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Purpose: To propose a deep learning–based approach for predicting the most-fixated
regions on optical coherence tomography (OCT) reports using eye tracking data of
ophthalmologists, assisting them in finding medically salient image regions.

Methods: We collected eye tracking data of ophthalmology residents, fellows, and
faculty as they viewed OCT reports to detect glaucoma. We used a U-Net model as
the deep learning backbone and quantized eye tracking coordinates by dividing the
input report into an 11 × 11 grid. The model was trained to predict the grids on
which fixations would land in unseen OCT reports. We investigated the contribution of
different variables, including the viewer’s level of expertise, model architecture, and
number of eye gaze patterns included in training.

Results: Our approach predicted most-fixated regions in OCT reports with precision
of 0.723, recall of 0.562, and f1-score of 0.609. We found that using a grid-based eye
tracking structure enabled efficient training and using a U-Net backbone led to the best
performance.

Conclusions: Our approach has the potential to assist ophthalmologists in diagnosing
glaucoma by predicting the most medically salient regions on OCT reports. Our study
suggests the value of eye tracking in guiding deep learning algorithms toward informa-
tive regions when experts may not be accessible.

Translational Relevance: By suggesting important OCT report regions for a glaucoma
diagnosis, our model could aid in medical education and serve as a precursor for self-
supervised deep learning approaches to expedite early detection of irreversible vision
loss owing to glaucoma.

Introduction

Surveys have found that 1 out of 40 adults>40 years
of age suffers from glaucoma, meaning that approx-
imately 60 million people worldwide are affected by

this disease. Of those, 8.4 million are completely blind
in both eyes.1 Even in developed countries, approx-
imately 50% of glaucoma cases go unnoticed until
the later stages, when the affected individual starts to
experience symptoms such as loss of peripheral vision
or tunnel vision. Unfortunately, vision loss resulting
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from glaucoma cannot be reversed, and there is a
need for better ways to diagnose and detect cases of
glaucoma.2–4

Optical coherence tomography (OCT) is a power-
ful imaging technique capable of producing high-
resolution images that yield precise and measur-
able data regarding optic disc parameters and
retinal nerve fiber layer thickness. As a result of
its high accuracy and objectivity, OCT has become
widely used as a reliable tool for the detection and
monitoring of glaucoma damage and progression.2
In addition to their usefulness in glaucoma, OCT
images are also used for the diagnosis, monitoring,
and management of other retinal conditions such
as diabetic macular edema and age-related macular
degeneration (AMD).3

Artificial intelligence (AI) is becoming a promising
screening tool for identifying retinal diseases, includ-
ing retinopathy of prematurity, diabetic retinopathy,
glaucoma, and AMD, with human expert–level perfor-
mance. In particular, deep learning (DL) techniques
such as convolutional neural networks (CNNs) have
demonstrated successfully their ability to predict the
need for anti-vascular endothelial growth factor treat-
ment in patients with AMD with an accuracy rate of
95%.3 Although AMD-related clinical problems are
well-addressed, more and more studies are focusing on
the automation of glaucoma detection using DL now.4

A number of studies have developed approaches
based on various DL architectures to detect glaucoma
from OCT images.5–9 Predicting regions of interest in
an OCT report can aid in highlighting the features
most relevant for detecting glaucoma and monitoring
its progression. If the identification of these important
regions can be automated, ophthalmologists could be
guided to focus their attention on these regions during
the diagnosis process (of particular value to trainees
still learning systematic viewing behavior), potentially
improving the accuracy and efficiency of glaucoma
diagnosis. Additionally, by monitoring changes in
these regions over time, ophthalmologists can track
the progression of the disease and adjust treatment
plans accordingly. Furthermore, by accurately predict-
ing clinically relevant regions inOCT reports fromboth
glaucomatous and nonglaucomatous patients, patterns
of differences between these two classes could be used
to train self-supervised DL systems, requiring fewer
expert labels for supervised training. Overall, predict-
ing regions of interest in OCT reports is anticipated
to provide a valuable tool for improving the efficient
diagnosis and management of glaucoma.

Eye tracking is a well-studied technique that
measures where individuals focus their gaze within
their field of view. It has been used extensively to

study human visual processing and has recently found
increasing application in medical imaging. By tracking
eye movements, researchers can gain valuable insights
into how people perform visual recognition and search
tasks. These insights have the potential to enhance our
understanding of how medical images are perceived,
interpreted, and acted upon by clinicians, ultimately
leading to improved clinical performance and thus
better patient outcomes.10

Medical experts efficiently direct their gaze to clini-
cally relevant information using learned features in
their peripheral vision.11 It was observed in past work
that medical experts with more experience are better
at searching (i.e., finding abnormalities faster than
novices), because they need fewer eye movements to
foveate an abnormality that they first detect periph-
erally.12,13 Novice ophthalmologists can thus improve
their skills in scanning OCT reports by gaining insights
from AI-generated regions of interest on OCT reports
(using an AI system trained on expert fixations). Previ-
ous studies involving the eye tracking of novice and
expert clinicians from various fields demonstrate how
novices make interpretive decision errors, indicating a
need for improved training, whereas experts exhibit
more efficient eye movements and focus on critical
diagnostic features.14 Li et al.15 trained an attention-
guided CNN to predict high-attention regions in
fundus images based on simulated clinician eye track-
ing (clinicians deblurred fundus images based on
mouse-clicks, thereby indicating their areas of interest
[AOIs]); a second CNN predicted glaucoma based on
the localized regions of importance guided by human
attention. Although not using OCT or true clini-
cian eye tracking, the attention-guided CNN achieved
glaucoma detection accuracy of >95%,15 showcas-
ing the value of integrating human attention into
DL model training. Some studies also highlighted the
importance of using eye tracking tomonitor skill devel-
opment during medical education and training16 and
how this learning could be aided by leveraging AI
models.17,18 Another study explored new approaches
for analyzing the eye movement behavior of radiol-
ogists viewing brain magnetic resonance images to
investigate how radiologists and nonexperts view and
interpret magnetic resonance images differently. The
authors presented a new method of analyzing eye
movement patterns called gaze density, which provides
a more detailed visualization of where participants
look while viewing the images. This study also found
that experts spent more time looking at AOIs and had
more efficient eye movements than nonexperts. The
authors suggest that gaze density analysis can provide
valuable insights into the visual information processing
strategies experts use inmedical image interpretation.18
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In this work, we used U-Net–based DL techniques
in a novel setting to predict the most clinically relevant
and important regions fixated by medical experts by
tracking their eye movements on OCT reports while
they diagnosed glaucoma. Unlike past approaches in
nonmedical settings that use U-Net for grid-based
depth estimation19 or fine-grained weather forecast-
ing,20 using a grid or even for saliency prediction in
natural images using a CNN and transformer-based
backbone called TranSalNet,21 our approach is unique
in medical imaging in that our goal is not pixel-based
image segmentation, but rather fixation map predic-
tion quantized via a grid. By using our fixation predic-
tion U-Net model on unseen OCT reports, trainees
and clinicians may be able to identify regions of inter-
est within OCT reports more efficiently and accurately,
ultimately leading to more accurate diagnoses and
improved patient outcomes.

Methods

Eye Tracking Data Collection

Fifteen ophthalmologists of varying expertise,
including residents, fellows, and faculty from the
Edward S. Harkness Eye Institute, Columbia Univer-
sity Irving Medical Center, viewed OCT reports like
the one depicted in Figure 1a. The demographic make-
up of these clinicians consisted of three Caucasians,

six Asians, five Africans/Middle Easterners, and one
Hispanic (eight female and seven male overall). For
expert 1 to expert 7, a random sample of 20 OCT
reports was taken from a pool of 231 reports (collected
in a prior study22), following a noncontrolled sampling
approach. Starting from expert 8, a control set, consist-
ing of a fixed set of 20 reports, were chosen out of
the 231 OCT reports and were shown to each expert.
The control set was introduced to examine the impact
on model performance when experts were shown the
same images. From expert 8 onward, experts were
presented with both the control set and the noncon-
trol set. Thus, every expert viewed an identical set of
20 OCT reports in the control set; note this set was
composed of straightforward established glaucoma22
or healthy cases. Whereas, in the noncontrol set, 20
different reports were selected randomly (with replace-
ment) from the pool of 231 reports for each expert; note
that this set consisted of more complex or ambiguous
glaucoma suspect cases.

The current study, protocol AAAU4079, was
approved by the Columbia University Irving Medical
Center Institutional Review Board and was conducted
in accordance with the tenets set forth by the Decla-
ration of Helsinki. Informed consent was obtained
from all study participants. Expert eye tracking data
was recorded using a Pupil Labs Core eye tracker
while experts examined OCT reports for glaucoma.
Eye tracking coordinates were normalized to match
the dimensions of the OCT reports. Figure 1a shows

Figure 1. (a) Full Topcon OCT report. (b) Set of three OCT reports overlayed with expert fixations. (c) Experimental Setup using Pupil Labs
Core eye tracker.
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Figure 2. (a) Pixel-to-grid transition and overlay on OCT reports. (b) ResNet model pipeline.

an example of a widefield OCT report used in our
study. Figure 1b illustrates three OCT reports on which
eye tracking coordinates are overlaid, representing the
gaze points of a clinician. Figure 1c shows the eye
tracker and data collection pipeline.

Data Preprocessing

The OCT reports were resized to a resolution of
224 × 224 pixels, and the corresponding eye coordi-
nates were alsomapped to the same resolution. Because
each individual had a different viewing pattern, using
raw eye fixation coordinates could result in too much
variance in the data; therefore, we downsampled the
fixation coordinates to an 11 × 11 grid map on the
original image, where each grid is in the shape of
a square with equal side lengths. In this way, the
OCT reports were divided into 121 grids as shown
in Figure 2a. Whenever a fixation fell in a grid,
that grid was assigned a value of 1 (otherwise 0).
The same binary transformation was applied to every
OCT report observed by an expert. After the image-
level preprocessing, the full dataset was further split

randomly into 80% for training, 10% for validation,
and 10% for testing. The performance on the test set
is reported in the Results using the best-performing
model on the validation set. In addition, a given patient
or eye was only present in one of these partitions.

The ResNet Model Architecture

We evaluated two DL architectures to learn clini-
cian fixation data on OCT reports. First, we used
ResNet, a popular DL architecture used for various
computer vision tasks, including image classifica-
tion, object detection, and segmentation. ResNet was
proposed in 201523 and has shown superior perfor-
mance compared with earlier architectures, such as
VGG24 and Inception.25 We used a ResNet model
pretrained on the ImageNet dataset26 and modified
the number of connections in the dense layers. The
output vector length was increased to 121, correspond-
ing to the 121-element fixation grid map described in
the previous section. Our ResNet model architecture is
shown in Figure 2b.
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Figure 3. (a) U-Net architecture: it has four downsampling and four upsampling layers that are further connected by skip connections.
(b) U-Net training. The model takes three-channel images as input and outputs a single-channel feature map. (c) Use of feature map to
create grids: the output feature map from U-Net is fed into an AveragePool2D layer, which downsamples it to an 11 × 11 grid map giving
probabilities for presence of fixations in grids. A 0.5 threshold is applied to these probabilities to obtain fixation predictions in 0 (fixation
absent) or 1 (fixation present).
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The U-Net Model Architecture

The second architecture we investigated was
U-Net, another popular DL architecture that is
applied widely for biomedical image segmentation
and reconstruction tasks, and many downstream
models have been derived from it since its emergence
in 2015.27 We modified the U-Net (Fig. 3a) to take
as input the OCT report at 224 × 224 resolution and
output a single-channel grayscale feature map of the
same resolution, as shown in Figure 3b. The skip
connections concatenate feature maps in the encoder
and decoder to preserve spatial details and improve
accuracy. The model consists of two convolution
layers followed by four downsampling layers and four
upsampling layers, as shown in Figure 3a. The network
architecture applied batch normalization and ReLU
activation function in all layers, except for the last
convolutional layer, which used Sigmoid as the activa-
tion function. The final layer of the U-Net produced
a single-channel feature map with a shape of 224 ×
224 pixels.

Subsequently, this feature map underwent
downsampling using an average-pooling layer, result-
ing in an 11 × 11 grid map, as depicted in Figure 3c.
This 11 × 11 grid represents the probabilities of the
presence or absence of fixation within each grid cell.
To convert these probabilities into binary values, a
threshold of 0.5 was compared with the probabilities
generated for each grid, as illustrated in Figure 3c.
Following this thresholding step, the resulting 11 × 11
grid map, consisting of 0s and 1s, was used for calcu-
lating various metrics such as dice score, weighted
precision, recall, f1-score, and accuracy.

Additionally, for visualization purposes, we overlaid
this 11 × 11 grid map on top of the original OCT
report, as demonstrated in Figure 3c.

Loss was calculated at the grid level after pooling
and before thresholding as explained in the next
section. We envision our task as image segmentation
rather than classification on each grid.

Training andModel Optimization

We implemented experiments with ResNet and
U-Net models which are summarized in Figures 2
and 3, respectively. The output of the ResNet model
was a 121-element vector; in contrast, for U-Net,
after applying average pooling to U-Net model output
from the last layer, the final prediction was an 11
× 11 grid map. The loss for each element in the 11
× 11 grid map was calculated as a separate binary
classification. The choice of loss function for both
models was binary cross entropy (BCE), formulated

as:

BinaryCross Entropy

= − 1
N

N∑

i=1

M∑

j=1

(
yi j log

(
pi j

) + (
1 − yi j

)
log

(
1 − pi j

))

where N is the total number of samples (images) in
the batch, M is the total number of fixation labels per
sample (121 in our case), yij is the true label (either
0 or 1) for the i-th sample and j-th label, and pij is
the predicted probability for the i-th sample and j-th
label.

During training, the BCE loss was calculated
and averaged over each of the 121 fixation predic-
tions. We also implemented cosine similarity loss
and dice loss, anticipating they might be better at
evaluating feature similarity and giving grid predic-
tions. However, training with BCE loss performed
the best consistently; thus, we selected BCE to
continue with all subsequent experiments. The
optimizer chosen for minimizing the loss was Adam,
with a learning rate of 1 × 10−4 and a step decay
scheduler.

Our model generated pixel-level predictions, but
after pooling the output, model weights were updated
via the grid-level loss. We monitored the change in
Sørensen–Dice coefficient (Dice score) during model
training to measure the overlap between the predicted
gridmask and the ground truth and used theDice score
as the metric for finding the model with the best valida-
tion performance.

Considering our grid map dataset is imbalanced
toward the nonfixation class, wemeasured theweighted
average precision, which calculates the precision for
each class individually and then computes a weighted
average of those precisions based on the class
frequencies in the dataset. Compared with macro
average precision, the weighted average precision is
formulated as:

Macro-AvgPrecision

= 0.5 × Precisionglaucoma + 0.5 × Precisionhealthy
Weighted-AvgPrecision

= Wglaucoma × Precisionglaucoma + Whealthy

×Precisionhealthy

Where the weights and precision are defined as:

Wglaucoma = #glaucoma
#glaucoma + #healthy

Precisionglaucoma = TPglaucoma
(TP + FP) glaucoma
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Table 1. Model Performance Using ResNet

Data Precision Recall F1-Score Accuracy

Expert 1–6 (Topcon) 0.590 0.533 0.546 0.533
(0.493–0.689) (0.435–0.631) (0.448–0.644) (0.435–0.631)

Expert 1–6 (Zeiss) 0.638 0.506 0.543 0.506
(0.540–0.736) (0.408–0.604) (0.445–0.641) (0.408–0.604)

Expert 1–6 (Topcon + Zeiss) 0.682 0.502 0.554 0.502
(0.584–0.780) (0.404–0.600) (0.456–0.652) (0.404–0.600)

The input for each row is the noncontrol set of full OCT report images without augmentation. In each row, we compare the
same cohort of expert 1–6 data from either TopCon, Zeiss, or both combined.

Metric values and 95% confidence intervals are presented. The highest metric in each column is bolded.

Table 2. Model Performance Using U-Net With Data From Different Cohort of Experts and Faculty

Data Set Precision Recall F1-Score Accuracy

Expert 1–6 (Topcon) Noncontrol 0.707 0.536 0.583 0.536
(0.609–0.805) (0.438–0.634) (0.485–0.681) (0.438–0.634)

All experts (Topcon) Noncontrol 0.747 0.479 0.554 0.479
(0.649–0.845) (0.381–0.577) (0.456–0.652) (0.381–0.577)

All faculty (Topcon) Noncontrol 0.643 0.530 0.564 0.530
(0.545–0.741) (0.432–0.628) (0.466–0.662) (0.432–0.628)

Faculty 10 Noncontrol 0.801 0.477 0.564 0.477
(0.703–0.899) (0.379–0.575) (0.466–0.662) (0.379–0.575)

Faculty 10 Control 0.723 0.562 0.609 0.562
(0.625–0.821) (0.464–0.660) (0.511–0.707) (0.464–0.660)

Faculty 13 Control 0.784 0.479 0.575 0.479
(0.686–0.882) (0.381–0.577) (0.477–0.673) (0.381–0.577)

Faculty 10,13 Control 0.735 0.446 0.513 0.446
(0.637–0.833) (0.348–0.544) (0.415–0.611) (0.348–0.544)

Faculty 10,13, and expert 12 Control 0.760 0.525 0.596 0.525
(0.662–0.858) (0.427–0.623) (0.498–0.694) (0.427–0.623)

The highest metric in each column is bolded.
Metric values and 95% confidence intervals are presented.

Whealthy = #healthy
# glaucoma + #healthy

Precisionhealthy = TPhealthy
(TP + FP) healthy

Similarly, we computed weighted average recall and
weighted average f1-score. Recall focuses on capturing
as many positive instances as possible and is defined
as the proportion of true positive predictions to the
sum of true-positive predictions and false-negative
predictions. We can derive and find the weighted
average recall is equal to accuracy, which is consis-
tent with the equal recall and accuracy numbers in
result Tables 1–5:

Weighted-AvgRecall

= Recallglaucoma × (TP + FN)
(TP + FP + TN + FN)

+Recallhealthy × (TN + FP)
(TP + FP + TN + FN)

= TP
(TP + FP + TN + FN)

+ TN
(TP + FP + TN + FN)

= Accuracy

Using the universal training parameters described
above, we explored potential factors that could influ-
ence the model performance:
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Table 3. Model PerformanceComparisonBetweenOur CustomizedU-NetModel andMachine Learning (Random
Forest) and Benchmark Multilayer Perceptron models

Fails to Learn and Predicts Chance

Model Precision Recall F1-Score Accuracy

Train and test on all experts
Random Forest
Multilayer perceptron 0.638 0.506 0.543 0.506

(0.540–0.736) (0.408–0.604) (0.445–0.641) (0.408–0.604)
U-Net 0.747 0.479 0.554 0.479

(0.649–0.845) (0.381–0.577) (0.456–0.652) (0.381–0.577)
Train and test on faculty 10 (control) data
Multilayer perceptron 0.752 0.488 0.560 0.488

(0.654–0.850) (0.390–0.586) (0.463–0.659) (0.390–0.586)
U-Net 0.723 0.562 0.609 0.562

(0.625–0.821) (0.464–0.660) (0.511–0.707) (0.464–0.660)

U-Net outperformed the benchmark on F1-score when experimenting on either all experts or faculty 10.
Metric values and 95% confidence intervals are presented. The highest F-1 scores across all experiments are bolded.

Table 4. Model Performance Comparison Among Different Grid Sizes of 10× 10, 11× 11, and 12× 12 Using Our
Customized U-Net Model

Grid Size Precision Recall F1-Score Accuracy

Train and test on all experts
10 × 10 0.660 0.467 0.521 0.467

(0.562–0.758) (0.369–0.565) (0.423–0.619) (0.369–0.565)
11 × 11 0.747 0.479 0.554 0.479

(0.649–0.845) (0.381–0.577) (0.456–0.652) (0.381–0.577)
12 × 12 0.664 0.503 0.547 0.503

(0.566–0.762) (0.405–0.601) (0.449–0.645) (0.405–0.601)
Train and test on faculty 10 (control) data
10 × 10 0.705 0.530 0.581 0.530

(0.607–0.803) (0.432–0.628) (0.482–0.679) (0.432–0.628)
11 × 11 0.723 0.562 0.609 0.562

(0.625–0.821) (0.464–0.660) (0.511–0.707) (0.464–0.660)
12 × 12 0.783 0.483 0.556 0.483

(0.685–0.881) (0.385–0.581) (0.458–0.654) (0.385–0.581)

The choice of grid size = 11 × 11 achieved the best F1-score when experimenting on either all experts or faculty 10.
Metric values and 95% confidence intervals are presented. The highest F-1 scores across all experiments are bolded.

1. Model architecture: the trained-from-scratch
ResNet50 which learned to predict a 121-
element binary classification vs. the U-Net,
which simulated an 11 × 11-grid image segmen-
tation task, where each grid represented a pixel
labeled as 0 or 1.

2. The expertise level of participants at glaucoma
diagnosis: resident group 1 (<12 months experi-
ence), resident group 2 (24–36 months experi-

ence), and fellow or faculty group (undergo-
ing glaucoma fellowship training of ≥36 months
through ≥30 years of experience).

3. Types of OCT devices that generated the OCT
reports: Topcon vs. Zeiss.

4. Number of participants included in the analy-
sis: using a superset of data from all participants
or a subset of data from the first six partici-
pants. We also incrementally added fellow and
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Table 5. Model Performance With or Without White Space Removal on the OCT Report Using Our Customized
U-Net Model

White Space Removal Precision Recall F1-Score Accuracy

Train and test on all experts data
Yes 0.674 0.527 0.572 0.527

(0.576–0.772) (0.429–0.625) (0.475–0.671) (0.429–0.625)
No 0.747 0.479 0.554 0.479

(0.649–0.845) (0.381–0.571) (0.456–0.652) (0.381–0.577)
Train and test on faculty 10 (control) data
Yes 0.690 0.475 0.527 0.475

(0.592–0.788) (0.377–0.573) (0.429–0.625) (0.377–0.573)
No 0.723 0.562 0.609 0.562

(0.625–0.821) (0.464–0.660) (0.511–0.707) (0.464–0.660)
Removing white space could improve the F1-score when training and testing the model on all experts’ data, but led to a

significant decrease on only faculty 10’s data.
Metric values and 95% confidence intervals are presented. The highest F-1 scores across all experiments are bolded.

faculty experts to evaluate the impact of number
of participants on performance.

Results

Seven sets of experiments were conducted with
different input data modalities, participant cohorts,
and model architectures, all of which are summarized
in Table 1 and Table 2. Table 1 specifically contains
results pertaining to the ResNet model performance,
while Table 2 describes the U-Net model performance.
The 95% confidence intervals are presented along with
each metric value. We showcase results with the follow-
ing performancemetrics: precision, recall, f1-score, and
accuracy, respectively, on the test set.

The precision, recall and f1-score are weighted,
calculating an overall score that considers not only
the performance for individual classes but also the
distribution of those classes in the dataset. Given
the high imbalance between nonfixation and fixation
points in our data, f1-score was considered as the most
representative metric of the model’s predictive power.
The f1-score is the harmonic mean of precision and
recall; thus, a f1-score of 0.5 is not the same as an
accuracy of 0.5; f-1 scores of <0.5 also have meaning.
The model’s accuracy was defined as the number of
correctly predicted grids (with or without fixations)
divided by the total number of 121 grids.

It is important to note that there are multiple
reasons why chance in our setting is not equal to 0.5.
First, the average number of positive fixations on all
images viewed was 22.64 (18.71%), implying a class
imbalance. Conventional AI performance metrics are

not the best fit to evaluate predictions of eye track-
ing fixations, because the fixated grids are spatially and
temporally connected. For example, Liebmann et al.28
established amethod to guide clinicians on the order of
examining an OCT report. Despite not knowing about
this educated human behavior, our AI model usually
predicts a part of the recommended fixation series,
leading to its high precision, but a seemingly worse
recall performance. Rather than a probability of 0.5,
a more valid probability of chance in our setting could
be (AOI1 × 0.5 + AOI2 × 0.5 + AOI3 × 0.5+…… +
AOIn × 0.5), where the number n of AOIs varies based
on the number of correlated regions in an OCT report.
These grid inter-relationships explain why the transla-
tional power of our model could be underestimated by
simply looking at conventional values of accuracy and
similar metrics.

We found that the U-Net model combined with
a grid-based approach performed best when trained
on expert 10 control data; it achieved a precision of
0.72, recall of 0.56, f1-score of 0.61, and accuracy of
61% at predicting medically relevant regions of inter-
est. These performances were the best among all exper-
iments, except that using data from faculty/fellow 10
noncontrol, which resulted in a best accuracy of 80%.
Our model’s high precision indicates that it is capable
of making more conservative and precise predictions.

Choice of DL Model: ResNet Vs. U-Net

We investigated the performance of two models:
ResNet50 for multiclass classification and U-Net for
grid-wise image segmentation. Comparing the first row
of Table 1 and the first row of Table 2, when experi-
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menting on experts 1 through 6 Topcon data, the U-
Net model significantly surpasses ResNet50 in preci-
sion and f1-score (P < 0.05, Wilcoxon signed-rank
test). The reason behind this disparity is that ResNet50
predicted a large number of the same fixation grids
for every report input, resulting in a higher recall.
In contrast, the U-Net model demonstrated superior
performance by generating fewer but more diverse and
precise predicted output fixation maps for different
OCT report inputs.

Level of Glaucoma Expertise

We divided all 15 participants into different groups
based on their expertise at diagnosing glaucoma.
Among them were 4 glaucoma faculty, 1 glaucoma
fellow, and 10 residents with training experience of
<36months. From the first and second rows of Table 2,
we observed that the model’s fixation prediction on
the Topcon reports by six residents performed with
f1-score of 0.58; inputting all available expert data
confused the model and made the overall prediction
worse, with f1-score of 0.55. This result could be
because each expert had distinct habits of readingOCT
reports, such as speed, area of interest, and gazing
trajectory. In contrast, residents still undergoing train-
ing seemed to exhibit a more routine style of observ-
ing OCT reports. They preferred to view most of the
regions on the reports before giving their final diagno-
sis, leading to a relatively greater number of fixations
than the combined expert data. This difference could
explain why the precision is higher and recall is lower
for results from all experts combined compared with
those from the six residents only.

Type of OCT Reports

The third variable of interest was the type of OCT
reports: Topcon and Zeiss OCTs both capture infor-
mation of the retina and optic nerve to diagnose and
monitor glaucoma. They have various sizes, lateral-
ity, and orientations of images on each report. The
first two rows of Table 1 indicate the ResNet50 model
performed better on Topcon reports alone than on
Zeiss reports alone, in terms of recall, and accuracy. In
the third row, whenwe combined both datasets of OCT
reports by resizing and registering them, only the preci-
sion showed a significant increase, whereas all other
metrics obtained similar or worse results, compared
with using just Topcon or just Zeiss data alone. With
data augmentations such as random flipping applied
during training, the combined dataset did not gener-
ate more promising results. We, therefore, used only
Topcon reports for further experiments and analysis.

We attribute this result primarily to our Zeiss report
layout being different for left vs. right eyes, making it
difficult for the model to learn a standard format for
Zeiss reports; in future work, we plan to use Zeiss bilat-
eral OCT reports (both left and right eye on the same
report), so model performance may differ.

Optimizing Dataset Size Vs. Expertise

DL model training also is highly related to the
amount of input information and size of the dataset.
When input data were used from only six residents
(first row of Table 2), the model tended to predict a
very limited number of fixations. But when input data
from all experts (resident, fellow, and faculty) were
used (second row of Table 2), all metrics except preci-
sion showed a performance drop. This decrease with
an enlarged input dataset size seems to be counter-
intuitive to the common DL principle that usually
more training data improves the model’s ability to
learn features. However, in eye tracking, increasing the
number of participants does not necessarily increase
commonfixation patterns for a convolutionalAImodel
to extract; instead, adding more participants to a
cohort of only faculty participants during the train-
ing process introduces greater variability, making the
ground truth data more random.

To optimize and find a balance between increasing
dataset size and finding consistent eye gaze patterns,
we implemented experiments with incremental input
information from the faculty/fellow–only group (those
experts with most experience), with results shown in
the third to sixth rows of Table 2. To better compare
how the fixations from faculty-level vs. resident-level
experience affected model performance, we experi-
mented on the U-Net model using data from single
faculty/fellow#10, single faculty/fellow#13, and single
faculty/fellow #12 alone. The visualization of three
example pairs of ground truth vs. fixation predic-
tions are shown in Figure 4. On faculty/fellow #13
data alone, the baseline f-1 score was only 0.58.
When we trained the model with data from one more
faculty, (i.e., faculty #10 and #13 together), the f1-
score significantly decreased from 0.58 to 0.51, indicat-
ing an essential disagreement in the fixation infor-
mation from these two faculty members. It should
be noted that faculty #10 data alone trained the
model to have an f1-score of 0.61. Finally, when
data from participant #12 (with less experience)
was combined, the f1-score increased back to 0.60,
showing the influence of agreement and consensus
on the model’s capability of predicting fixations using
data from participants at different glaucoma expertise
levels.
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(a)

(b)

(c)

Figure 4. Fixation prediction results when incrementally adding faculty/fellow participants. (a) Results with faculty/fellow 10 data alone.
(b) Results with faculty/fellow 10 and 13. (c) Results with faculty/fellow 10, 13, and 12.
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Baseline Models

To prove the robustness of our customized U-Net
model, we obtained baseline results from benchmark
models such as machine learning models and the
multilayer perceptron model. The results are shown
in Table 3. We picked a random forest model because
its learning mechanism aligns the best with the nature
of our data format, but it predicted all zeros for all
input, leading to a blank predicted (fixation-less) grid
map. The multilayer perceptron model’s performance
was surpassed by our U-Net whether experimenting on
all experts or faculty 10 alone, indicating the superior-
ity of our approach.

Grid Size

We also tuned the grid size (i.e., number of grids in
one OCT report image), as shown in Table 4. Experi-
menting on a smaller grid size of 10 × 10 or a larger
grid size of 12 × 12 worked comparably well when
keeping other variables the same. The grid size of 11
× 11 performed best among all, confirming its fit for
our task of predicting eye tracking.

White Space Removal

Removing fixations on white space indeed increased
f1-score from 0.55 to 0.57 on all experts’ data, as
shown in Table 5. It enabled the removal of unreason-
able labels resulting from participants fixating outside
the AOIs and retained only information within useful
regions such as the b-scans and probability maps.
However, this enhancement was not always exhibited;
in fact, the removed labels could still be useful when
training and testing on smaller cohorts of data. For
example, when only using faculty 10 data, the f1-score
significantly decreased from 0.61 to 0.53 after white
space removal. This finding suggests that data augmen-
tation techniques such as image background threshold-
ing can be useful when the dataset is large, but may not
always be suitable for particular participants.

Discussion

In this study, our objective was to develop a DL
model capable of predicting the regions of interest
that medical experts focused on while examining OCT
reports. To achieve this goal, we collected eye track-
ing data from experts when they classified OCT reports
as either glaucomatous or nonglaucomatous. We used
several strategies during the training of ourDLmodels,
including experimenting with different model architec-
tures, considering the expertise level of the participants,
analyzing different types of OCT reports and evaluat-

ing the tradeoff of the number of participants included
in the analysis.

Our model excels in high precision. Greater preci-
sion underscores the effectiveness of our approach
in assisting ophthalmologists with the diagnosis of
glaucoma. Although our model potentially predicts
fewer grids than the ground truth, those conservatively
predicted grids are informative and precise. Consider-
ing our study’s purpose is to investigate AOIs on OCT
reports to educate novices, fewer and more accurate
grid predictions can better hint and remind trainees of
regions not to be missed on OCT reports to expedite
diagnosis.

Several factors influenced precision and recall in
our study. Training the model on individual experts
allowed it to capture the unique viewing behavior
of each expert, leading to fewer predicted grids with
greater precision. Each expert had their own distinctive
patterns of fixations, and training on individual experts
helped the model to learn and replicate these patterns
effectively. Also, when we added more experts to the
training process, the ground truth data became more
random, introducing greater variability. This strategy
increased variability in the data helped the model to
learn generalized patterns, resulting in a higher recall
and precision. The f1-scores, as the harmonic mean of
precision and recall, were also influenced in a similar
way: training on individual experts increased f1-scores.

To optimize and find a balance between dataset
size and common eye gaze patterns, we examined the
diagnosis accuracy of the most experienced partic-
ipants, faculty 10 and 13. Faculty 10, who had
the highest level of experience among the faculty,
demonstrated 100% glaucoma classification accuracy
(compared with ground truth labels obtained via
consensus), as shown in Figure 4a, when classifying
the noncontrol set of OCT reports. In contrast, expert
13, who had less experience, showed an 85% accuracy
rate on the same dataset. These findings align with the
expectation that increased experience correlates with
higher classification accuracy when using expert eye
tracking data.

In this study, our approach predicts clinically
relevant regions in OCT reports using DL models
trained on expert eye movements, thus aiding novice
clinicians in learning important OCT report regions
to which experts attend. For example, the predic-
tions from our models could be overlayed in a
virtual reality/augmented reality environment, to
guide ophthalmology trainees to important regions in
OCT reports. Alternatively, medically salient regions
predicted by our model (after being trained by experts)
could be used to assess skill progression of trainees
by measuring their eye fixation similarity to model-
predicted regions.
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Limitations and Future Directions

Our study has scope for improvement in the follow-
ing ways: first, we will collect our data using a higher
frame-rate screen-based eye tracker such as the Tobii
Pro Fusion. Owing to the pioneering nature of our
approach, we only experimented with data from a
single kind of Pupil Labs eye tracking device that
had a 200-Hz frequency (sampling rate). By adding
and comparing data from the Tobii device that has
250-Hz frequency and thus delivers more accurate
data on what captures a user’s attention, we may be
able to gain deeper insights and potentially better AI
model results. Second, we will explore more possibili-
ties for implementing AI models on the technical side.
Diffusion-based and attention-based models that have
emerged in recent years have proved their outstanding
performance in image comprehension and segmenta-
tion tasks, as well as their strong compatibility with
medical data such as OCT images. The success of the
current U-Net approach gives us the confidence to
extend AI’s predictive power via larger nonconvolu-
tional neural network models. Last but not least, we
will overcome the limitation of our small dataset size,
model scale, and the number of tunable parameters by
leveraging pretrained weights and finetuning strategies
to enhance downstream accuracy.

To validate the feasibility of our method and estab-
lish a precedent for DL-based eye fixation prediction,
we used a relatively straightforward U-Net architec-
ture with approximately 30 million trainable param-
eters. Moving forward, our objective is to enhance
the robustness of our approach by exploring more
sophisticated image-to-image translation algorithms. A
promising avenue for improvement involves the use
of generative adversarial networks, a type of neural
network architecture capable of learning the underly-
ing distribution of a dataset to generate new images.

In the future, we will also focus on expanding this
approach to other medical reports where eye tracking
data from experienced medical professionals could aid
in AI models in predicting important regions of inter-
est, such as in radiology, cardiology, and neurology.
Furthermore, along with predicting regions of interest,
the AI model could be trained to predict the sequence
(order) in which regions of interest are viewed. This
would completely capture the gaze behavior (timing
and location) of experts.

Moreover, future work could investigate alterna-
tive AI training techniques, including the use of the
predicted 11 × 11 grid to train a self-supervised model.
Using this approach, our model would predict whether
an OCT report is indicative of glaucoma or not based
on eye fixations overlaid on OCT reports. Conse-

quently, given the accurate prediction of eye fixations
from an OCT report, we could further train a model
to predict the diagnosis of glaucoma based on eye
fixations alone. Instead of relying on explicit and
costly hand-provided labels by experts, the differences
in fixation patterns between different disease classes
would serve as labels. This approach could significantly
reduce the need formanual labeling andmake the train-
ing process more efficient.

The models developed in this study could also be
integrated with other existing models,25 which specif-
ically focus on using eye tracking data from ophthal-
mology experts as a substitute for positional embed-
dings in a Vision Transformer model.29 This integra-
tion would aim to use predicted eye movements from
our model instead of an average gaze pattern for
downstream Vision Transformer–based classification
of OCT reports as glaucomatous or healthy. This dual
capability of predicting both eye fixations and diagno-
sis from an OCT report holds significant potential
for advancing the effectiveness and capabilities of our
approach.

Furthermore, the higher f1-score observed in the
diagnoses made by faculty 10 prompts an inquiry into
the specific features this expert prioritized during their
assessments. Consequently, training the AI model to
predict these specific features (shown in Figure 4a) can
provide valuable insights into the underlying mecha-
nisms used by both the experts and the AI model. This
direction holds significant implications for medical
education, AI training, and the interpretability of the
diagnostic process.

Overall, these potential applications highlight the
broad applicability and future directions of incorporat-
ing eye tracking data into AI research and glaucoma
detection, offering innovative approaches for training
models and improving the efficiency of the labeling
processes. In the clinic, such fixation prediction can
also aid in the training of novice clinicians and provide
insights into significant regions on OCT reports that
may not yet be recognized by clinical research, enabling
broader application of such AI approaches in health-
care.

Conclusions

Our study aimed to predict the AOIs in OCT images
by analyzing the eye tracking behavior of ophthalmol-
ogists with varying levels of experience. The results
showed that the performance of the model was influ-
enced by factors including the expertise of partici-
pants at glaucoma diagnosis, the types of OCT devices
that generated the reports, the number of participants
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included in the analysis, and the model architecture.
The best-performing model had a U-Net backbone,
was trained on expert 10 control data, and achieved
a precision of 0.723, recall of 0.562, and an f1-score
of 0.609. This model was trained on clinicians with the
most experience (glaucoma faculty). The study found
that the AI model was able to predict the fixations
made by expert participants on OCT reports, which
could potentially aid in the training of self-supervised
eye movement-informed AI systems, could shed light
on new ocular biomarkers by objectively showing AI-
predicted AOIs learned from expert eye movements,
and could offer new eye movement–based medical
education paradigms.
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19. Trebing K, Staǹczyk T, Mehrkanoon S. SmaAt-
U-Net: precipitation nowcasting using a small
attention-U-Net architecture. Pattern Recognit
Lett. 2021;145:178–186.

20. Sharma M, Sharma A, Tushar KR, Panneer A. A
novel 3D-U-Net deep learning framework based
on high-dimensional bilateral grid for edge consis-
tent single image depth estimation. 2020 Interna-
tional Conference on 3D Immersion (IC3D). IEEE.
2020; 01–08.

21. Lou J, Lin H, Marshall D, Saupe D, Liu H.
TranSalNet: towards perceptually relevant visual
saliency prediction. Neurocomputing. 2022;494:
455–467.

22. Leshno A, Tsamis E, Hirji S, et al. Detecting estab-
lished glaucoma using OCT alone: utilizing an
OCT reading center in a real-world clinical set-
ting.Transl Vis Sci Technol. 2024;13(1):4. Accepted
November 27, 2023.

23. He K, Zhang X, Ren S, Sun J. Deep residual learn-
ing for image recognition. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition. 2016.

24. Simonyan K, Zisserman A. Very deep convolu-
tional networks for large-scale image recognition.
arXiv. 2014. preprint arXiv:1409.1556.

25. Szegedy C, Liu W, Jia Y, et al. Going deeper with
convolutions. Proceedings of the IEEE Conference
onComputer Vision andPatternRecognition. arXiv.
2015.

26. Deng J, Dong W, Socher R, et al. Imagenet: a
large-scale hierarchical image database. IEEECon-
ference on Computer Vision and Pattern Recogni-
tion. arXiv. 2009.

27. Ronneberger O, Fischer P, Brox T. U-net: convo-
lutional networks for biomedical image segmen-
tation. Medical Image Computing and Computer-
Assisted Intervention (MICCAI). arXiv. 2015.

28. Liebmann JM, Hood DC, de Moraes CG, e
al. Rationale and development of an OCT-based
method for detection of glaucomatous optic neu-
ropathy. J Glaucoma. 2022;31(6):375–381.

29. Kaushal S, Sun Y, Zukerman R, Chen RWS,
Thakoor KA. Detecting eye disease using vision
transformers informed by ophthalmology resident
gaze data. IEEE Engineering in Medicine and Biol-
ogy Conference (EMBC). 2023.


