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Abstract: Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new
class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive
glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by
suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed
through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary
xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release
bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics
offer significant advantages over existing ceramic bone substitutes, and underline the future potential
of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This
review will discuss the effects of different dopant elements and oxides on the characteristics of
DCSCs for applications in bone repair, including mechanical properties, degradation and ion release
characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the
development of DCSCs for broader clinical applications will also be discussed, including DCSC
composites, coated DCSC scaffolds and DCSC-coated metal implants.
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1. Introduction

Over 2.2 million bone graft procedures are performed annually worldwide for the repair of bone
defects arising from trauma or disease [1]. However, the successful reconstruction of large bone
defects using conventional autograft and allograft transplantation has remained a clinical challenge.
Autografts, although considered the current gold standard of graft materials, suffer from significant
limitations including the requirement for second surgery, donor site morbidity, limited available
bone volume for resection, and considerable graft resorption [2–4]. Allografts are restricted by the
risk of disease transmission, reliance on donors [4,5], and reduced bioactivity of the graft due to the
decellularisation procedures necessary to remove graft immunogenicity [5,6]. Therefore, an urgent
need exists for the development of purely synthetic, readily available, and off-the-shelf bone substitutes
with the same desirable characteristics as bone grafts but without their associated limitations, which
will provide an alternative treatment option to produce improved outcomes of bone repair. A number
of commercial bone substitutes are already used to replace bone grafts in orthopaedic procedures,
but their widespread use remains limited as they do not satisfy many of the regenerative requirements
of bone tissue and practical requirements relating to surgery and handling. An optimal bone substitute
for achieving successful repair and regeneration in the clinical treatment of critical-sized bone defects
should satisfy the following desirable criteria [7]:
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• Ability to maintain in vivo mechanical stability at the defect site and withstand
physiological loads.

• Radiopacity for easy implant monitoring using non-invasive methods such as X-ray and
micro-computed tomography (µ-CT).

• Bioactivity to promote implant integration with host bone, as well as induce bone formation
inside and surrounding the implant.

• Ability to be manufactured into macroporous scaffolds with high porosity and interconnectivity
to promote bone ingrowth and vascularisation.

• Ability to degrade at a controlled rate that matches the rate of new bone formation.
• Ability to allow easy handling and sterilisation.

Bioactive and biodegradable ceramics have favourable properties for use as purely synthetic and
off-the-shelf bone substitutes, as they resemble the mineral composition of bone and promote the
formation of a direct bond with host bone without an intermediate fibrous tissue layer. A number of
ceramic materials are already in clinical use to aid the repair of critical-sized bone defects, including
hydroxyapatite, β-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) in the calcium
phosphate ceramic family, as well as Bioglass 45S5 and S53P4 in the bioactive glass family [8–14]. These
materials are osteoconductive (allow the attachment and growth of bone-related cells on the surface),
while bioactive glasses and some porous calcium phosphates are also osteoinductive (can actively
induce new bone formation through biomolecular signalling and recruitment of osteoprogenitor
cells) [15]. Nevertheless, despite their high bioactivity, current ceramic bone substitutes only have
limited applications as macroporous blocks for the grafting of small bone defects or as particles
for the filling of contained bone defects, and only at non-load bearing areas [16]. This is largely
due to their poor mechanical strength and fracture toughness, which make them unsuitable for
implantation in load-bearing regions [13,17]. The problem is exacerbated by the inverse relation
between porosity and mechanical properties of ceramic materials (Figure 1). Although high porosity
and interconnectivity are desirable properties for bone substitutes to produce enhanced outcomes
of bone regeneration, clinically used ceramic materials often have little or no porosity in order to
retain sufficient mechanical properties for implantation [16]. Further drawbacks associated with
current ceramic bone substitutes include suboptimal radiopacity and degradation kinetics. Other
than these common problems, calcium phosphate ceramics and bioactive glasses also each have their
own disadvantages which have restricted their widespread clinical application. For example, unlike
bioactive glasses, calcium phosphate ceramics generally do not possess intrinsic osteoinductivity and
must rely on added surface porosities and concavities to capture circulating bone-forming cells and
growth factors [18]. On the other hand, unlike calcium phosphate ceramics, bioactive glasses cannot
be easily processed into porous scaffolds without losing their bioactivity due to crystallisation at high
sintering temperatures [19].
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Due to the problems encountered with clinically available ceramic bone substitutes composed
of calcium phosphates and bioactive glasses, calcium silicate ceramics have gained intense research
interest since the mid-2000s to provide a potential alternative. Pioneering work in this area began with
studying the properties of pseudowollastonite (α-CaSiO3) or α-calcium silicate (α-CS), which was
shown to be bioactive due to the ability to form a surface apatite layer when immersed in simulated
body fluid (SBF) [20,21]. An interesting and useful property of α-CS is the ability to be fabricated into
different bulk shapes and structures through high temperature sintering without compromising the
bioactivity of the ceramic [22]. The potential of using α-CS for bone regeneration has been confirmed
by a number of studies, which showed ability of the material to achieve direct bonding with native
bone resulting in favourable in vitro and in vivo regeneration outcomes [21,23]. However, two major
limitations of α-CS have prevented its development as a bone substitute for clinical use. Firstly, it has
a high dissolution rate which generates a highly alkaline environment, resulting in alkaline-induced
toxicity [24,25] and excessive release of Ca and Si ions to levels inhibitory to cell proliferation [26].
Secondly, the mechanical strength of α-CS as dense monoliths and porous scaffolds is very low
compared to the ranges of values required for the regeneration of cortical and cancellous bone, which
reduces the ability of the material to maintain mechanical stability under physiological loads [27–29].
Due to these limitations, researchers have been exploring strategies to optimise the degradation rate
and improve the mechanical properties of calcium silicate ceramics. A highly successful approach is to
incorporate various metal ions and/or metal oxides into the base α-CS crystal structure to produce
doped calcium silicate ceramics (DCSCs). This review will compare the important properties of
different DCSCs, including mechanical properties, degradation and ion release characteristics, and
radiopacity, as well as discuss the available in vitro and in vivo evidence relating to the use of DCSCs
for bone regeneration. Recent advances in the development of DCSCs for broader clinical applications
will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal
implants. DCSCs included into this review have been selected based on the following criteria:

• Constitutes a crystalline material (hence excluding silicate-based bioactive glasses and
glass-ceramics).

• Constitutes a monophasic material with a single identifiable crystalline phase.
• Contains a dopant which is (1) an element incorporated for ionic substitution of calcium; (2) a

metal oxide incorporated into the xCaO–ySiO2 structure; or (3) a combination of both strategies.
• Has been tested for biocompatibility or bioactivity through at least one in vitro or

in vivo experiment.

2. Synthesis of DCSCs

The stoichiometric formula, reported fabrication method and heat treatment for a range of
monophasic DCSCs are presented in Table 1. These DCSCs have been produced by (1) ionic substitution
of Ca with divalent ions such as Sr [30,31] and Cu [32]; (2) incorporation of metal oxides into the
xCaO–ySiO2 structure [33–40]; or (3) a combination of both strategies [25,41,42]. The oxides used to
dope calcium silicate typically contain a divalent (Sr, Zn, Mg, Cu, Co) or quadrivalent (Ti, Zr) metal
ion, with the exception of aluminium oxide which forms gehlenite after doping [34]. The rationale
behind using these particular metal oxides for doping is that they contain the same metallic elements
as the trace elements found in bone, such as magnesium (Mg) [43], zinc (Zn) [44] and strontium
(Sr) [44], which are known to have beneficial effects in promoting bone formation [45]. The use
of other metal oxides containing titanium (Ti), zirconium (Zr) and aluminium (Al) for doping is
based on the historical use of titanium alloys [46], zirconia [47] and alumina [48] as implantable
orthopaedic materials. Titanium oxides in particular have been shown to enhance the bioactivity of
hydroxyapatite [49] and bioactive glasses [50].
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Table 1. Stoichiometric formula, reported fabrication method and heat treatment for a range of doped calcium silicate ceramics (DCSCs), as well as α- and β-calcium
silicate. Calcination temperature is reported if higher sintering temperature is not provided.

Ceramic Stoichiometric Formula Fabrication Method and Heat Treatment Ref.

α-calcium silicate (α-CS)
(pseudowollastonite) CaO–SiO2 Chemical precipitation, sintered at 1250 ◦C for 3 h [27]

β-calcium silicate (β-CS) CaO–SiO2
Chemical precipitation, sintered at 1100 ◦C for 3 h
Chemical precipitation, sintered at 1090 ◦C for 2 h

[27]
[30]

Sr-α-CaSiO3 (Sr-α-CS) xSrO–(1 − x)CaO–SiO2; x = 0.01~0.10 Chemical precipitation, sintered at 1250 ◦C for 3 h [31]

Sr-β-CaSiO3 (Sr-β-CS) xSrO–(1 − x)CaO–SiO2; x = 0.10 Chemical precipitation, sintered at 1090 ◦C for 2 h [30]

Cu-β-CaSiO3 (Cu-CS) xCuO–(1 − x)CaO–SiO2; x = 0.025 Chemical precipitation, calcined at 900 ◦C for 2 h [32]

Akermanite (AK) 2CaO–MgO–2SiO2 Sol-gel, sintered at 1370 ◦C for 6 h [37]

Co-Akermanite (Co-AK) 2CaO–CoO–2SiO2 Sol-gel, sintered at 1200 ◦C for 3 h [42]

Diopside (DS) CaO–MgO–2SiO2 Co-precipitation, sintered at 1300 ◦C for 2 h [36]

Bredigite (BD) 7CaO–4SiO2–MgO Sol-gel, sintered at 1350 ◦C for 8 h [38]

Hardystonite (HT) 2CaO–ZnO–2SiO2
Sol-gel, sintered at 1350 ◦C for 5 h
Sol-gel, sintered at 1250 ◦C for 3 h

[39]
[25]

Sr-hardystonite (Sr-HT) xSrO–(2 − x)CaO–ZnO–2SiO2; x = 0.10 Sol-gel, sintered at 1250 ◦C for 3 h [25]

Sphene (Sph) CaO–TiO2–SiO2 Sol-gel, sintered at 1280 ◦C, time not reported [40]

Baghdadite (Bag) 3CaO–ZrO2–2SiO2
Sol-gel, sintered at 1400 ◦C for 3 h
Solid-state sintering at 1400 ◦C for 3 h

[33]
[51]

Sr-Bag (Sr-Bag) xSrO–(3 − x)CaO–ZrO2–2SiO2, x = 0.1, 0.75 Solid-state sintering at 1400 ◦C for 3 h [41]

Cuprorivaite (Cup) CaO–CuO–4SiO2 Sol-gel, calcined at 1000 ◦C [35]

Gehlenite (GLN) 2CaO–Al2O3–SiO2 Solid-state sintering at 1400 ◦C for 3 h [34]
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Chemical precipitation, sol-gel, and solid-state sintering are the three commonly used methods
for preparing DCSC precursors prior to calcination. Although no studies have directly compared
these methods for the synthesis of a particular DCSC, it has been noted that sol-gel has a relatively
low powder yield, and that solid-state sintering requires the amount of volatile compounds to be
precisely determined in the starting material [51]. Calcination is performed to induce reaction among
the precursors to form the desired ceramic phase or phases, as well as to remove all organic residues
from precursor fabrication. For DCSCs in particular, optimisation of the temperature treatment profile
used for calcination is of primary importance for obtaining pure monophasic ceramics. A minimum
calcination temperature exists that allows the desired ceramic phase to be fully obtained, below which
incomplete phase transformation leads to a significant portion of undesirable impurities, often in
the form of un-reacted or partially reacted precursors. For example, calcination of CaO–SiO2 at
temperatures below 1200 ◦C results in the formation of β-CS rather than α-CS [31]. For hardystonite,
lowering the calcination temperature to 1100 ◦C leads to the undesirable formation of an intermediate
willemite phase (2ZnO-SiO2) [39]. For cuprorivaite, calcination temperatures outside the optimal
1000 ◦C lead to the formation of SiO2 and CuO [35], while Ca2SiO4 impurities appear for Co-akermanite
below the optimal calcination temperature [42].

While an optimal calcination temperature is required to produce ceramic powders with the
desired phase(s), the fabrication of ceramic materials, including DCSCs, into specific morphologies
for end-use applications also requires sintering at an optimal temperature. At the optimal sintering
temperature which is unique for different ceramics, ceramic powders which have been pressed or
manipulated to form a specific shape can react with adjacent particles to form a defined physical
structure. Below the optimal sintering temperature, inadequate densification of the ceramic structure
leads to significant reduction in mechanical properties of the resulting construct. Above the optimal
sintering temperature, the ceramic can have reduced mechanical strength due to increased grain
size [34], or melt and therefore fail to form the predefined structure.

3. Mechanical Properties of Solid and Porous DCSCs

A key property of materials with intended application as synthetic bone substitutes is the ability
to resist fracture when subjected to physiological loads. The brittle nature of ceramic materials
is a primary hurdle restricting their widespread clinical use in bone reconstruction. Catastrophic
failure in the load-bearing environment of a critical-sized defect almost invariably results in defect
instability and disruption of the bone healing process. The reported mechanical properties (Young’s
modulus, mechanical strength, and fracture toughness) for a range of DCSCs (including dense ceramic
monoliths with porosity <20% and macroporous scaffolds with porosity >50%) are presented in
Table 2. The values are compared with clinically used ceramic bone substitutes including Bioglass
45S5, hydroxyapatite, β-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP), as
well as cortical and cancellous bone. The majority of DCSCs displayed significant improvements
in mechanical properties compared to the clinically used ceramic bone substitutes, particularly for
mechanical strength in bending and fracture toughness. Out of the DCSCs with reported mechanical
properties, gehlenite and diopside exhibited the highest fracture toughness for dense monoliths,
at 2.7 MPa·m1/2 [34] and 3.5 MPa·m1/2 [52] respectively, which greatly exceeded those of clinically
used materials and reached the lower end of the reported range for cortical bone [7,13,17]. The other
DCSCs showed bending strength in the range of 136–176 MPa and fracture toughness in the range
of 1.2–1.8 MPa·m1/2, which were higher than the typical values observed for clinically used calcium
phosphates and bioactive glasses.

The mechanical strength of dense DCSC disks is primarily determined by their sintering kinetics
and densification profile, both of which are affected by the stoichiometric formula of the ceramic, the
presence of dopant oxides, and the resulting atomic or ionic interactions. Similar relations have been
observed for β-TCP scaffolds [53–56] and other ceramics [57–59] containing various oxide dopants.
As shown in Table 2, all dense DCSCs (except hardystonite) had lower porosity compared to α-CS
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(15.5%) and β-CS (18.6%), indicating enhanced densification in DCSCs which is a key contributor to
their improved mechanical strength. Variations in strength among different types of DCSCs could be
attributed to other factors, such as differences in the crystal structure and ionic interactions between
the dopant ions and oxides with the base xCaO–ySiO2 system.

The mechanical strength of macroporous DCSC scaffolds is largely affected by the porosity of
the scaffold. DCSC scaffolds exhibit the same trend as that for other ceramic materials, where their
mechanical strength is inversely proportional to porosity [16]. This creates a significant challenge for
the design and fabrication of ceramic scaffolds for use in bone reconstruction. Sufficient mechanical
strength is obviously a prerequisite for maintaining defect stability and providing adequate mechanical
support for bone regeneration after scaffold implantation. However, scaffold porosity is also an
important parameter due to its role in facilitating vascularisation and bone ingrowth to achieve
bridging and reconstruction of the defect. Furthermore, the presence of macroporosity can reduce
the high stiffness of the ceramic compared to its bulk form, thereby minimising the effects of stress
shielding due to stiffness mismatch between the scaffold implant and bone. The current consensus in
the essential features of pore geometry to achieve optimal bone regeneration are (1) fully interconnected
pores; (2) pore sizes which are at least 100 µm in diameter; and (3) porosity that is as high as practically
possible [60,61]. DCSCs face the same dilemma as that for other ceramic materials used for bone
regeneration, in that the fabrication of scaffolds with both high strength and high porosity remains
a prominent challenge. Compared to other DCSCs, hardystonite and Sr-hardystonite achieved the
highest compressive strength for macroporous scaffolds (~2 MPa) at porosities exceeding 75% [25],
but are still insufficient for matching the mechanical properties of cancellous bone.

Influence of Fabrication Method on the Mechanical Properties of DCSC Scaffolds

Different fabrication methods can have a significant influence on the geometry and mechanical
properties of ceramic scaffolds prepared from the same base material. Due to the requirement for
ceramic sintering to form constructs with a defined three-dimensional architecture, popular methods
for the fabrication of ceramic scaffolds are currently limited to the polymer sponge sacrificial template
(PSST) technique and 3D printing by direct ink writing (DIW) or selective laser sintering (SLS). Other
methods such as freeze-casting [62] and porogen leaching [30] have also been attempted for the
fabrication of DCSC scaffolds, but may result in structures with limited pore interconnectivity.

The PSST method has been commonly used for fabricating ceramics materials, including DCSCs,
into macroporous scaffolds. The advantage of this method is the relative ease of fabrication and ability
to generate highly porous and interconnected structures with geometry similar to that of cancellous
bone [16]. A sacrificial polymer (often polyurethane) foam is coated with ceramic slurry composed
of ceramic powder and a binder solution, which is then subjected to a heat treatment to burn off all
organic components prior to ceramic sintering. The result is a ceramic scaffold that replicates the
original structure of the sacrificial foam (Figure 2A) [25]. However, this method does not allow precise
control over pore geometry, and the manual nature of the process limits the potential for automation
and scale-up which are necessary for clinical translation.

Recent technological advances have generated intense interest in 3D printing methods, such as
DIW and SLS, for ceramic scaffold fabrication. These methods have gained increasing popularity due
to affordability of the necessary equipment and ability for set-up in a laboratory environment. Their
main advantage compared to PSST is the ability to allow customised design of scaffold architecture and
pore geometry, as well as precise control over the fabrication process to produce the desired structures.
These features are useful not only for producing customised scaffolds for end-use applications, but also
for facilitating basic science research into scaffold characteristics which are important in modulating
the bone regeneration process, such as pore geometry, gradient structures, and permeability. However,
a primary disadvantage of 3D printing methods compared to PSST is the current inability to produce
scaffolds with very high porosities exceeding 80%. For example, akermanite scaffolds produced
by 3D printing were able to attain very high compressive strengths, but exhibited relatively low
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porosities of 50%–60% [63,64]. Hardystonite scaffolds with 75% porosity could be produced by
DIW, but compressive strength was slightly lower than those with similar porosity produced by
PSST (Figure 2B) [65]. The low porosity of 3D-printed ceramic scaffolds is primarily due to current
limitations in the fabrication process, where the inability to adjust strut thickness below a certain
threshold results in relatively thick struts and therefore reduced porosity. For example, the laser beam
diameter for akemanite scaffolds printed by SLS was 1.0 mm, producing thick struts and hence low
porosities of <60% [63]. Akemanite scaffolds printed by DIW also showed similar porosities [64].
In this method, the stability of the struts prior to sintering is directly dependent on the viscosity of the
ink, necessitating a high strut thickness and also special formulation of the ink such that it is semi-solid
upon extrusion. Extensive optimisation is therefore required for producing 3D-printed DCSC scaffolds
with an optimal balance of strength and porosity, and some work has already been performed in this
area using other types of ceramic materials [66,67].
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Table 2. Mechanical properties (Young’s modulus, mechanical strength, and fracture toughness) of a range of DCSCs, as well as α- and β-calcium silicate. Values
for Bioglass 45S5, hydroxyapatite, β-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP), as well as cortical and cancellous bone are included for
comparison. Specimens with porosities <20% were considered ‘dense’, while those with porosities >50% were considered ‘scaffold’.

Ceramic Porosity (%) Young’s Modulus (GPa) Mechanical Strength (MPa) Fracture Toughness (MPa·m1/2) Ref.

α-calcium silicate

15.5 NR 39.7B NR [27]

82.2PSST ~0.012 0.3C NR [29]

~89PSST NR 0.03C NR [28]

β-calcium silicate 18.6 NR 65.9B NR [27]

Sr-α-CaSiO3 No mechanical property evaluation

Sr-β-CaSiO3 No mechanical property evaluation

Cu-β-CaSiO3 No mechanical property evaluation

Akermanite

10.4 42 176.2B 1.83 [68]

63.5PSST

81.7PSST

90.3PSST
NR

1.13C

0.79C

0.53C
NR [69]

57.9SLS NR 5.9C 1.72 [63]

53DIW ~0.5 71C NR [64]

Co-akermanite No mechanical property evaluation

Diopside

NR (dense) 170 300B 3.5 [52]

75PSST

82PSST
0.07
0.01

1.4C

0.5C NR [70]

Bredigite 5.8
~90PSST

43
NR

156B

0.233C
1.57
NR [38]

Hardystonite

17.4 NR 136.4B 1.24 [39]

77.5PSST NR 1.99 ± 0.45C NR [25]

~89PSST NR 0.06 NR [28]

74DIW NR 1.6 ± 0.3C NR [65]

Sr-hardystonite 78PSST NR 2.16 ± 0.52C NR [25]
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Table 2. Cont.

Ceramic Porosity (%) Young’s Modulus (GPa) Mechanical Strength (MPa) Fracture Toughness (MPa·m1/2) Ref.

Sphene No mechanical property evaluation

Baghdadite

0.5 120 98B 1.3 [51]

2.8 NR 168B 1.2 [41]

~88PSST ~0.0153 ~0.27C NR [71]

Sr-Baghdadite 3.4 NR 162B 1.3 [41]

Cuprorivaite No mechanical property evaluation

Gehlenite 0.3 112 162B; 403C 2.7 [34]

Bioglass 45S5 Dense 35 42 NR [72]

Bioglass
45S5-derived scaffold 86–94 NR 0.3–1.2B; 0.05–0.45C NR [73]

Hydroxyapatite (HA)

NR (dense) 47 110B 1.1 [52]

<0.8 80–110 100–160B; 500C 1.0 [72]

2.2–7.0 87–97 84–113B 0.69–0.96 [74]

β-Tricalcium
phosphate (β-TCP)

<0.3 33–90 140–154B; 460–687C NR [72]

0.6~1.4 87–95 118–133B 1.14–1.30 [74]

Biphasic calcium
phosphate (BCP) ~88PSST 0.0105 0.12C NR [71]

Cortical bone 5–13 12–18 50–150B; 130–180C 2–12 [7,13,17]

Cancellous bone 30–90 0.1–0.5 10–20B; 4–12C 0.1–0.8 [7,13,17]

NR: not reported; PSST: polymer sponge sacrificial template; DIW: direct ink writing; SLS: selective laser sintering; B: bending; C: compression.
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4. Degradation and Ion Release Characteristics of DCSCs

An important property of bioactive ceramics enabling their use as synthetic bone substitutes is the
ability to undergo controlled biodegradation, and release ions into the environment which contribute
to inducing osteogenesis. The weight loss, pH, apatite formation and ion release characteristics in
aqueous media of a range of DCSCs as observed during in vitro studies are presented in Table 3.
The common time point chosen for comparison is 7 days, for which the majority of reviewed studies
have reported degradation and ion release data. Care must be taken when interpreting and comparing
the results of in vitro degradation studies, which are greatly affected by the experimental protocol
and type of aqueous medium chosen. For most bioactive ceramics including DCSCs, the ion release
kinetics is often non-linear and depends on the concentration gradient between the ceramic surface
and composition of the surrounding medium. In the majority of cases, an initial burst release of ions
is observed during the first few days, followed by a plateau if the experimental protocol does not
involve replenishing the surrounding medium. The same ion release profile is unlikely to be obtained
in vivo, due to the constant flow of interstitial fluid in a highly homeostatic environment. Nevertheless,
the investigation of in vitro degradation and ion release are important for initial assessment of a
bioactive ceramic prior to conducting in vivo studies.

A primary requirement for DCSCs with intended application in bone reconstruction is the ability
to undergo controlled biodegradation in physiological fluids, and be gradually replaced by new bone
tissue. In general, the results across a range of experimental studies all indicated reduced weight
loss, ion release and alkalinity for different types of DCSCs compared to calcium silicate when tested
under similar conditions (Figure 3). This is highly favourable for the application of DCSCs as synthetic
bone substitutes, as rapid dissolution and the tendency to create a highly alkaline environment are
the major drawbacks limiting the use of calcium silicates. For example, α-CS scaffolds have been
shown to undergo degradation up to 7–11 wt % in 7 days and raise the surrounding pH to 8.1–8.6 [29].
A number of DCSCs were directly compared with α-CS controls in the same experiment, all of which
exhibited lower weight loss, pH change and ion release, including Sr-α-CaSiO3 [31], hardystonite [25],
Sr-hardystonite [25], sphene [40], and baghdadite [33]. Interestingly, a number of DCSCs including
diopside [36,70], sphene [40], hardystonite [25] and gehlenite [34] exhibited almost no weight loss
after 7 days (<1 wt %), with surrounding pH in the range of 7.2–7.7. These DCSCs might be useful in
bone reconstruction at defect sites which require mechanical stability to be maintained by the implant
for an extended period of time. For DCSCs doped with the Sr ion, their degradation and ion release
characteristics were largely affected by the mol% of Sr ion substitution as in the case of Sr-α-CS [31],
or the presence of additional dopant oxides as in the case of Sr-hardystonite [25]. Of all reviewed
DCSCs, only baghdadite exhibited weight loss (~9 wt % after 7 days) similar to α-CS, but induced
only slight increases in the surrounding pH to 7.5–8.0 [71]. Baghdadite ceramics might therefore
be used in applications requiring rapid dissolution and high bioactivity of the scaffold implant to
induce accelerated bone formation at the defect site, without raising the pH to toxic levels. For future
investigations into the in vitro degradation behaviour of DCSCs, it might be of interest to conduct tests
under acidic conditions such as using citric acid buffer solution, which has already been performed
with gehlenite [34]. This will imitate the local acidification created by osteoclasts and macrophages
during the bone remodelling process, which is an additional contributor to ceramic dissolution due to
its role in facilitating cell-mediated resorption [75,76].

Comparing the ion release rates of DCSCs doped with various metal ions or oxides revealed
several interesting observations. DCSCs doped with Zn, Ti and Zr showed release rates of these
transitional metal ions which were orders of magnitude lower than the release rates of Mg, Sr and Al
from other DCSCs under similar experimental conditions. At the same time, some DCSCs showed
release rates of dopant ions which were independent of Ca and Si release from the same ceramic.
For instance, baghdadite showed very low levels of Zr release, but one of the highest release rates
for Ca and Si compared to other DCSCs [33], while gehlenite showed appreciable release of Al ions
but one of the lowest release rates for Ca and Si [34]. Sphene and hardystonite, doped respectively
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with Ti and Zn, showed the lowest overall ion release rates [25,40]. The dissolution rate of DCSCs
in an aqueous environment is generally a function of the dopant ion valency [77] and metal-oxide
bonding strength [78], although the exact roles of dopant ions and oxides in modulating the in vitro
degradation behaviour of DCSCs requires further investigation.

Almost all DCSCs have the ability to form a surface apatite or apatite-like layer after immersion
in simulated body fluid (SBF). A large volume of existing literature has considered this ability of
a material to form a surface apatite layer in SBF as an indicator of ‘in vitro bioactivity’, due to
evidence that native bone tissue can integrate with the apatite layer in vivo and hence form a strong
chemical bond with the implanted material [79]. This mechanism of bioactivity is best exhibited
by most bioactive glasses [10]. Although in vitro apatite formation is a potent indicator of material
bioactivity, scientific advances have resulted in the widespread use of cell culture techniques as a
more accurate method for evaluating in vitro bioactivity. For this reason, in vitro apatite formation
is now more commonly used as a tool for understanding the mechanism, rather than being the sole
indicator, of material bioactivity [80]. Some DCSCs, such as hardystonite [81], sphene [40], and
gehlenite [34], are clearly bioactive as shown by in vitro cell experiments, but do not induce surface
apatite formation. The development of surface apatite relies on the formation of a silica gel, which
acts as a platform for the deposition of extracellular calcium ions and formation of nucleation sites
for apatite mineralisation [82,83]. Interestingly, hardystonite, sphene and gehlenite showed the lowest
release of Si ions after 7 days (5–6 ppm) compared to calcium silicate and other DCSCs [34,40,81],
which might explain their lack of surface apatite layer formation. In these ceramics, bioactive ion
release and microstructural characteristics are likely to be the primary mechanisms of bioactivity.Materials 2017, 10, 153  11 of 40 

 

 
Figure 3. Compared to calcium silicate (WT) scaffolds, Sr-hardystonite (Sr-HT) and hardystonite (HT) 
scaffolds immersed in simulated body fluid showed (A) reduced weight loss and (B) smaller pH 
changes [25]. These trends were representative of those exhibited by other types of DCSCs in 
degradation experiments. Reproduced by permission of Elsevier, Copyright © 2010. 

Comparing the ion release rates of DCSCs doped with various metal ions or oxides revealed 
several interesting observations. DCSCs doped with Zn, Ti and Zr showed release rates of these 
transitional metal ions which were orders of magnitude lower than the release rates of Mg, Sr and Al 
from other DCSCs under similar experimental conditions. At the same time, some DCSCs showed 
release rates of dopant ions which were independent of Ca and Si release from the same ceramic. For 
instance, baghdadite showed very low levels of Zr release, but one of the highest release rates for Ca 
and Si compared to other DCSCs [33], while gehlenite showed appreciable release of Al ions but one 
of the lowest release rates for Ca and Si [34]. Sphene and hardystonite, doped respectively with Ti 
and Zn, showed the lowest overall ion release rates [25,40]. The dissolution rate of DCSCs in an 
aqueous environment is generally a function of the dopant ion valency [77] and metal-oxide bonding 
strength [78], although the exact roles of dopant ions and oxides in modulating the in vitro 
degradation behaviour of DCSCs requires further investigation. 

Almost all DCSCs have the ability to form a surface apatite or apatite-like layer after immersion 
in simulated body fluid (SBF). A large volume of existing literature has considered this ability of a 
material to form a surface apatite layer in SBF as an indicator of ‘in vitro bioactivity’, due to evidence 
that native bone tissue can integrate with the apatite layer in vivo and hence form a strong chemical 
bond with the implanted material [79]. This mechanism of bioactivity is best exhibited by most 
bioactive glasses [10]. Although in vitro apatite formation is a potent indicator of material bioactivity, 
scientific advances have resulted in the widespread use of cell culture techniques as a more accurate 
method for evaluating in vitro bioactivity. For this reason, in vitro apatite formation is now more 
commonly used as a tool for understanding the mechanism, rather than being the sole indicator, of 
material bioactivity [80]. Some DCSCs, such as hardystonite [81], sphene [40], and gehlenite [34], are 
clearly bioactive as shown by in vitro cell experiments, but do not induce surface apatite formation. 
The development of surface apatite relies on the formation of a silica gel, which acts as a platform for 
the deposition of extracellular calcium ions and formation of nucleation sites for apatite 
mineralisation [82,83]. Interestingly, hardystonite, sphene and gehlenite showed the lowest release 
of Si ions after 7 days (5–6 ppm) compared to calcium silicate and other DCSCs [34,40,81], which 
might explain their lack of surface apatite layer formation. In these ceramics, bioactive ion release 
and microstructural characteristics are likely to be the primary mechanisms of bioactivity. 

Figure 3. Compared to calcium silicate (WT) scaffolds, Sr-hardystonite (Sr-HT) and hardystonite
(HT) scaffolds immersed in simulated body fluid showed (A) reduced weight loss and (B) smaller
pH changes [25]. These trends were representative of those exhibited by other types of DCSCs in
degradation experiments. Reproduced by permission of Elsevier, Copyright © 2010.



Materials 2017, 10, 153 12 of 37

Table 3. Summary of in vitro degradation studies for calcium silicate and a range of DCSCs in aqueous media. All ion release values are reported in parts per million
(ppm), where ppm = mM × A (atomic mass) for concentrations reported in mM. Background ion concentration was subtracted if background values were provided.
Numbers in brackets indicate values obtained for the α-calcium silicate (α-CS) control in the same experiment.

Ceramic Morphology and
Concentration

Surrounding
Aqueous Media

Weight Loss after
7 Days,

(α-CS Value)

pH of Media after
7 Days,

(α-CS Value)

Apatite
Formation in SBF

Total ion Release in Media after 7
Days unless otherwise stated,

(α-CS Value)
Ref.

β-calcium silicate
Solid disks, ratio of disk
to media not reported CM NR NR Yes

Ca: ~160 ppm, (~120 ppm)
[84]Si: ~90 ppm, (~80 ppm)

Sr-α-CaSiO3 Solid disks, at 0.1 cm2/mL SBF

5% at 2.5 mol Sr,
(7%)

8.3, (8.4) Yes
Ca: ~260 ppm, (~310 ppm)

[31]Si: ~65 ppm, (~98 ppm)
Sr: ~2.6 ppm

7% at 10 mol Sr,
(7%)

8.0, (8.4) Yes
Ca: ~260 ppm, (~310 ppm)

[31]Si: ~85 ppm, (~85 ppm)
Sr: ~7.9 ppm

Sr-β-CaSiO3 No degradation evaluation of sintered disks/scaffolds

Cu-β-CaSiO3 No degradation evaluation of sintered disks/scaffolds

Akermanite

Solid disks, at 0.1 cm2/mL SBF NR 7.3 Yes
Ca: ~240 ppm

[37]Si: ~62 ppm
Mg: ~121 ppm

Solid disks, at
0.15 mm3/mL Tris-HCl 2.50% NR Yes NR [36]

Solid disks in
48-well plate CM NR NR

Ca: ~95 ppm
[36]Si: ~26 ppm

Mg: ~30 ppm

Solid disks, 10 mm
diameter in 1 mL solution

CM NR NR
Ca: ~100 ppm

[85]Si: ~100 ppm
Mg: ~195 ppm

Porous scaffolds at
5 mg/mL Ringer’s solution 7% NR Yes Cannot deduce concentration as

volume of samples was not reported [69]

Co-akermanite No degradation evaluation of sintered disks/scaffolds

Diopside

Solid disks, at
0.15 mm3/mL Tris-HCl 0.50% NR Yes NR [36]

Solid disks in
48-well plate CM NR NR

Ca: ~87 ppm
[36]Si: ~70 ppm

Mg: ~20 ppm

Porous scaffolds at
5 mg/mL SBF 1.00% 7.5 Yes Si: ~150 ppm [70]
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Table 3. Cont.

Ceramic Morphology and
Concentration

Surrounding
Aqueous Media

Weight Loss after
7 Days,

(α-CS Value)

pH of Media after
7 Days,

(α-CS Value)

Apatite
Formation in SBF

Total ion Release in Media after 7
Days unless otherwise stated,

(α-CS Value)
Ref.

Bredigite

Solid disks, at
0.15 mm3/mL Tris-HCl 5% NR Yes NR [36]

Solid disks in 48-well plate CM NR NR
Ca: ~70 ppm

[36]Si: ~32 ppm
Mg: ~20 ppm

Hardystonite

Solid disks, at 0.1 cm2/mL SBF NR 7.5 No
Ca: ~100 ppm14 days, (~600 ppm)

[81]Si: ~33 ppm14 days, (~75 ppm)
Zn: ~0.4 ppm14 days

Porous scaffolds at 5 mg/mL SBF 0.7%, (8%) 7.2, (8.6) No
Ca: ~16 ppm, (340 ppm)

[25]Si: ~6 ppm, (98 ppm)
Zn: ~0.004 ppm

Porous scaffolds (7 × 7 × 7
mm3) in 15 mL Tris-HCl ~3%, (~11%) 7.5, (8.2) NR

Ca: 22 ppm, (144 ppm)
[28]Si: 5 ppm, (19 ppm)

Zn: 1 ppm

Sr-hardystonite Porous scaffolds at 5 mg/mL SBF 1.2%, (8%) 7.7, (8.6) Yes

Ca: ~40 ppm, (340 ppm)

[25]
Si: ~11 ppm, (98 ppm)
Zn: ~0.0005 ppm
Sr: ~0.6 ppm

Sphene Solid disks, at 0.1 cm2/mL SBF ~0%, (7%) ~7.7, (~8.4) No
Ca: ~20 ppm, (~310 ppm)

[40]Si: 0 ppm, (~98 ppm)
Ti: 0 ppm

Baghdadite

Solid disks, ratio of disk to
media not reported CM NR 7.5, (8.1) Yes

Ca: ~370 ppm, (~384 ppm)
[33]Si: ~44 ppm, (~49 ppm)

Zr: 0 ppm

Porous scaffolds, 150 mg/L SBF 9% 8 Yes
Ca: ~200 ppm

[71]Si: ~32 ppm
Zr: 0.0005 ppm

Sr-Baghdadite No degradation evaluation of sintered disks/scaffolds

Cuprorivaite No degradation evaluation of sintered disks/scaffolds

Gehlenite Solid disks, at 0.1 mm2/mL
SBF ~0% ~7.4

No
Ca: ~45 ppm9 days, SBF

[34]Tris-HCl ~1% ~7.4 Si: ~5 ppm9 days, SBF

Citric acid ~7% ~4 Al: ~10 ppm9 days, SBF

NR: not reported; SBF: simulated body fluid; CM: cell culture media.
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5. Radiopacity of DCSCs

An often overlooked consequence of incorporating metal oxides into the xCaO–ySiO2 crystal
structure to produce DCSCs is the change in X-ray mass attenuation coefficient (µ/ρ, XMAC) of
the ceramic. Few studies in the literature have explored and compared the radiopacity of DCSCs,
although one study showed a linear improvement in radiopacity by incorporating increasing amounts
of baghdadite into a polymer matrix [86]. The XMAC of a compound depends on its elemental
composition, as heavier elements tend to have higher XMAC values. The clinical relevance of this
is that a higher XMAC indicates increased radiopacity and therefore visibility of the material using
non-invasive methods such as X-ray and µ-CT. The exact XMAC value of a compound depends on the
energy of the X-ray used, and can be calculated by summing the products of the elemental XMAC and
weight fraction of the elements within the stoichiometric formula [87]:

XMACcompound = ∑
i

wiXMACi (1)

In the above equation, wi and XMACi are the weight fraction and XMAC of the ith constituent,
respectively. This equation allows calculation and comparison of the XMAC value of different materials
at a given X-ray energy, and the relative ranking of materials based on their XMAC tends to remain
identical at other X-ray energies. Using elemental XMAC values [87], the calculated XMAC at 20
keV energy for a range of DCSCs are presented in Table 4, along with the XMAC for Bioglass 45S5,
hydroxyapatite, tricalcium phosphate, calcium silicate, and cortical bone [87] which have been included
for comparison. Although the XMAC values in Table 4 are based on dense materials, the corresponding
XMAC for porous structures composed of the same materials can be easily calculated. Under the
reasonable assumption that the XMAC of air is negligible (0.778 at 20 keV [87]) compared to the
ceramic, a conservative estimate of the XMAC for a porous scaffold of a particular material can be
obtained by simply multiplying the XMAC of the dense material by (1-porosity).

Table 4. X-ray mass attenuation coefficient (XMAC) for a range of materials, including DCSCs, in
ascending order, calculated using Equation (1) at 20 keV X-ray energy.

Ceramic XMAC at 20 keV (Dense Material)

Cortical bone 4.00

Bioglass 45S5 4.09

Diopside 4.27

Gehlenite 5.31

Akermanite 5.36

α-, β-CaSiO3 5.94

Hydroxyapatite 6.38

Tricalcium phosphate 6.49

Bredigite 6.62

Sphene 7.53

Cu-β-CaSiO3 (2.5 mol % substitution of Ca) 9.26

Cuprorivaite 9.54

Sr-α-, β- CaSiO3 (10 mol % substitution of Ca) 9.90

Co-akermanite 9.91

Hardystonite 12.96

Sr-hardystonite (5 mol % substitution of Ca) 13.61

Baghdadite 20.76

Sr-Baghdadite (25 mol % substitution of Ca) 21.74
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In a clinical setting, radiopacity of an implant material with intended use as a synthetic bone
substitute is a highly important property that is often overlooked during material design and
characterisation. For scaffold implants used in bone reconstruction, sufficient radiopacity to provide
contrast from the bone tissue will allow the clinician to easily examine implant interactions with the
surrounding tissue, as well as to monitor implant resorption over time. Currently, implant materials
which are not radiopaque but require X-ray visibility for clinical monitoring must rely on doping with
bioinert particles which have a high XMAC, such as barium sulfate, tantalum oxide, and zirconia.
This compensatory method has been applied in orthopaedics to polymer-based implants such as
poly(methyl methacrylate) (PMMA) and calcium phosphate bone cements [88,89], and in dentistry
to gutta percha [90]. From Table 4, it is evident that the majority of DCSCs have a XMAC that is
significantly higher than cortical bone, which is an added advantage for their clinical application
compared to existing bone substitute materials with XMAC values that are relatively close to bone,
such as Bioglass 45S5, hydroxyapatite and tricalcium phosphate.

6. In Vitro Cell Interactions with DCSCs

The in vitro interactions of different DCSCs have been investigated using a range of cell types and
material morphologies (powder extracts, dense disks and porous scaffolds), as shown in Table 5.
The majority of studies reported enhanced cell proliferation and expression of genes related to
osteogenesis and angiogenesis in the presence of DCSCs, with variations among different ceramics
determined by the types of ions released and their concentrations or release rates. A range of bioactive
ions are released from DCSCs that have important roles in promoting bone formation (Ca, Si, Sr, Mg,
Zn) and angiogenesis (Mg, Cu, Co), both of which are vital processes in the successful reconstruction
of vascularised bone tissue [45,91–93]. The favourable in vitro interactions of DCSCs with cell types
relevant for bone regeneration support the development of these ceramics as synthetic bone substitutes.

The in vitro cell interactions with DCSCs, as indicated by attachment, proliferation, gene
expression and enzyme activity, are influenced by the amount of ceramic present but do not exhibit a
linear dose-response relationship. Optimal cell interactions are often observed within a specific range
of ion concentrations for a particular ceramic, which can be controlled for experiments performed using
ceramic powder extracts by serial dilution of the extract solution. The highest extract concentration
is usually 200 mg/mL, at which most DCSCs do not exhibit inhibitory or cytotoxic effects on cells.
As shown in Table 5, cell activity is generally enhanced on dense disks and porous scaffolds of
DCSCs, as well as ceramic powder extracts within a specific range of concentrations, compared to
calcium silicate controls. Only cuprorivaite [35] and Co-akermanite [42] showed some cytotoxic effects
due to Cu and Co release, respectively, to certain concentrations, while high extract concentrations
of akermanite caused slight inhibition of proliferation in human adipose-derived stem cells [94].
For dense disks and porous scaffolds of DCSCs, the mechanism underlying enhanced cell activity is
likely the combination of bioactive ion release and surface characteristics of the sample, including
surface chemistry, topography and microstructure, with DCSC scaffolds providing an additional
dimension of macroporosity.

The majority of in vitro studies have implicated bioactive ion release as the primary mechanism
leading to enhanced cell interactions with DCSCs. Sr ions released from Sr-α-CaSiO3, Sr-hardystonite,
and Sr-baghdadite were found to enhance osteoblast proliferation and osteogenic gene expression
compared to control ceramics without strontium [25,31,41]. Mg ions released from akermanite,
diopside and bredigite promoted osteogenic gene expression in a range of cell types including
human periodontal ligament cells [85,95,96], human induced pluripotent stem cells [97], and several
types of adult stem cells capable of developing the osteoblast phenotype (Figure 4A) [69,94,98–101].
In addition, Mg ion release was found to enhance in vitro angiogenesis by human aortic endothelial
cells (Figure 4B) [101]. The release of Zn ions from hardystonite led to enhanced attachment,
proliferation and osteogenic gene expression of human osteoblasts [25,28,81] and bone marrow-derived
mesenchymal stem cells [95,102]. Co [42] and Cu [32,35] ions released from several DCSCs were shown
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to have positive effects in inducing endothelial cell proliferation, angiogenic gene expression and
in vitro angiogenesis at optimised concentrations.

An interesting and very useful property of some DCSCs revealed through in vitro experiments
is antibacterial activity. For example, hardystonite extracts demonstrated ability to inhibit the
proliferation of Enterococcus faecalis to a similar extent as calcium hydroxide [95], and cuprorivaite
also showed antibacterial effects against Escherichia coli (Figure 5) [35]. The antibacterial activity of
these DCSCs is the result of certain ions released into the environment, such as Zn and Cu. Similar
properties are likely to be present in other DCSCs which can release ions known to have antibacterial
effects, and represent an added advantage for their clinical use compared to currently available ceramic
bone substitutes.Materials 2017, 10, 153  17 of 40 
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A number of in vitro studies have elucidated the mechanisms of enhanced osteogenesis and/or
angiogenesis due to bioactive ion release from DCSCs. The extracellular signal-regulated kinase (ERK),
Wnt/β-catenin, and bone morphogenetic protein (BMP)-2 signalling pathways are thought to be
important mediators of cell interactions with DCSCs, although these have only been demonstrated
with akermanite [94,100] and baghdadite [103]. Akermanite has additionally been shown to activate
the p38, AKT and STAT3 signalling pathways with evidence of crosstalk among these pathways,
which have downstream effects in promoting osteogenesis and angiogenesis [100]. Aside from studies
performed on specific DCSCs, a large body of evidence exists in the literature on the positive roles of
certain bioactive ions in inducing processes related to bone regeneration that could be used to explain
the biological effects of DCSCs. For example, Ca and Sr ions can activate calcium sensing receptors
and their downstream signalling pathways in osteoblasts [104,105], Si ions have an important role
in the Wnt and Sonic Hedgehog (SHH) signalling pathways [106], and Mg ions can upregulate the
Ras-MAP kinase signalling pathway [107].

Although in vitro cell experiments have provided valuable information on the nature and
mechanisms of cell interactions with DCSCs, care should be taken when interpreting the results
or using the results as evidence to predict the clinical performance of the material. Many in vitro
experiments involving DCSCs tested cell responses to ceramic powder extracts, and evaluated these
responses at certain concentrations of released ions. However, such controlled in vitro conditions
hardly replicate the highly dynamic in vivo environment, where the ceramic would be subjected to
constant fluid flow and a complex milieu of cells, biochemical factors and mechanical stresses which
would all affect its degradation and ion release. As an example, akermanite and bredigite were shown
to have enhanced in vitro angiogenic properties compared to diopside, despite all three ceramics
possessing the same CaO–MgO–SiO2 base structure, which was thought to be the result of different
concentrations of ions released from the ceramic extracts [101]. In another study, in vitro angiogenesis
was shown to be enhanced when Cu ions existed concurrently with Ca and Si ions in the culture
medium, but not when only Cu ions were present [35]. The results of these studies are useful for
understanding the nature and mechanisms of cell responses to DCSCs, but have been obtained under
controlled in vitro conditions which are very different from the actual in vivo conditions where ceramic
dissolution will occur in clinical applications. Furthermore, the outcomes of in vitro experiments can
be affected to a large extent by the cell type used, as different cell types can respond differently to
various ions and concentrations of these ions. For example, human umbilical vein endothelial cells
(HUVECs) could proliferate at higher Co-akermanite extract concentrations compared to MC3T3-E1
cells [42], human periodontal ligament cells responded better to diopside than hardystonite [95],
akermanite inhibited rat bone marrow macrophage osteoclastogenesis but supported the proliferation
of bone marrow-derived stem cells [100], and gehlenite supported both the proliferation of osteoblasts
and maturation of osteoclasts [34]. In vivo studies are therefore necessary to enable more accurate
prediction of the therapeutic efficacy of DCSCs in clinical applications.
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Table 5. Summary of in vitro studies on DCSCs performed using a range of cell types and material morphologies (powder extracts, dense disks and porous scaffolds).

Ceramic Cell Type Ceramic Morphology Main Findings Ref.

Sr-α-CaSiO3
(Sr-α-CS) Human bone-derived cells Powder ionic extract Sr ions in Sr-α-CS extract enhanced cell proliferation at lower Ca and Si concentrations,

compared to α-CS extracts with no Sr [31]

Sr-β-CaSiO3
(Sr-β-CS)

Ovariectomised rat bone marrow-derived
stem cells Powder ionic extract Enhanced cell proliferation, ALP activity, and osteogenic gene expression (Runx2, BSP, OC,

VEGF, OPG/RANKL ratio) in Sr-β-CS extract (6.25 mg/mL) compared to β-CS extract [30]

Human umbilical vein endothelial cells Powder ionic extract Enhanced cell proliferation, angiogenic gene expression (VEGF, KDR), and in vitro
angiogenesis in Sr-β-CS extract (3.1~12.5 mg/mL) compared to β-CS extract [30]

Cu-β-CaSiO3
(Cu-β-CS) Human umbilical vein endothelial cells Powder ionic extract

No difference in cell proliferation between β-CS and Cu-β-CS extracts; enhanced angiogenic
gene expression (VEGF, KDR, HIF-1α) and in vitro angiogenesis in Sr-β-CS extract (3.1~12.5
mg/mL) compared to β-CS extract

[32]

Akermanite
(AK)

Human bone marrow-derived stromal cells Powder ionic extract Enhanced proliferation, ALP activity, and osteogenic gene expression (OC, OPN) in AK
extract (0.78 mg/mL) compared to β-TCP control [98]

Human bone marrow-derived stromal cells Direct seeding on dense ceramic disks Enhanced proliferation, ALP activity, and osteogenic gene expression (ALP, BSP, OPN) on AK
disk compared to β-TCP control [99]

Calf bone marrow stromal cells Direct seeding on porous scaffold Cells attached on AK scaffold; no significant difference in cell proliferation and ALP activity
on AK scaffold compared to tissue culture plastic [69]

Human periodontal ligament cells Direct seeding on dense ceramic disks Enhanced attachment, proliferation, and osteogenic gene expression (OPN, DMP-1, OC) on
AK disk compared to β-TCP control [85]

Human adipose-derived stem cells Powder ionic extract

Slight inhibition of proliferation at high AK extract concentrations (25~100 mg/mL)
compared to no AK extract control; significantly enhanced ALP activity, mineralisation, and
OCN synthesis of cells in AK extract (25~50 mg/mL) compared to no extract control;
enhanced osteogenic gene expression (Cbfα1, ALP, OCN), but reduced Col1 expression
compared to no extract control; ERK pathway implicated in stimulation of osteogenic
differentiation

[94]

Human induced pluripotent stem cells Powder ionic extract
AK extracts had no cytotoxic effects or effects on cell stemness; enhanced ALP activity,
mineralisation, and osteogenic gene expression (ALP, BMP-2, Col1, OCN, Runx2) compared
to culture medium without AK extract, with optimal extract concentration at 1.56 mg/mL

[97]

Rat bone marrow-derived stem cells Powder ionic extract

Enhanced proliferation, ALP activity, osteogenic (Runx2, BMP-2, BSP, OPN, OC,
OPG/RANKL) and angiogenic (VEGF, ANG-1) gene expression, and inhibited TNF-α
expression of cells in AK extract (12.5 mg/mL) compared to β-TCP control; activated ERK,
P38, AKT and STAT3 pathways

[100]

Rat bone marrow macrophages Powder ionic extract Inhibited mature osteoclast formation and osteoclastogenesis (TRAP, cathepsin K, NFATcl)
compared to β-TCP control [100]

Human bone marrow-derived
mesenchymal stem cells Powder ionic extract Enhanced cell proliferation (at 0.78–3.1 mg/mL), ALP activity, and osteogenic gene

expression (OPN, Col1) compared to β-TCP extract [101]

Human aortic endothelial cells Powder ionic extract
Enhanced cell proliferation, nitric oxide synthesis, angiogenic gene expression (eNOs, KDR,
FGFR1, ACVRL1), and in vitro angiogenesis in AK extract (3.1~12.5 mg/mL) compared to
β-TCP extract and ceramic-free control

[101]



Materials 2017, 10, 153 19 of 37

Table 5. Cont.

Ceramic Cell Type Ceramic Morphology Main Findings Ref.

Co-akermanite
(Co-AK)

Mouse osteoblast-like cells (MC3T3-E1) Powder ionic extract Inhibited cell proliferation in Co-AK extract (6.25–200 mg/mL); enhanced ALP activity in
Co-AK extract of 0.78 mg/mL compared to β-CS [42]

Human umbilical vein endothelial cells Powder ionic extract
Inhibited cell proliferation in Co-AK extract (50–200 mg/mL); enhanced angiogenic gene
expression (VEGF, eNOs) and in vitro angiogenesis in Co-AK extract of 0.78 mg/mL
compared to β-CS

[42]

Diopside
(DS)

Human periodontal ligament cells and
human bone marrow-derived
mesenchymal stem cells

Powder ionic extract Enhanced proliferation of hPDLCs at 100–200 mg/mL compared to β-TCP and hardystonite;
enhanced OCN expression of hBMSCs at 50 mg/mL [95]

Human bone marrow
derived-mesenchymal stem cells Powder ionic extract Enhanced cell proliferation (at 1.6 mg/mL), ALP activity, and osteogenic gene expression

(OPN) compared to β-TCP extract [101]

Human aortic endothelial cells Powder ionic extract
No significant difference in cell proliferation, nitric oxide synthesis, angiogenic gene
expression (eNOs, KDR, FGFR1, ACVRL1), and in vitro angiogenesis compared to β-TCP
extract and ceramic-free control

[101]

Bredigite
(BD)

Human bone marrow-derived
mesenchymal stem cells Powder ionic extract Enhanced cell proliferation (at 0.39–3.1 mg/mL), ALP activity, and osteogenic gene

expression (OPN, Col1) compared to β-TCP extract [101]

Human aortic endothelial cells Powder ionic extract
Enhanced cell proliferation, nitric oxide synthesis, angiogenic gene expression (eNOs, KDR,
FGFR1, ACVRL1), and in vitro angiogenesis in BD extract (3.1~12.5 mg/mL) compared to
β-TCP extract and ceramic-free control

[101]

Human periodontal ligament cells Powder ionic extract

Enhanced cell proliferation at 6.25–25 mg/mL compared to tissue culture plastic; enhanced
ALP activity and osteogenic gene expression (ALP, OC, OPN, BSP, CAP, CEMP1) at 50
mg/mL compared to tissue culture plastic; shown to activate Wnt/β-catenin signalling
pathway

[96]

Hardystonite
(HT)

Human osteoblast-like cells Direct seeding on dense ceramic disks Cells adhered; significantly enhanced cell proliferation and ALP activity of cells on HT disks
compared to α-CS [81]

Human bone marrow derived
mesenchymal stem cells

Direct seeding on dense ceramic
disks; indirect co-culture of cells and
ceramic disk

Enhanced proliferation in indirect culture compared to β-TCP and tissue culture plastic,
while proliferation rate was lower for direct seeding; higher ALP activity on HT compared to
β-TCP; significantly higher osteogenic expression (Col1, ALP, OPN, BSP, OC) compared to
β-TCP for direct seeding

[102]

Human periodontal ligament cells and
human bone marrow-derived
mesenchymal stem cells

Powder ionic extract
Enhanced ALP expression of hBMSCs at 12.5 mg/mL compared to diopside and β-TCP;
enhanced antibacterial effect against E. faecalis compared to β-TCP, comparable antibacterial
effect with calcium hydroxide

[95]

Primary human osteoblasts Direct seeding on porous ceramic
scaffolds

Enhanced cell attachment and BSP gene expression for cells seeded on HT compared to
calcium silicate, while all other osteogenic genes tested (Runx2, OPN, OC, Col1, ALP)
showed insignificant difference or reduced expression compared to calcium silicate

[28]

Primary human osteoblasts Direct seeding on porous ceramic
scaffolds

Enhanced cell proliferation and ALP activity on HT scaffolds compared to β-TCP, and
enhanced OPN gene expression compared to tissue culture plastic [25]

Sr-hardystonite
(Sr-HT) Primary human osteoblasts Direct seeding on porous ceramic

scaffolds
Enhanced osteogenic gene expression (OC, BSP, OPN, Runx2) on Sr-HT scaffolds compared
to hardystonite scaffolds and tissue culture plastic [25]

Sphene
(Sph) Primary human bone-derived cells Direct seeding on dense ceramic disks Cells adhered; significantly enhanced cell proliferation and ALP activity of cells on

hardystonite disks compared to α-CS [40]
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Table 5. Cont.

Ceramic Cell Type Ceramic Morphology Main Findings Ref.

Baghdadite
(Bag)

Primary human osteoblasts Direct seeding on dense ceramic disks Enhanced proliferation, ALP activity, and osteogenic expression (Col1, ALP, BSP, OC,
RANKL, OPG) on Bag disks compared to α-CS [33]

Primary human monocytes Direct seeding on dense ceramic disks Bag disks supported osteoclast differentiation from monocytes as opposed to α-CS [33]

Human dermal microvascular endothelial
cells Direct seeding on dense ceramic disks Bag disks supported endothelial cell attachment and enhanced expression of VE-cadherin as

opposed to α-CS [33]

Primary human ostoblasts;
adipose-derived stem cells

Direct seeding on dense ceramic
disks; indirect co-culture

Bag disks showed enhanced osteogenic expression in HOBs (Runx2, BSP, OPN, OC) and
ASCs (Runx2, OPN); Bag shown to modulate cross-talk between HOBs and ASCs via BMP-2
pathway

[103]

Unactivated macrophages derived from
primary human monocytes

Direct seeding on porous scaffold;
indirect co-culture Bag disks promoted upregulation of genes related to pro-remodelling M2c phenotype [108]

Human periodontal ligament cells Direct seeding on dense ceramic
disks; powdered extract

Enhanced ALP activity, upregulated cementogenic and osteogenic gene expression, and
upregulated Wnt/β-catenin pathway-related genes compared to β-TCP for both direct and
indirect culture methods

[109]

Human osteoblasts Direct seeding on dense ceramic disks Enhanced attachment, proliferation, and ALP expression of cells on Bag disks compared to
α-CS [41]

Sr-Baghdadite
(Sr-Bag) Human osteoblasts Direct seeding on dense ceramic disks Enhanced attachment, proliferation, and ALP expression of cells on Sr-baghdadite disks

compared to α-CS, with optimal ALP expression at 0.7 mol % Sr substitution of calcium [41]

Cuprorivaite
(Cup)

Mouse osteoblast-like cells (MC3T3-E1) Powder ionic extract Cytotoxic at 25–200 mg/mL; inhibited ALP activity of cells cultured in 0.195–0.78 mg/mL
Cup extract compared to β-CS [35]

Human umbilical vein endothelial cells Powder ionic extract
Cytotoxic at 25–200 mg/mL; enhanced in vitro angiogenesis and VEGF expression of cells
cultured in 0.39–0.78 mg/mL Cup extract compared to β-CS extract and copper extract; has
antibacterial effects against E. coli

[35]

Gehlenite
(GLN)

Primary human osteoblasts Direct seeding on dense ceramic disks Enhanced cell attachment, proliferation, and osteogenic gene expression (Runx2, OPN, BSP,
OC) on GLN disks compared to biphasic calcium phosphate disks [34]

Mouse bone marrow macrophages Direct seeding on dense ceramic disks Promoted formation of TRAP-positive osteoclasts, and enhanced osteoclast attachment and
polarisation [34]

CS: calcium silicate; β-TCP: β-tricalcium phosphate; ALP: alkaline phosphatase; BSP: bone sialoprotein; Col1: collagen type I; OC: osteocalcin; OPN: osteopontin; VEGF: vascular
endothelial growth factor; OPG: osteoprotegerin; RANKL: receptor activator of nuclear factor kappa-B ligand; HIF: hypoxia inducible factor; DMP: dentin matrix acidic phosphoprotein;
TNF: tumour necrosis factor; ANG: angiopoietin; BMP: bone morphogenetic protein; TRAP: tartrate-resistant acid phosphatase; eNOS: endothelial nitric oxide synthase; FGFR1: fibroblast
growth factor receptor 1; ACVRL1: activin A receptor like type 1; CAP: catabolite activator protein; CEMP1: cementum protein 1; hPDLCs: human periodontal ligament cells; hBMSCs:
human bone marrow-derived mesenchymal stem cells; ASCs: adipose-derived stem cells; HOBs: human osteoblast-like cells.
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7. In Vivo Performance of DCSCs

The in vivo performance of several DCSCs (in the form of dense specimens or porous scaffolds)
has been investigated, as shown in Table 6. In general, all studies demonstrated improved bone
regeneration outcomes using DCSC implants compared to calcium silicate or calcium phosphate
controls. The DCSC implants were well tolerated in both small and large animal models, with no
evidence of inflammatory reactions or the formation of surrounding fibrous tissue. In particular,
porous scaffolds of hardystonite [25], Sr-hardystonite [25] and baghdadite (Figure 6) [71,110] achieved
complete or almost complete bridging of critical-sized defects by inducing the rapid growth of new
bone from the defect borders towards the centre. In addition, these scaffold implants encouraged
new bone growth into the macropores of the scaffold, thereby facilitating improved integration and
interactions between the scaffold and host bone. This was in contrast to the calcium phosphate controls,
for which bone growth was limited to the outside of the scaffold with minimal penetration of the
scaffold pores. Sr-β-CS [30] and akermanite [100] scaffolds also demonstrated increased new bone
volume and trabecular bone thickness, as well as enhanced in vivo degradation, compared to calcium
silicate and calcium phosphate controls.
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Figure 6. Baghdadite scaffolds achieved effective repair of a critical-sized segmental defect in the sheep
tibia, with (A) radiographic evidence of clinical union at the bone-scaffold interface; and (B) histological
evidence of significant and almost complete bridging of the defect, as well as bone infiltration and
remodelling within the scaffolds [110]. Adapted by permission of IOP Publishing, Copyright © 2016.

The available in vivo evidence on the performance of DCSC implants in a range of orthotopic
animal models suggests that DCSCs may achieve improved reconstructive outcomes in orthopaedic
applications compared to current bone substitutes composed of calcium phosphates or bioactive
glasses, which is supported by their favourable mechanical properties, degradation characteristics and
ability to enhance cell interactions as discussed in previous sections. Nevertheless, a limited number of
in vivo studies have been performed on DCSCs to date, which mostly involve small animal models (rats
and rabbits, with only one study performed in sheep [110]), relatively short implantation periods, and
mostly macroscopic or structural evaluations of bone regeneration outcomes (by gross examination,
radiography, µ-CT, and histology). Building on the available in vivo evidence, future preclinical
studies evaluating the efficacy of DCSC implants to predict their clinical performance can provide
more compelling information by (1) using large and clinically relevant animal models, and creating
defects which resemble those commonly encountered in clinical situations; (2) conducting the study
over longer time periods to evaluate the long-term outcomes of regeneration and in vivo degradation;
and (3) performing functional and biochemical evaluations (such as biomechanical testing, gene and
protein analyses) in addition to macroscopic and structural evaluations to enable full assessment of
bone reconstruction outcomes. The results of these studies will propel the development of DCSCs
as synthetic bone substitutes with improved properties for the clinical treatment of challenging
bone defects.
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Table 6. Summary of in vivo studies on DCSCs performed in a range of animal models using dense specimens or porous scaffolds.

Ceramic Implant Morphology Animal Model Implantation Period Main Findings Ref.

Sr-β-CaSiO3
(Sr-β-CS) Porous scaffolds Ovariectomised rat

calvarial defects 4 weeks

µ-CT analysis showed higher bone mineral density, trabecular
thickness, and bone volume/total volume ratio for Sr-β-CS
compared to β-CS; histomorphometric analysis showed higher
new bone area, blood vessel area, and faster in vivo
degradation for Sr-β-CS compared to β-CS

[30]

Akermanite
(AK)

Porous scaffolds Rabbit femoral defects 8 and 16 weeks

Fluorescence labelling showed no significant difference in
mineral apposition rate of new bone formation between AK
and β-TCP scaffolds; histomorphometric analysis showed
slightly higher new bone formation, and faster in vivo
degradation of AK scaffolds compared to β-TCP

[98]

Porous scaffolds Ovariectomised rat
calvarial defects 2, 4, 6 and 8 weeks

µ-CT analysis showed higher trabecular thickness and bone
volume/total volume ratio in AK scaffolds compared to β-TCP;
polychrome sequential fluorescent labelling showed enhanced
new bone growth and mineral apposition in AK scaffolds
compared to β-TCP; histomorphometric assay showed higher
new bone area and blood vessel area in AK scaffolds compared
to β-TCP

[100]

Diopside (DP)

Dense specimens Rabbit jaw bone defects 12 weeks Direct, gradient bonding between native bone and DP implant [52]

Dense spheres (1–1.5 mm
diameter) Rat femoral defects 2 and 4 weeks

Histological analysis showed new bone growth which formed
tissue bridges with DP spheres, slightly higher bone
regeneration score compared to β-TCP, and evidence of
dynamic endochondral ossification; quantitative analysis on
histology sections showed higher Col1 expression and similar
OPN expression compared to β-TCP

[111]

Hardystonite
(HT) Porous scaffolds Rat tibial defects 3 and 6 weeks

HT scaffolds showed new bone formation inside scaffold pores
in both the external cortex and internal medullary cavity, in
comparison to only external cortex for β-TCP control at both 3
and 6 weeks; limited in vivo resorption and limited ALP
activity compared to β-TCP

[25]

Sr-hardystonite
(Sr-HT) Porous scaffolds Rat tibial defects 3 and 6 weeks

Sr-HT scaffolds showed new bone formation inside scaffold
pores in both the external cortex and internal medullary cavity,
in comparison to only external cortex for β-TCP control at both
3 and 6 weeks; limited in vivo resorption but extensive ALP
activity compared to hardystonite and β-TCP

[25]
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Table 6. Cont.

Ceramic Implant Morphology Animal Model Implantation Period Main Findings Ref.

Baghdadite
(Bag)

Dense 1–1.5 mm diameter
spheres Rat femoral defects 2 and 4 weeks

Histological analysis showed new bone growth which formed
tissue bridges with Bag spheres, significantly higher bone
regeneration score compared to β-TCP, and evidence of
dynamic endochondral ossification with increased amount of
regularly arranged woven bone compared to diopside and
β-TCP; significantly higher Col1 expression and OPN
expression compared to diopside and β-TCP scaffolds

[111]

Porous scaffolds Rabbit radial segmental
defects 12 weeks

Radiographic analysis showed enhanced defect bridging for
Bag scaffolds compared to BCP scaffold; histological analysis
showed enhanced bone ingrowth into pores of Bag scaffold
compared to mostly peripheral bone growth for BCP scaffold;
histomorphometric analysis showed increased new bone
formation in Bag scaffolds (3.0 ± 3.1 mm2) compared to BCP
(1.3 ± 1.0 mm2) at the scaffold midpoint; observed evidence of
osteoclast-mediated resorption

[71]

Porous scaffolds Sheep tibial segmental
defects Up to 26 weeks

Radiographic analysis showed clinical union at the
bone-scaffold interface in all samples after 26 weeks;
biomechanical analysis showed that torsional strength of the
implant and associated bone reached ~10% of contralateral
intact tibia; histological analysis showed average 80% bridging
of the defect length in all samples, as well as new bone growth
inside the scaffold pores

[110]

CS: calcium silicate; β-TCP: β-tricalcium phosphate; BCP: biphasic calcium phosphate; Col1: collagen type I; OPN: osteopontin; ALP: alkaline phosphatase.
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8. Development of DCSCs for Broader Clinical Applications

Due to the unique combination of properties exhibited by DCSCs and their ability to encourage
osteogenesis, recent research has focused on diversifying the potential applications of DCSCs by
incorporating them into new material systems. DCSC-inorganic composites have been developed
to create constructs with enhanced mechanical properties. Polymer-DCSC composites have been
fabricated by using DCSCs for reinforcement inside a polymer matrix. Porous DCSC scaffolds have
been coated with a thin polymer-based layer to produce improved strength and toughness. Finally,
the potential of applying DCSCs as coatings on metal implants to enhance osseointegration has been
explored using titanium and magnesium alloys.

8.1. DCSC-Inorganic Composites

DCSC-inorganic composites can be fabricated by mixing and co-sintering DCSCs with another
inorganic precursor, resulting in materials with unique microstructures and enhanced mechanical
properties. Some studies have produced DCSC-inorganic composites with improved mechanical
behaviour due to the formation of an additional glassy phase at the grain boundaries. For example,
naturally-derived hydroxyapatite sintered with 10 wt % hardystonite resulted in increased density,
with the formation of glass bonds at the boundaries of hydroxyapatite and hardystonite which
contributed to improved compaction behaviour [112]. The co-sintering of hardystonite with calcium
silicate could produce highly porous scaffolds with porosity exceeding 86%, which exhibited a glassy
phase at the grain boundaries that was responsible for higher microstructural density and improved
compressive strength compared to both α-CS and hardystonite scaffolds [28]. Notably, the co-sintering
of Sr-hardystonite with 15 wt % alumina produced a multiphasic ceramic with a unique microstructure,
consisting of crystalline Sr-hardystonite grains with a wetting glass phase at the grain boundaries,
embedded within which were submicron gahnite (ZnAl2O4) crystals [113]. This microstructure was
responsible for significant enhancements in mechanical properties, as the glass phase prevented crack
propagation along the grain boundaries, and the submicron crystals also minimised microscopic
crack propagation within the glass phase by acting as crack deflectors. When fabricated into scaffolds
using the polymer sponge sacrificial template method, this ceramic (named Sr-HT-Gahnite) exhibited
high compressive strength (4.1 MPa at 85% porosity) and fracture toughness (7.4–10 MPa·m1/2)
which exceeded the mechanical properties of most calcium phosphates, bioactive glasses and DCSCs
at comparative porosities [113,114]. By utilising 3D printing for the fabrication of Sr-HT-Gahnite
scaffolds, a range of controlled pore geometries could be obtained which influenced the mechanical
properties of the scaffold. Hexagonal pores were found to give the highest compressive strength of
90 MPa at 70% porosity, which was within the reported range of values for cortical bone (Figure 7) [66].
Sr-HT-Gahnite scaffolds also exhibited high bioactivity and osteogenic ability both in vitro and in vivo,
which supported their development as an effective bone substitute [113,115].

Other studies have incorporated nano-sized components into DCSCs to produce DCSC-inorganic
composites with enhanced strength and toughness. Porous diopside scaffolds reinforced with 2 wt %
multi-walled carbon nanotubes (MWCNTs) exhibited significant improvements in compressive
strength (10 MPa to 20 MPa) and fracture toughness (1.5 MPa·m1/2 to 3.2 MPa·m1/2), and the
reinforcing mechanisms were identified as MWCNT crack deflection, crack bridging and pull-out [116].
Akermanite scaffolds reinforced with 1 wt % boron nitride nanosheets (BNN) also showed substantial
improvements in compressive strength (6 MPa to 12 MPa) and fracture toughness (1.9 MPa·m1/2 to
2.3 MPa·m1/2), due to BNN wrapping of the grains within the akermanite matrix and sheet
pull-out [117]. The incorporation of 5 wt % titania nanoparticles into akermanite scaffolds similarly
improved the compressive strength (3.5 MPa to 22.9 MPa) and fracture toughness (1.8 MPa·m1/2

to 2.3 MPa·m1/2), through mechanisms of grain size refinement, crack deflection, and transition
from intergranular to transgranular fracture mode [118]. Importantly, these studies also showed
that the incorporation of nano-sized components into DCSCs had no negative effects on in vitro cell
viability [116–118]. On the other hand, DCSCs have been used as the reinforcing phase to improve the
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biological activity of bioinert ceramics. For example, the incorporation of diopside microparticles into
alumina at 1 wt % and 20 wt % induced surface apatite formation in SBF, as well as dramatic increases
in flexural strength (130 MPa to 427 MPa) and fracture toughness (3.1 MPa·m1/2 to 4.3 MPa·m1/2) for
1 wt% diopside compared to unmodified alumina [119]. Similarly, the incorporation of 10 wt% diopside
microparticles into hydroxyapatite induced surface apatite formation in SBF, alongside increases in
flexural strength (27 MPa to 80 MPa) and fracture toughness (0.9 MPa·m1/2 to 1.2 MPa·m1/2) [120].Materials 2017, 10, 153  28 of 40 
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Figure 7. Sr-HT-Gahnite is a multiphasic ceramic produced by co-sintering of Sr-hardystonite with
15 wt% alumina. (A–D) Sr-HT-Gahnite scaffolds with a range of controlled geometries could be
fabricated by 3D printing, all of which exhibited a unique microstructure featuring (E) solid struts
and (F) three different phases. The (G) compressive strength and (H) flexural strength of 3D printed
Sr-HT-Gahnite scaffolds greatly exceeded the values exhibited by other bioactive ceramic scaffolds
at comparative porosities, and were within the ranges of values reported for human bone [66].
Reproduced by permission of the Nature Publishing Group, Copyright © 2016.

8.2. Polymer-DCSC Composites

Polymer-DCSC composites have been fabricated by incorporating DCSCs as a reinforcing phase
into polymer matrices. The DCSCs, which are often incorporated as micro- or nano-sized particles,
can enhance the biological properties of bioinert polymers due to their ability to release bioactive ions,
while simultaneously improving the mechanical properties of the polymer matrix. Several common
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synthetic polymers have been used to form composites with DCSCs, including polycaprolactone
(PCL), poly(glycolic acid) (PGA) and poly(lactic-co-glycolic acid) (PLGA). Porous PCL-akermanite
scaffolds (~90% porosity, ~100 µm pore size) were fabricated by loading akermanite powder into
the PCL matrix at different weight ratios [121]. The highest compressive strength was attained at
25 wt % loading of akermanite particles (~10 MPa), compared to the other groups (50 wt % loaded,
75 wt % loaded, and PCL control) which all exhibited similar strengths (~4.3 MPa). Nevertheless,
scaffolds loaded with 75 wt % akermanite particles showed the best biological activity when tested
using human adipose-derived stem cells (hASCs), which enhanced cell viability and osteogenic gene
expression (osteocalcin and alkaline phosphatase (ALP)) while reducing interleukin (IL)-6 expression.
Hardystonite and hydroxyapatite powders were mixed with PCL to produce composite nanofibres
by electrospinning (Figure 8) [122]. PCL-hardystonite nanofibres containing 40 wt % hardystonite
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(PCL); (B) PCL-hydroxyapatite (containing 40 wt % hydroxyapatite particles); and (C) PCL-hardystonite
(containing 40 wt % hardystonite particles). The PCL-hardystonite nanofibres exhibited the highest
tensile strength [122]. Adapted by permission of Elsevier, Copyright © 2013.

DCSCs have also been used to modulate the properties of naturally-derived polymers, including
silk fibroin, chitosan and gelatin, with the greatest changes often observed in the physical and structural
properties of the resulting composites. Nano-sized diopside powder incorporated at 20–40 wt % into
a silk fibroin matrix resulted in decreased porosity, increased compressive strength (~0.1 MPa to
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~0.4 MPa) and modulus (~1 MPa to ~4 MPa), and slightly improved proliferation of MC3T3-E1
cells [125]. Diopside particles incorporated into a chitosan matrix were found to reduce the water
retention capacity of the composite, while promoting the expression of osteogenic markers (ALP and
collagen type I) in MG-63 cells [126]. The incorporation of akermanite as nano-sized powder into
gelatin scaffolds was found to modulate the pore structure, mechanical properties and degradation
behaviour depending on the weight ratio of akermanite [127]. In all of these studies, changes in
porosity and water retention capacity of the natural polymer-DCSC composite is thought to be the
result of variations in gelation and cross-linking between the polymer chains during scaffold formation
due to ion release from the DCSCs.

The future development of polymer-DCSC composites can draw benefits from recent advances
in the fabrication and optimisation of biocompatible polymer blends, which can be used as potential
matrices for the formation of new composites. Some examples include PCL/poly(lactic acid)
(PLA) [128], poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/poly(L-lactic acid) (PLLA) [129],
and PCL/gelatin [130], which have been fabricated through advanced techniques such as additive
manufacturing, emulsion freezing/freeze-drying, and electrospinning. An important consideration in
the development of new polymer-DCSC composites is the effect of ceramic particle concentration on the
physicochemical properties of the polymer matrix. For polymer-ceramic composites containing micro-
or nano-sized ceramic particles, optimal mechanical properties are typically obtained at a threshold
particle concentration, above which the mechanical properties of the composite are negatively affected
due to issues such as agglomeration and particle-to-particle interactions [131–133]. This threshold
concentration is often determined experimentally, although some recent studies have developed
mathematical models to predict the effects of varying ceramic particle concentrations on the mechanical
properties of polymer-ceramic composites [134,135].

8.3. Coating of DCSC Scaffolds

A prominent issue encountered with the majority of ceramic scaffolds, including those composed
of DCSCs, is their inherent brittleness and poor ability to sustain the high compressive stresses
present in load-bearing bone defects. The low compressive strength and fracture toughness of ceramic
scaffolds are exacerbated at the high porosities which are desirable for encouraging bone regeneration.
The brittle failure of ceramic scaffolds under load is often the result of crack propagation from
microscopic defects, such as microcracks and micropores, on the surface of scaffold struts which act as
stress concentration points [136]. This can give rise to large amounts of loose ceramic particles at the
defect site, and induce an inflammatory response in a similar manner as prosthetic wear debris [137].
A simple and commonly employed method for improving the mechanical properties of ceramic
scaffolds is to fill the existing surface defects by coating the scaffold with a thin polymer layer.
The polymer coating functions in crack bridging and energy dissipation, thereby reducing scaffold
brittleness by lowering the chance of crack propagation under load [138]. The polymer coating is
applied by first dissolving the polymer in a suitable solvent, then dipping the ceramic scaffold
and subsequently evaporating the solvent to leave a thin layer of the polymer on the scaffold
surface. This method of reinforcement has been applied to several DCSC scaffolds to improve their
mechanical properties. For example, akermanite scaffolds coated with poly(D,L-lactic acid) (PDLLA)
showed significant increase in compressive strength that was proportional to the concentration of the
PDLLA solution used for coating [139]. At 70% porosity, PDLLA-coated akermanite scaffolds showed
compressive strength of ~4 MPa, compared to ~2 MPa for uncoated scaffolds. The PDLLA-coated
akermanite scaffolds also exhibited a reduced degradation rate which led to enhanced proliferation of
MC3T3-E1 cells. The improved biological activity of coated scaffolds was thought to be the result of
smaller pH changes and more controlled release of Ca, Si and Mg in the surrounding environment
due to the masking effect of the coating. In another study, baghdadite scaffolds were reinforced
using a modified PCL coating containing bioactive glass nanoparticles (nBG), where the nBG were
included to improve the biological activity of the coating (Figure 9) [71]. The coated scaffolds achieved
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a compressive strength of 1.1 MPa and failure strain of 7%, compared to values of 0.2 MPa and 0.5%
for unmodified scaffolds. In both small (rabbit) [71] and large (sheep) [110] animal models, baghdadite
scaffolds with the nanocomposite PCL-nBG coating achieved favourable outcomes of bone defect
repair which were comparable to unmodified scaffolds, and the coating was thought to have an
important role in maintaining initial mechanical stability after implantation.
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containing bioactive glass nanoparticles showed that (A) the scaffolds maintained a highly porous
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within the PCL [71]. Adapted by permission of Elsevier, Copyright © 2012.

8.4. DCSC-Coated Metal Implants

Titanium and its alloys (such as Ti-6Al-4V) are the most commonly used materials for hip and
knee implants, as well as bone plates and screws in orthopaedic and dental applications due to
their biocompatibility, good mechanical properties and corrosion resistance [140]. However, titanium
implants in clinical use are often unable to achieve sufficient osseointegration to establish a structural
and functional connection with the surrounding bone in the long-term. Consequent micro-movement
at the implant-bone interface can result in inadequate implant fixation and fibrous tissue formation,
ultimately leading to aseptic loosening and premature implant failure [141]. Hydroxyapatite coatings
are now commonly used on metal implants in hip and knee replacements to improve osseointegration
due to their chemical similarity to the mineral component of bone. However, hydroxyapatite coatings
are prone to delamination and fragmentation, due to unresolved issues such as poor coating adhesion
to the underlying metal and mismatch in thermal expansion coefficient between the coating and
implant [142]. Due to these existing problems, the application of DCSCs as orthopaedic implant
coatings has been explored. Along with calcium silicate, a range of DCSCs have been coated onto
titanium alloys and exhibited significant increases in bonding strength compared to hydroxyapatite
coatings. The bonding strength of DCSC coatings to the titanium substrate was generally within
the range of 25–45 MPa, including akermanite (42.2 MPa) [143], diopside (32.5 MPa) [144], sphene
(33.2 MPa) [145], baghdadite (28 MPa) [146], hardystonite (~26 MPa) [141], and Sr-hardystonite
(~35 MPa) [141]. In comparison, calcium silicate coatings on titanium showed bonding strength of
24–43 MPa [147,148], while hydroxyapatite coatings were within the range of 10–20 MPa [146,149].
The high bonding strengths of DCSC and calcium silicate coatings are favourable for maintaining
implant stability from a mechanical perspective. However, considering that the degradation behaviour
of ceramic coatings affects the ion release and pH of the surrounding environment, which directly
influence cellular interactions with the implant, the more chemically stable DCSC coatings are
preferred over calcium silicate coatings for long-term implantation. In particular, DCSCs which exhibit
slow degradation may be well suited for applications as implant coatings, such as diopside [36,70],
sphene [40], hardystonite [25] and gehlenite [34]. Sr-hardystonite is another favourable candidate,
as demonstrated by enhanced in vitro attachment and osteogenic activity of bone marrow-derived
mesenchymal stem cells when coated onto a titanium substrate compared to hardystonite-coated,
hydroxyapatite-coated and uncoated samples (Figure 10) [141]. In addition, samples coated with
Sr-hardystonite achieved the best outcomes of in vivo osseointegration in a canine femur model.
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Figure 10. Extracts of Ti-6Al-4V samples coated with Sr-hardystonite enhanced the osteogenic activity
of bone marrow-derived mesenchymal stem cells compared to extracts of hardystonite-coated and
hydroxyapatite-coated samples, as shown by (A) alkaline phosphatase staining; (B) quantitative
analysis of alkaline phosphatase activity; (C) Alizarin Red S staining; and (D) quantitative analysis
of calcium deposition activity [141]. (* p < 0.05; ** p < 0.01). Reproduced by permission of Elsevier,
Copyright © 2013.

Recent work on developing DCSCs as implant coatings has applied the technology on
implantable magnesium alloys, in order to reduce their fast corrosion rate and subsequent alkalinity
which negatively affect osseointegration and viability of the bone tissue surrounding the implant.
Hardystonite coating on a Mg-Ca-Zn alloy was found to reduce the corrosion rate and alkalinity
(pH ~10.5 to ~8.5), and enhance the in vitro viability of MC3T3-E1 cells compared to the uncoated
control [150]. AZ91 magnesium alloy coated with diopside showed significant reductions in corrosion
rate, magnesium ion release, and alkalinity (pH ~10.5 to ~8.5) [151], as well as enhanced in vitro
viability of L-929 fibroblast cells [152] and in vivo bone formation on the implant surface in the greater
trochanter defect of a rabbit model [153]. Similar results were obtained when the AZ91 alloy was
coated with akermanite [154–156].

9. Conclusions and Future Perspectives

DCSCs are a novel class of bioactive ceramics with a unique set of properties, which make
them suitable for use as synthetic bone substitutes with the potential to produce improved outcomes
compared to existing ceramic materials. The xCaO–ySiO2 system is highly versatile, enabling doping
with a range of ions and oxides to form different DCSCs with tailored properties depending on
(1) stoichiometric composition; (2) fabrication method; and (3) the role of the DCSC in composite
systems. The physicochemical properties of DCSCs, such as mechanical behaviour, degradation
and ion release characteristics, and radiopacity can be optimised to produce enhanced in vitro cell
interactions and in vivo bone regeneration outcomes. A number of DCSCs and DCSC-based composites
already display properties which satisfy the structural, mechanical and biological requirements for
bone regeneration at load-bearing defect sites, such as akermanite, baghdadite, Sr-hardystonite and
Sr-HT-Gahnite. In order to propel the translation of DCSCs into clinical use as solid or scaffold implants,
composites, and coatings, future investigations should focus on understanding the long-term biological
interactions with DCSCs in an in vivo setting. DCSC-based implants intended for clinical use should
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be tested in animal models with bone defects which are of similar structure and characteristics as those
encountered in humans. When evaluating the outcomes, it will be important to clarify the interactions
of bone-related cells with DCSCs and the pathways involved in generating an enhanced regenerative
response. Long-term studies will be necessary to monitor implant degradation and bone remodelling
over time and ensure the restoration of original bone architecture. In addition, the antibacterial activity
of certain DCSCs can be exploited to produce improved implants which minimise the risk of infection.
Such investigations will accelerate the development of DCSCs as the next generation of synthetic
bone substitutes.
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