, 1:200), Goat Anti-Mouse IgG

H&L (Alexa Fluor 488) (#Ab150113, 1:400), and Goat Anti-Rabbit IgG H&L (Alexa Fluor 647)

(#Ab150079, 1:400).

Trypan blue staining

After different drug treatment for 24 h, both survival and dead cells were collected and sub-

jected to trypan blue staining and counted by hemocytometer. The percentage of dead cells

(stained)/total cells was determined by counting an average of 200–500 total cells, three times

for each sample. The experiments were repeated independently three times.
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Statistical analysis

Statistical analysis was done by GraphPad software, version 5. Data are presented as the

means ± SEM or SD. Student t test was applied to assess the statistical significance. P
values< 0.05 were considered significant.

Supporting information

S1 Fig. HITT is induced by DNA damage. (A) HITT levels were determined by real-time

RT-PCR in HeLa cells with 10 nM CLA at different time periods (left) or with different con-

centrations of CLA for 24 h (right). (B) HITT levels were analyzed by real-time RT-PCR in

HCT116 cells with the indicated time periods of Eto (10 μM, left) or Bleo (1 μg/ml, right) treat-

ment. (C) Cell lines, p53 status, and the corresponding tissue origins were listed. (D) Expres-

sion of HITT was determined by real-time RT-PCR after treating additional cancer cell lines

with 1 μg/ml Dox for 24 h. (E) Representative real-time RT-PCR bar graph showing the effi-

ciency of HITT overexpression (up) or KD (middle) in HeLa cells. DNA damage was moni-

tored by comet assay after DMSO or Dox treatment or at different periods of time following

Dox washout. Tail moment per cell are presented in the bar graph (bottom), scale bar, 10 μm.

(F) HR or NHEJ efficiencies of ISce-I-induced DSBs in U2OS cells containing DR-GFP (HR,

left), or EJ2-GFP reporter (NHEJ, right), were determined by measuring GFP-positive cells by

flow cytometry (FACS) after KD of RAD51 and XRCC4, respectively. RAD51 and XRCC4 KD

efficiency were detected by WB. Data are derived from three independent experiments and

presented as means ± SEM in the bar graphs (A-B and D-F). Values of controls were normal-

ized to 1. �P< 0.05; ��P< 0.01 (A, B, D, E, F); #P< 0.05, ##P< 0.01, compared with vector

(“Vect.”) or si-scramble control (“Si-Ctl.”) with the same indicated treatment (E). For the raw

data, see S1A and S1B Figs and S1 Fig D-F in S2 Data, S1F in S1 Raw Images. Bleo, bleomycin;

CLA, calicheamicin; Dox, doxorubicin; DR, Direct Repeat; DSB, double-strand break; FACS,

fluorescence-activated cell sorting; Eto, etoposide; GFP, green fluorescent protein; HITT, HIF-

1α inhibitor at translation level; HR, homologous recombination; KD, knockdown; NHEJ,

nonhomologous end joining; RT-PCR, reverse transcription PCR; si-, small interfering; WB,

western blot; XRCC4, X-Ray Repair Cross Complementing 4.

(TIF)

S2 Fig. HITT inhibits ATM activity. (A) Expression of HITT was determined by real-time

RT-PCR after the treatments of 1 μg/ml Dox with or without 10 μM ATMi-1/2 for 24 h. (B)

Representative images of RPA2 foci accumulation in the nuclei upon CPT treatment for 1 h or

1 h after CPT was removed with or without ATMi-2 (10 μM) treatment. (C) p-ATM and ATM

protein levels were determined by WB in HITT stable cells with or without ATMi-1 in the

presence of 1 μg/ml Dox for 24 h. (D) The expression levels of p-ATM, ATM, p-Chk2, and

Chk2 were detected by WB in different HITT stable clones of Hela cells with 1 μg/ml Dox

treatment. The expression levels of HITT in three different clones were determined by

qRT-PCR. (E) The expression levels of p-ATM, ATM, p-Chk2, and Chk2 were detected by

WB in HeLa cells transfected with CRISPR/Cas9-HITT plasmids upon treatment with 1 μg/ml

Dox. (F) p-ATM and p-Chk2 protein levels were determined by WB in HITT KD HeLa and

HCT116 cells with or without HITT recovery in the presence of 1 μg/ml Dox for 24 h. Data are

derived from three independent experiments and presented as means ± SEM in the bar graphs

(A, B, D, E). Values of controls were normalized to 1. �P< 0.05. For the raw data, see S2A,

S2B, S2D and S2E Fig in S2 Data, S2C–S2F Fig in S1 Raw Images. ATM, Ataxia-telangiectasia

mutated; ATMi-1, KU-60019; ATMi-2, KU-55933; Chk2, checkpoint kinase 2; CPT, Camp-

tothecin; Dox, doxorubicin; KD, knockdown; HITT, HIF-1α inhibitor at translation level; N.
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S., no significance; qRT-PCR, quantitative reverse transcription PCR; RPA2, Replication Pro-

tein A2; Vect., vector control; WB, western blot.

(TIF)

S3 Fig. HITT inhibits ATM activity. (A) HITT levels were analyzed by real-time RT-PCR in

HeLa cells with the indicate time periods of Dox (1 μg/ml) treatment. (B) The expression levels

of the indicated proteins were detected by WB after HITT overexpression in H1299 and

SW620 treated with the indicated concentrations of Dox for 24 h. (C, D) The expression levels

of the indicated proteins were detected by WB after HITT overexpression or KD in HeLa (C)

and HCT116 (D) cells treated with 1 μg/ml Bleo for 24 h. (E) The expression levels of the indi-

cated proteins were detected by WB after HITT overexpression or KD in HeLa cells treated

with 10 μM Eto for 24 h. (F) HITT levels were analyzed by real-time RT-PCR in a different

cell-cycle phase of HeLa cells after TdR double-block method induced synchrony. The cell-

cycle distribution was determined by PI staining combined with flow cytometer analysis. (G)

Cell proliferation was measured by BrdU incorporation assay in the Vect. and HITT stable

HeLa cells. Representative images were presented (left). The average rates of BrdU positive

cells were counted and presented in the bar graph (right). (H) Cell-cycle distribution was ana-

lyzed by PI staining in the Vect. and HITT stable HeLa lines with the indicated treatments for

24 h. Data are derived from three independent experiments and presented as means ± SEM in

the bar graphs (A, F-H). Values of controls were normalized to 1. �P< 0.05. For the raw data,

see S3A Fig and S3F–S3H Fig in S2 Data, S3B–S3E Fig in S1 Raw Images. ATM, Ataxia-telan-

giectasia mutated; Bleo, bleomycin; BrdU, bromodeoxyuridine; Dox, doxorubicin; Eto, etopo-

side; KD, knockdown; HITT, HIF-1α inhibitor at translation level; N.S., no significance; PI,

propidium iodide; RT-PCR, reverse transcription PCR; Vect., vector control; WB, western

blot.

(TIF)

S4 Fig. HITT inhibits ATM recruitment to the chromatin upon DSBs. (A) Expression of

HITT was analyzed by real-time RT-PCR after treating cells with Dox (1 μg/ml) and/or KD

NBS1 for 24 h. (B) The expression levels and patterns of RAD50 and p-ATM were determined

by immunofluorescence staining after treatment of Dox in HITT stable HeLa cells. Represen-

tative images are presented (left). The average rates of RAD50 or p-ATM nuclear foci-positive

cells were counted and are presented in the bar graph (right). (C) Chromatin-associated

RAD50, NBS1, ATM, and ATR were determined by chromatin-fraction assay in two indepen-

dent stable HITT HeLa sublines (left) or in HITT KD cells (right) in the presence of Dox

(1 μg/ml, 24 h). Data are derived from three independent experiments and presented as

means ± SEM in the bar graph; ��P< 0.01; ##P< 0.01; relative to Dox-treated control (B). For

the raw data, see S4A and S4B Fig in S2 Data, S4C in S1 Raw Images. ATM, Ataxia-telangiecta-

sia mutated; ATR, Ataxia Telangiectasia And Rad3-Related Protein; Dox, doxorubicin; DSB,

double-strand break; KD, knockdown; HITT, HIF-1α inhibitor at translation level; NBS1, Nij-

megen Breakage Syndrome 1; N.S., no significance; RT-PCR, reverse transcription PCR.

(TIF)

S5 Fig. EGR1 regulates HITT expression. (A) HITT levels were determined by real-time

RT-PCR in HCT116 and HeLa cells after treatment of different time periods of Dox (1 μg/ml)

in the presence or absence of RNA synthesis inhibitor ActD. (B) The relative binding strength

between the indicated transcription factors and HITT promoter region were obtained by

UCSC ChIP sequence data. (C) The expression levels of TAF1 were determined by WB assay

in cancer cell lines after exposure to Dox (1 μg/ml) (left) or Bleo (1 μg/ml) (right) for 24 h. (D,

E) HITT levels and pGL3-HITT-promoter-luc activity were analyzed after transfection with
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different concentrations of EGR1 (D) expressing plasmids or siRNA-mediated EGR1 KD (E)

in both HCT116 and HeLa cells. The efficiency of EGR1 overexpression or KD were deter-

mined by WB (bottom). (F) The expression level of HITT was determined by real-time

RT-PCR in the control or HITT stable HeLa cell line after treatment with 1 μg/ml Dox for 24

h. EGR1 KD efficiency was confirmed by WB (right). Data are derived from three independent

experiments and presented as means ± SEM. Values of controls were normalized to 1 (A,

D-F). �P< 0.05; ��P< 0.01; #P< 0.05, compared with Dox-treated control cells; $ $, P< 0.01,

compared with Dox-treated HITT overexpression cells. For the raw data, see S5A and S5B Fig

and S5D–S5F Fig in S2 Data, S5C–S5F Fig in S1 Raw Images. ActD, actinomycin D; ATM,

Ataxia-telangiectasia mutated; Bleo, bleomycin; ChIP, chromatin immunoprecipitation; Dox,

doxorubicin; EGR1, Early Growth Response 1; HITT, HIF-1α inhibitor at translation level;

KD, knockdown; siRNA, small interfering RNA; TAF1, TATA-box binding protein associated

factor 1; WB, western blot.

(TIF)

S6 Fig. HITT is down-regulated and may contribute to ATM activation in human colon

cancers. (A) HITT levels in 40 human colon cancers (“T”) and paired adjacent normal con-

trols (“N”). (B-E) Representative WB (B) and quantification (40 pairs, C-E) of p-ATM, ATM,

p-ATR, ATR, and NBS1 in human colon cancers (“T”) and paired adjacent normal controls

(“N”). (F) Samples were divided into “NBS1 low” and “NBS1 high” groups according to the

median of NBS1 (T/N). The fold changes of p-ATM (T/N) in the two groups is shown on the

y-axis. (G) Samples were divided into “HITT low,” “HITT middle,” and “HITT high” groups

according to the median of HITT (T/N). The fold changes of p-ATM (T/N) in the three groups

is shown on the y-axis. (H-I) Quantification (40 pairs) of p-ATR, (29 pairs) of ATR, in human

colon cancers (T) and paired adjacent normal controls (N). (J) Samples were divided into

“HITT low,” “HITT middle,” and “HITT high” groups according to the median of HITT (T/

N). The fold changes of p-ATR (T/N) in the three groups are shown on the y-axis. �P< 0.05;
��P< 0.01 (A, C, G, and H). For the raw data, see S6A Fig and S6C–S6J Fig in S2 Data, S6B in

S1 Raw Images. ATM, Ataxia-telangiectasia mutated; ATR, Ataxia Telangiectasia And

Rad3-Related Protein; HITT, HIF-1α inhibitor at translation level; NBS1, Nijmegen Breakage

Syndrome 1; N.S., not significant; WB, western blot.

(TIF)

S7 Fig. HITT sensitizes cells’ response to genotoxic treatment in an ATM activity–depen-

dent manner. (A) The survival rates of cells with the indicated after overexpression different

fragments HITT were determined by MTT assay (left). The expression level of FL and frag-

ments were detected by RT-PCR (right). (B, C) The survival rates were evaluated by MTT

assay in HeLa (B) and HCT116 (C) cells treated with indicated concentrations of Bleo for 24 h.

(D, E) The survival rates was evaluated by MTT assay in HeLa cells after HITT overexpression

(D) or knockdown (E) after the treatment of the indicated concentrations of Eto and/or 10 μM

ATMi-2 for 24 h. (F, G) The survival rates were evaluated by MTT assay in H1299 cells after

HITT overexpression (F) or knockdown (G) after the treatment of the indicated concentra-

tions of Dox and/or 10 μM ATMi-1 for 24 h. Data are derived from three independent experi-

ments and presented as means ± SEM. Values of controls were normalized to 1 (A-G).
�P< 0.05; ��P< 0.01 (A-G). For the raw data, see S7A–S7G Fig in S2 Data. ATM, Ataxia-tel-

angiectasia mutated; ATMi-2, KU-55933; Bleo, bleomycin; Dox, doxorubicin; Eto, etoposide;

HITT, HIF-1α inhibitor at translation level; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide; N.S., no significance; RT-PCR, reverse transcription PCR; Vect., vector

control.

(TIF)
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S1 Data. Numerical values underlying main figures. From Figs 1A–1G, 2A, 2D, 2E, 3B, 3E–

3G, 3I, 3J, 4A, 4C–4E, 5A–5G and 6B–6E.

(XLSX)

S2 Data. Numerical values underlying supporting figures. From S1A and S1B Fig, S1D–S1F

Fig, S2A, S2B, S2D, S2E and S3A Fig, S3F–S3H Fig, S4A, S4B, S5A and S5B Fig, S5D–S5F Fig,
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