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Neutrophils act as the first line of cellular defense against invading pathogens or tissue
injury. Their rapid recruitment into inflamed tissues is critical for the elimination of invading
microorganisms and tissue repair, but is also capable of inflicting damage to neighboring
tissues. The b2 integrins and Mac-1 (CD11b/CD18, aMb2 or complement receptor 3) in
particular, are best known for mediating neutrophil adhesion and transmigration across
the endothelium and phagocytosis of microbes. However, Mac-1 has a broad ligand
recognition property that contributes to the functional versatility of the neutrophil
population far beyond their antimicrobial function. Accumulating evidence over the past
decade has demonstrated roles for Mac-1 ligands in regulating reverse neutrophil
transmigration, lifespan, phagocytosis-induced cell death, release of neutrophil
extracellular traps and efferocytosis, hence extending the traditional b2 integrin
repertoire in shaping innate and adaptive immune responses. Understanding the
functions of b2 integrins may partly explain neutrophil heterogeneity and may be
instrumental to develop novel therapies specifically targeting Mac-1-mediated pro-
resolution actions without compromising immunity. Thus, this review details novel
insights on outside-in signaling through b2 integrins and neutrophil functional
heterogeneity pertinent to the resolution of inflammation.

Keywords: neutrophils, neutrophil trafficking, phagocytosis-induced cell death, apoptosis, NET formation,
immunity, resolution of inflammation, Mac-1 (aMb2)
INTRODUCTION

Neutrophils are the first line of cellular defense against invading pathogens or tissue injury. Rapid
recruitment of neutrophils into infected or injured tissues is critical for the elimination of invading
microorganisms and tissue repair (1). Ideally, once the pathogens are cleared, cessation of
neutrophil recruitment and removal of emigrated neutrophils from the inflamed site will assure
timely resolution of inflammation and return to homeostasis (2–4). Aberrant neutrophil
Abbreviations: AG, azurophilic granule; C5aR, complement 5a receptor; CG, cathepsin G; EC, endothelial cell; JAM-C,
junctional adhesion molecule-C; MF, macrophage; MPO, myeloperoxidase; NE, neutrophil elastase; NET, neutrophil
extracellular traps; PICD, phagocytosis-induced cell death; PR3, proteinase 3; TEM, transendothelial migration.
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accumulation or removal from the inflamed area inflicts damage
to the surrounding tissue (2). Indeed, neutrophil-driven tissue
injury has been recognized as a common mechanism underlying
a wide variety of pathologies, including atherosclerosis,
respiratory, autoimmune and neurodegenerative diseases,
arthritis, sepsis and cancer (5, 6). Since neutrophils are also
involved in the resolution of inflammation (7, 8), the balance
between their protective and deleterious actions will likely
determine the outcome of the inflammatory response.

The b2 integrins LFA-1 (leukocyte function antigen 1, CD11a/
CD18) and Mac-1 (CD11b/CD18, aMb2 or complement receptor
3) are best known for mediating neutrophil adhesion and
transmigration across the activated endothelium and
phagocytosis of microbes (9–11). Historically, LFA-1 and Mac-
1 have been considered pro-inflammatory for reduced
expression or function of b2 integrins causes rare
immunodeficiency syndromes, leukocyte adhesion deficiency
syndromes (LAD types I-III), characterized by recurrent
infections (12, 13). The binding of Mac-1 and LFA-1 to their
endothelial counter-ligand ICAM-1 or matrix components
generates survival cues for neutrophils (14, 15). Mac-1 may
also contribute to sustained inflammation by enhancing the
function of heterologous receptors such as Toll-like receptors
and Fcg receptors through modulating intracellular signaling (16,
17). Accumulating data indicates that Mac-1 can bind a variety of
ligands (18). This broad ligand recognition property contributes
to the functional versatility of the neutrophil population and
shapes innate and adaptive immune responses far beyond their
antimicrobial functions. In this review, we will focus on recent
advances on outside-in signaling through b2 integrins and
neutrophil functional heterogeneity during homeostasis and
diseases. We also examine how targeting b2 integrin signaling
could be exploited for facilitating the resolution of inflammation.
BETA 2 INTEGRIN ACTIVATION AND
LIGAND BINDING

The b2 integrins, composed of a common b2 (CD18) subunit
complexed with unique a subunits (CD11a-d), are a family of
myeloid cell-specific adhesion molecules with LFA-1 (leukocyte
function antigen 1, CD11a/CD18) and Mac-1 (CD11b/CD18,
aMb2 or complement receptor 3) being the most studied
members. b2 integrin ligand binding relies on conformational
changes in their ectodomain (19, 20). Ligation of G-protein-
coupled receptors or heterologous receptors generates
intracellular signals that shift the resting bent/closed b2
integrin conformation (low affinity for ligands) to an extended
(E+) and then a high-affinity conformation with an “open”
headpiece (H+) (canonical “switchblade” model) (19, 21).
Spatiotemporal integrin activation is governed by inside-out
(i.e. activation of ligand binding function of integrins) and
outside-in signaling cascades (i.e. cellular responses evoked by
ligand binding to integrins) and involves inhibitory proteins and
activator complexes, such as talin, kindlins, cytohesin-1 and
integrin-linked kinase, interacting with the cytoplasmic tail of
Frontiers in Immunology | www.frontiersin.org 2
the b subunit (13, 22, 23). The Src kinase-associated
phosphoprote in 2 (Skap2) , which regula tes ac t in
polymerization and binding of talin-1 and kindlin-3 to the b2
integrin cytoplasmic domain, is indispensable for b2 integrin
activation (24). Loss of Skap2 function causes a LAD-like
phenotype in mice (24). Mac-1 has two spatially distinct
binding sites, the aI-domain and the lectin-like domain (25).
The aMI-domain recognizes sequence patterns (consisting of a
core of basic residues flanked by hydrophobic residues), rather
than specific amino-acid sequence(s) (18) with over 30
structurally unrelated ligands, including ICAM-1, fibrinogen,
complement 3b (iC3b), various granule proteins and heparane
sulfate (25). The interaction between the aMI-domain and
cationic proteins is mediated mostly by hydrophobic contacts
independently of divalent cations (26). The lectin-like domain
binds b-glucans present in the fungal cell wall (27, 28). Table 1
lists selected Mac-1 ligands and their main biological actions.
LIMITING NEUTROPHIL TRAFFICKING
INTO TISSUES

Neutrophils exit the circulation at the sites of inflammation
through the classical adhesion cascade (10). The molecular
mechanisms mediating and governing this multistep process as
well as organ-specific differences have been described in detail
(10, 29, 30, 65). In general, b2 integrins play vital roles in
neutrophil arrest on the activated endothelium under flow
(10), transmigration through endothelial cells (66), chemotaxis
(67) and neutrophil swarming (68). Counter-ligand-specific
binding forces of LFA-1 and Mac-1 imply diverse roles for b2
integrins in neutrophil recruitment (69) and determine the
direction of neutrophil migration along the activated
endothelium (70). Fully activated E+H+ b2 integrins bind
ICAM-1 expressed on the opposing cells in trans and arrest
neutrophil rolling (31). Studies with human neutrophils in
microfluidic chambers identified high-affinity, bent
conformation (E-H+) b2 integrins, which face each other to
form oriented nanoclusters (32) and bind ICAM-1 in cis to
inhibit neutrophil rolling and consequently neutrophil adhesion
to the endothelium (31). Activated b2 integrins may also restrict
neutrophil recruitment during acute bacterial infections, for
pharmacological inhibition of high-affinity b2 integrins or
genetic deletion of talin-1 or kindlin-3 was found to enhance
neutrophil trafficking with modest impairment of phagocytosis
during Pseudomonas aeruginosa-pneumonia in mice (71).
Another potential inhibitory signal is the interaction of the aI-
domain of Mac-1 in the bent state with the sialylated ectodomain
of the IgG receptor FcgRIIA in cis, leading to reduced FcgRIIA
affinity to IgG and subsequently decreased neutrophil
recruitment to immune complexes deposited in the vessel wall
(33). Disruption of this interaction may increase neutrophil
recruitment in autoimmune diseases.

Neutrophils from myeloperoxidase knockout mice display
increased surface expression of Mac-1 and a pro-migratory
phenotype in a murine model of ischemia-reperfusion-induced
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liver damage (38). Hence, myeloperoxidase may impair Mac-1
function and subsequently limit neutrophil trafficking into
ischemic tissues. Neutrophil-derived myeloperoxidase was
reported to protect mice from endotoxin- induced
inflammation and mortality (72), though the involvement of b2
integrins in these actions remains to be investigated. On the
other side, cell contact-dependent, Mac-1-mediated transfer of
myeloperoxidase from neutrophils to endothelial cells can
disrupt normal endothelial function (39), leading to endothelial
inflammation that underlies atherosclerosis and vasculitis.
Following neutrophil adhesion to the endothelium, gelatinase
granules translocate to the cell surface and externalize the
phospholipid-binding protein annexin A1 (73). Annexin A1
promotes the detachment of adhering leukocytes presumably
Frontiers in Immunology | www.frontiersin.org 3
through inhibiting CCL5-induced switch in b2 integrin
conformation, and reducing a4b1 integrin clustering and
activation (74, 75). Hence, annexin A1 may function as an
endogenous stop signal for neutrophil trafficking (76).
REVERSE TRANSENDOTHELIAL
MIGRATION

In addition to moving from the vascular lumen to the
extravascular tissue, neutrophils also exhibit reverse motility
through the endothelium, known as reverse transendothelial
migration (TEM) both in vitro (42) and in vivo (44, 45). This
TABLE 1 | Selected Mac-1 (CD11b/CD18) ligands and their actions.

Ligands Species Effects Mechanism References

Binding site: aMI-domain
ICAM-1 Human

Mouse
Mediates neutrophil adhesion and
transmigration

b2 integrin conformational changes (10, 11, 29,
30)

Human Limits neutrophil adhesion High affinity bent conformation of b2 integrins (31–33)
Human ↑ Neutrophil lifespan

↓ Apoptosis
↑ Akt, ↑ ERK
↑ Mcl-1

(14, 15, 34,
35)

Fibrinogen Human Initiates coagulation
↑ Neutrophil lifespan
↓ Apoptosis

↑ Akt, ↑ ERK,
↑ NF-kB

(36)

Plasminogen Human Initiates fibrinolysis
↑ Neutrophil lifespan
↓ Apoptosis

↑ Akt, ↑ ERK,
↑ NF-kB

(36, 37)

Myeloperoxidase Mouse ↓ Neutrophil trafficking Impaired Mac-1 function (38)
Mouse ↑ Endothelial cell damage Transfer of Mac-1-bound myeloperoxidase (39)
Human ↑ Neutrophil lifespan

↓ Apoptosis
↑Akt, ↑ERK, ↑ Mcl-1 (40)

Human
Mouse

↑ Myeloperoxidase and elastase
release

↑ Akt, ↑ ERK,
↑ NF-kB

(40, 41)

Neutrophil elastase Human Reverse transendothelial migration Elastase-mediated cleavage of JAM-C (42)
Zebrafish (43)
Mouse (44–46)

Proteinase 3 Human Auto-antigen Disrupts immune silencing (47–50)
↓ Efferocytosis "Don’t eat me" signal

(in cooperation with
CD16 and CD177)

(47, 51, 52)

LL-37 (Cathelicidin) Human ↑ Phagocytosis Opsonizes bacteria (53)
Human Auto-antigen Psoriasis (54)
Mouse Auto-antigen Atherosclerosis (?) (55)

Platelet factor 4 Human ↑ Phagocytosis Opsonizes bacteria (56)
C3b (C3b-opsonized bacteria) Human ↑ Phagocytosis

↑ PICD
↑ ROS, ↑ caspase-3
↓ Mcl-1

(14, 57, 58)

Mouse ↑ PICD
↑ Bacterial clearance

(57, 58)

CD40 ligand Mouse ↑ Leukocyte recruitment
↑ Atherogenesis

Mac-1 as an alternate receptor for CD40L
(independent of CD40)

(59)

Dynorphin A Mouse ↑ Migration
↑ Phagocytosis

(60)

Binding site: Lectin-like domain
Fungus:
A. fumigatus, C. albicans

Human ↑ NET release ↓ or ↑ ROS, ↑ Syk, ↑ PAD4 (fungus species-
dependent)

(61–64)

Immobilized fungal b-glucan Human ↑ NET release ROS-independent (62, 63)
Binding sites aMI-domain and Lectin-like domain:
C3b-opsonized tumor cells treated with b–glucan Mouse ↑ Tumor cell killing ↑ Syk, ↑ PI3K,

↑ Mac-1 toxicity
Dual Mac-1 ligation

(28)
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neutrophil reverse TEM response is relatively prevalent under
conditions of ischemia-reperfusion injury, which is associated
with reduced expression of junctional adhesion molecule C
(JAM-C) at endothelial cell junctions (45, 46). Pharmacological
blockade or genetic deletion of JAM-C enhances the frequency of
neutrophil reverse TEM in mouse cremaster venules (45). Under
ischemia-reperfusion, locally generated LTB4, likely produced by
the neutrophils themselves (68), induces elastase release
from neutrophils through the LTB4 receptor BLT1 (44).
Activated Mac-1 binds neutrophil elastase (77) and JAM-C
(78), thereby acting as a molecular “bridge” to facilitate
elastase-mediated cleavage of JAM-C and consequently reverse
TEM (44) (Figure 1). The importance of Mac-1-bound elastase
is further highlighted by the fai lure of exogenous
neutrophil elastase to cleave JAM-C (44). Reversely migrated
neutrophils display a phenotype (ICAM-1high, CXCR1low)
distinct from tissue-resident or circulating neutrophils and
increased capacity to produce superoxide (42, 45). At present,
the functional implications of neutrophils undergoing reverse
TEM remain unclear. Reverse TEM might facilitate the removal
of neutrophils from inflamed tissues, thereby promoting the
resolution of inflammation (43, 79). Alternatively, re-entry of a
small subset of activated neutrophils into the blood
circulation could contribute to spreading a local inflammatory
response, ultimately leading to distant organ damage (44, 45).
This notion is supported by the association between the
percentage of ICAM-1high neutrophils and the severity of lung
inflammation in the mouse cremaster ischemia-reperfusion
model (45).
EXTENDING NEUTROPHIL LIFESPAN AND
SUPPRESSION OF APOPTOSIS

Circulating neutrophils have a short lifespan (80, 81), though
some reports estimated that their lifespan to be 5.4 days (82).
Neutrophils have increased, albeit variable lifetimes upon
activation and in healthy and inflamed tissues (4, 6, 83, 84).
Blood neutrophils die by constitutive apoptosis. This cell death
program renders neutrophils unresponsive to extracellular
stimuli and ensures their timely removal from the
inflammatory sites by macrophages via efferocytosis, thereby
limiting their potentially harmful actions to the host (2, 85, 86).
Extended neutrophil lifespan through suppressed apoptosis is
observed in patients with chronic inflammation, for example,
acute coronary syndrome (87), asthma (88) or sepsis (89), and is
associated with increased disease severity. Consistently, studies
in experimental models documented that delaying neutrophil
apoptosis can adversely affect the outcome of inflammation (40,
90, 91).

During transendothelial migration and at sites of
inflammation, neutrophils receive pro-survival cues that extend
their lifespan by delaying intrinsic apoptosis (4, 85, 86).
Neutrophil adherence to the Mac-1 endothelial counter-ligand
ICAM-1induces activation of the PI3k/Akt and MAPK/ERK
pathways (34, 35), leading to suppression of caspase-3 activity
Frontiers in Immunology | www.frontiersin.org 4
through preserving the anti-apoptotic protein Mcl-1, a key
regulator of neutrophil survival (92). Suppression of apoptosis
by the Mac-1 ligands fibrinogen and plasminogen also depends
on signaling through Akt and ERK as well as activation of NF-kB
(36). Engagement of both Mac-1 subunits with soluble ligands is
essential for the generation of pro-survival cues, whereas
adhesion per se is not a prerequisite (37). Another ligand for
Mac-1 is myeloperoxidase, a granule protein implicated in
pathogen killing and inflicting tissue damage (93–96).
Myeloperoxidase binding to Mac-1on human neutrophils leads
to activation of the PI3K/Akt, p38 MAPK, MAPK/ERK and NF-
kB pathways (40, 41) and rescues neutrophil from apoptosis (40).
Myeloperoxidase upregulates Mac-1 expression and induces
myeloperoxidase release from the primary granules (40, 41),
thereby forming an autocrine/paracrine feed-forward loop to
amplify the inflammatory response (40) (Figure 1). Increased
plasma myeloperoxidase levels were detected in patients
with acute coronary syndromes or sepsis and were associated
with disease severity (41). Dissociation of myeloperoxidase
into monomers with diminished biological activities may
represent a mechanism to limit neutrophil responses to this
protein (97).
PHAGOCYTOSIS AND PHAGOCYTOSIS-
INDUCED CELL DEATH

In contrast to Mac-1 ligation-generated survival signals, outside-
in signaling through Mac-1 could also generate pro-apoptosis
cues. Thus, phagocytosis of complement C3b-opsonized bacteria
or necrotic cells accelerates neutrophil apoptosis, also known as
phagocytosis-induced cell death (PICD) (98, 99). The antibiotic
peptide LL-37 and platelet factor 4 were also reported to
opsonize bacteria and promote Mac-1-mediated phagocytosis
(53, 56). Higher levels of Mac-1 expression on neutrophils from
female vs. male mice may partly explain an innate sex bias in
neutrophil bactericidal killing (100). Phagocytosis is initiated by
lateral clustering of Mac-1 (101) and governed by a delicate
balance between Mac-1 and the complement C5a receptor (C5aR
or CD88) (102, 103). Mac-1-mediated phagocytosis evokes ROS
formation through activation of NADPH oxidase, which is
thought to mediate bacterial killing in the phagolysosomes
(94). ROS, presumably hydroxyl radicals and H2O2, activate
caspase-8 and caspase-3, thereby countering survival signals
generated by ligation of Mac-1and promoting PICD (4, 14,
98). Release of the granule enzymes, neutrophil elastase,
proteinase 3 and cathepsin G can impair phagocytosis by
cleaving C5aR, though their involvement appears to be
context-dependent (57, 104) (Figure 1). For example, TLR9
activation augments Mac-1 expression and reduces C5aR
expression through inducing the release of neutrophil elastase
and proteinase 3, resulting in defective phagocytosis in human
neutrophils and prolongation of lung injury in mice (57).
Reduced neutrophil C5aR expression is a common finding in
patients with sepsis (105, 106) and may explain neutrophil
unresponsiveness to C5a in sepsis (103).
March 2021 | Volume 12 | Article 660760
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MODULATION OF EFFEROCYTOSIS

Detection and prompt disposal of apoptotic cells, including
neutrophils, generally promote an anti-inflammatory pro-
resolution response at the tissue level and immunological
tolerance. The molecular mechanisms include numerous “find-
me” and “eat-me” signals that underpin the recognition and
subsequent phagocytosis of apoptotic cells by macrophages and
dendritic cells (107). Intriguingly, proteinase 3 is expressed on
the plasma membrane in association with its partners Mac-1,
FcgRIIIb (CD16) and CD177 at a very early stage of apoptosis
(51, 108) and functions as a “don’t eat me” signal that delays
uptake of apoptotic neutrophils (52) (Figure 1). Neutrophils
lacking CD177, the putative receptor for proteinase 3, express
membrane proteinase 3 and respond to proteinase 3-ANCA,
suggesting a critical role for Mac-1 and/or FcgRIIIb (47).
However, further studies are required to establish how Mac-1
could modulate efferocytosis and contribute to the pathogenesis
of ANCA-associated vasculitides. Mac-1 was also reported to
Frontiers in Immunology | www.frontiersin.org 5
support macrophage fusion, leading to the formation of
multinucleated giant cells in the inflamed mouse peritoneum
(109). The function of these cells remains to be investigated.
INDUCTION OF RAPID NET RELEASE

Neutrophils can release extracellular traps (NET) to immobilize
and kill harmful bacterial, fungal and viral pathogens in the
extracellular space when phagocytosis is not feasible (110–112).
The classical pathway of NET extrusion involves activation of
NADPH oxidase via the Raf-MEK-ERK and p38 MAPK
pathways, myeloperoxidase- and elastase-mediated cleavage of
histones and protein-arginine deiminase 4 (PAD4)-mediated
chromatin decondensation, eventually leading to extrusion of a
DNA scaffold studded with citrullinated histones and
cytotoxic granular proteins (113, 114). A more rapid or “vital”
NET release occurs in response to Staphylococcus aureus,
FIGURE 1 | Mac-1 ligand repertoire shapes host defense and non-resolving inflammation. ① Transendothelial migration: Mac-1, together with LFA-1, mediates
neutrophil adherence to the activated endothelium and transmigration. Conformational changes in Mac-1 (high affinity, bent conformation) and MPO impairment of
Mac-1 function may limit neutrophil trafficking. ② Reverse TEM: Mac-1-bound NE direct neutrophil reverse TEM through binding to and cleaving JAM-C. ③ Neutrophil
lifespan: Ligation of Mac-1 with ICAM-1, fibrinogen, plasminogen or MPO generates survival signals for neutrophils through delaying constitutive apoptosis. MPO
induces MPO release from the azurophilic granule, thereby forming a feed-forward loop. ④ Phagocytosis: Phagocytosis of complement C3b-opsonized bacteria
induces PICD followed by efferocytosis. Cleavage of C5aR (CD88) by NE, PR3 or cathepsin G (released from the azurophilic granule) alters the Mac-1/C5aR ratio,
impairs phagocytosis, bacterial clearance and PICD. ⑤ Inhibition of efferocytosis: PR3 bound to Mac-1(in association with CD16 and CD177) inhibits efferocytosis.
⑥ NET release: C3b-opsonized fungus or immobilized fungal b-glucan, which cannot be phagocytosed, evokes release of NET, leading to extracellular killing of the
pathogen. ⑦ Autoimmunity: PR3 and MPO (presented by Mac-1 and/or NET) may induce autoimmunity.
March 2021 | Volume 12 | Article 660760
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Candida albicans, Aspergillus fumigatus and Leishmania
promastigotes independently of ROS in the presence of matrix
and without compromising neutrophil viability (61, 115, 116) or
by selective extrusion of mitochondrial DNA (117). Mac-1
recognition of Candida hyphae, the invasive filamentous forms
of C. albicans that are too large to be phagocytosed, or
immobilized fungal b-glucan triggers rapid NET release and
initiates respiratory burst, which is then suppressed by binding of
Mac-1 to the extracellular matrix (62, 63) (Figure 1). Mac-1 also
triggers NETosis to Aspergillus living conidia through ROS
generation downstream to activation of the Src kinase Syk
and PI3k-d, but independently of PAD4 (64). Platelet binding
to neutrophils ensuing NET release is mediated either by LFA1
along liver sinusoid in sepsis (118) or Mac-1 along the vascular
endothelium during sterile lung injury in mice (119). Hence, it is
plausible that the context of NET-inducing stimuli
would activate different signaling pathways for NET extrusion.
Similar to neutrophil recruitment, a crosstalk between kindlin-3
and b2 integrins is required for NET release in mice (120).
Of note, yeast b-glucan was reported to enhance killing of iC3b-
opsonized tumor cells through activation of the Syk-PI3K
signaling pathway, indicating dual Mac-1 ligation (28) (Table
1). Whether the cytotoxic action involves NET formation
remains to be explored.
AUTOIMMUNITY

Many neutrophil granule proteins are recognized self-antigens in
autoimmunity. Myeloperoxidase and proteinase 3 are target
antigens in different forms of anti-neutrophil cytoplasmic
antibody (ANCA)-associated vasculitides (48, 49), whereas
the antimicrobial protein LL-37 is an autoantigen in psoriasis
(54). Externalization of these molecules, together with other
well-known antigens, such as double-stranded DNA and
histones, through aberrant NET formation has been implicated
in triggering a systemic autoimmune response in susceptible
individuals (49). Myeloperoxidase might trigger autoimmunity
during uncontrolled inflammation in mice (121), though it is
unclear whether this involves b2 integrins and/or NET
formation. Proteinase 3 was found to bind directly to Mac-1
(51) or form a complex with the glycosylphosphatidylinositol
(GPI)-anchored neutrophil-specific receptor NB1 (CD177)
expressed on the surface of a subpopulation of human
neutrophils (122) (Figure 1). While surface plasmon
resonance analysis indicated direct interaction of NB1 with
both LFA1 and Mac-1, only Mac-1 functions as an adaptor for
NB1-mediated proteinase 3-ANCA-induced neutrophil
activation (123). Proteinase 3 expressed on the surface of
apoptotic neutrophils disrupts immune silencing associated
with efferocytosis through plasmocytoid dendritic cell-driven
generation of Th9/Th2 cells and Th17 response, consistent
with promoting systemic necrotizing vasculitis (50). Recent
data identified the cathelicidin protein CRAMP (a truncated
form of the mouse homolog of hCAP18) as a potential auto-
antigen in ApoE-deficient mice (55). Although LL-37 was found
Frontiers in Immunology | www.frontiersin.org 6
to bind to Mac-1 (53), the relevance of this interaction to
atherosclerosis remains to be investigated.
THERAPEUTIC TARGETING b2 INTEGRINS
TO PROMOTE RESOLUTION OF
INFLAMMATION

In the light of their functional significance in shaping neutrophil
responses, b2 integrins appear to be attractive therapeutic targets.
However, prolonged global blockade of b2 integrins may have
limited usefulness because of the potential of development of
LAD-like symptoms. Attractive alternative approaches may be
targeting b2 integrin conformation or ligand-specific signaling
circuits by specialized pro-resolving mediators (SPMs) without
compromising the ability of neutrophils to contain the
microbial invasion.

The currently available drugs (monoclonal antibodies or
small molecules) inhibit the ligand-binding site and block a
broad repertoire of b2 integrin functionality (124). Although
the beneficial actions of genetic deletion and pharmacological
blockade of b2 integrins have been documented in a number of
neutrophil-driven inflammatory models (6, 29, 124),
conventional anti-b2 integrin blockade lacks specificity and
inhibits phagocytosis, promotes apoptosis, and potentiates
bacteremia and bacterial sepsis (125). Development of the anti-
M7 monoclonal antibody that specifically inhibits Mac-1
interaction with its ligand CD40L without interfering with
other b2 integrin ligands (59, 125) opens a new avenue for
ligand-targeted anti-Mac-1 therapy. An alternative strategy will
be developing allosteric inhibitors that stabilize b2 integrins in
the high affinity bent conformation to block neutrophil
adherence (31, 71) or to prevent the deleterious effects of
immune complex-evoked neutrophil accumulation (33). This
might be achieved by selectively targeting discrete glycan
motifs present on Mac-1 (126). Thus, plant lectins were
shown to reduce Mac-1-mediated adhesion, trans-epithelial
migra t ion and ROS produc t ion , whi l e enhanc ing
phagocytosis and neutrophil apoptosis (126). Intriguingly, the
activation of Mac-1 with the small molecule agonists
leukadherins was reported to reduce leukocyte trafficking,
arterial narrowing and renal dysfunction, while increasing
leukocyte adherence to the endothelium in murine
models (127). Leukadherin-1 promotes macrophage
polarization toward a pro-inflammatory phenotype through
activating microRNA Let7a, thereby driving anti-tumor
immunity (128).

SPMs include protein and lipid mediators that are mobilized
and/or synthesized during the resolution phase of inflammation.
For example, annexin A1 is mobilized from the cytoplasm
pool to the cell surface and signals through the lipoxin A4/
formyl-peptide receptor 2 (ALX/FPR2) to induce detachment of
adhered neutrophils (74, 129). The family of lipid SPMs consists
of lipoxins, resolvins, protectins and maresins (3, 130, 131).
These lipids act through specific receptors and exhibit cell-
specific properties, however, their primary targets are
March 2021 | Volume 12 | Article 660760
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myeloidcells (3, 132). In general, lipid SPMs prevent up-
regulation of Mac-1 expression and inhibit b2-integrin-
mediated neutrophil adhesion, transendothelial migration
and consequently tissue accumulation [signaling pathways
and networks are mapped into the searchable Atlas of
Inflammation Resolution (133)]. For example, lipoxin A4

mobilizes annexin A1 to form an endogenous anti-
inflammation loop to limit neutrophil trafficking into
inflammatory loci (134). Aspirin triggered 15-epi-lipoxin A4,
acting through ALX/FPR2, disrupts the myeloperoxidase-
centered self-amplifying loop and redirects neutrophil
to apoptosis (58), and enhances phagocytosis of bacteria by
restoring the balance between Mac-1 and C5aR expression
in human neutrophils (57). Consistently, 15-lipoxin A4

accelerates the resolution of inflammation in mouse
models of myeloperoxidase (58) or E. coli-induced acute lung
injury (57).
CONCLUSIONS

Unlike other integrins, the b2 integrin Mac-1 has two spatially
distinct binding sites and exhibits broad ligand recognition
specificity and numerous neutrophil responses. A novel
aspect of Mac-1 bioactivity is that its conformations and
ligands contribute to neutrophil functional plasticity and
Frontiers in Immunology | www.frontiersin.org 7
heterogeneity. The classical view of b2 integrins does not
accommodate all aspects of their role in neutrophil biology.
Their role in regulating neutrophil reverse transmigration,
lifespan, phagocytosis-induced cell death, NET formation
and efferocytosis extend the b2 integrin repertoire in
shaping innate and adaptive immunity and may partly explain
neutrophil heterogeneity. Understanding the functions of
b2 integrins may be instrumental to develop novel therapies
specifically targeting pro-resolution actions without
compromising immunity.
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