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Introduction: It is believed that ovarian cancer (OC) is the most deadly form of
gynecological cancer despite its infrequent occurrence, which makes it one of the
most salient public health concerns. Clinical and preclinical studies have revealed
that intratumoral CD4+ T cells possess cytotoxic capabilities and were capable of
directly killing cancer cells. This study aimed to identify the CD4+ conventional T
cells-related genes (CD4TGs) with respect to the prognosis in OC.

Methods: We obtained the transcriptome and clinical data from the Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. CD4TGs
were first identified from single-cell datasets, then univariate Cox regression was
used to screen prognosis-related genes, LASSO was conducted to remove genes
with coefficient zero, and multivariate Cox regression was used to calculate
riskscore and to construct the CD4TGs risk signature. Kaplan-Meier analysis,
univariate Cox regression, multivariate Cox regression, time-dependent receiver
operating characteristics (ROC), decision curve analysis (DCA), nomogram, and
calibration were made to verify and evaluate the risk signature. Gene set
enrichment analyses (GSEA) in risk groups were conducted to explore the
tightly correlated pathways with the risk group. The role of riskscore has been
further explored in the tumor microenvironment (TME), immunotherapy, and
chemotherapy. A risk signature with 11 CD4TGs in OC was finally established in
the TCGA database and furtherly validated in several GEO cohorts.

Results: High riskscore was significantly associated with a poorer prognosis and
proven to be an independent prognostic biomarker by multivariate Cox
regression. The 1-, 3-, and 5-year ROC values, DCA curve, nomogram, and
calibration results confirmed the excellent prediction power of this model.
Compared with the reported risk models, our model showed better
performance. The patients were grouped into high-risk and low-risk
subgroups according to the riskscore by the median value. The low-risk group
patients tended to exhibit a higher immune infiltration, immune-related gene
expression and were more sensitive to immunotherapy and chemotherapy.
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Discussion: Collectively, our findings of the prognostic value of CD4TGs in
prognosis and immune response, provided valuable insights into the molecular
mechanisms and clinical management of OC.
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microenvironment, immunotherapy

Introduction

Among all gynecological malignancies, ovarian cancer causes
the most deaths, and it is estimated that ovarian cancer accounts for
5% of all cancer deaths in women. In 2023, There will be 19,710 new
cases and 13,270 new deaths because of OC in the United States (1).
The reason for death was mainly due to late-stage diagnosis (2).
Given the genetic and non-genetic risk factors of OC, OC was
considered a particularly challenging cancer to overcome. Over the
past few decades, a higher degree of radicality has been
implemented in ovarian cancer surgery (3). In addition,
homologous recombination repair deficiency (HRD) and BRACI1/
2 gene mutations testing also optimize PARP inhibitor (PARPi) use
aimed to improve the benefit of patients even in the most advanced
stages of the disease (4, 5). Although the treatments have reduced
OC-related deaths to a certain extent, patient outcomes remained
unfavourable. Therefore, it was necessary to develop new prognostic
signatures and molecular biomarkers.

As a result of comprehensive sequencing efforts over the past
decade, we have learned about the genomic landscape of common
forms of human cancer. Many studies have focused on the
promotion or inhibition of cancer genes. High throughput
screening, such as RNAi and CRISPR, were used to identify
cancer dependency genes and their relationships to genetics,
expression, regulatory mechanism, and therapeutic potential (6,
7). New immunotherapeutics have been developed due to advances
in cancer immunology (8, 9). Cytotoxic T cells were essential
effectors of anti-tumor immunity (9). Zheng et al. demonstrated
the tumor infiltrating T cell compendium, dynamics, and regulation
in many cancer types by single-cell RNA-seq (scRNA-seq). They
compared the phenotype and tissue distribution of CD8+ T cell and
CD4+ T cell among blood, normal tissue, tumor tissue. CD8+ T cell
has 17 different subclusters, such as ISG+CD8+ T cell and tissue-
resident memory T cells (Tyy). CD4+ T cell has 24 different
subclusters, such as IL26+Th17 and TNFRSF9+Treg. Terminally
differentiated effector memory (Tepr.) and naive T cells (T,) were
enriched in blood between CD8+ T cell and CD4+ T cell. Most
tested cancer types exhibited a notable degree of motility for both
CD8+ and CD4+ Ty cells between blood and normal or tumor
tissues. The classical CD4+ T cell marker were CD3D, CD3E,
CXCR4, IL7R, LTB, TRBC2 (10). While tumor killing was
considered to be CD8+ T cell function, the majority of previous
understanding of the functionality of CD4+ T cells came from
studies about anti-viral immunity (11, 12). CD4+ T cells recognized
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cognate viral antigens in a major histocompatibility complex class IT
(MHC class II) -restricted manner (13). Within the cancer context,
multiple lines of evidence pointed to an important role for CD4+ T
cells in immune responses to cancer immunotherapy (14-19). For
example, Martens et al. indicated that increased CD4+ T cell
percentages at 8-14 weeks positively correlated with the expected
pharmacodynamic effect (14). There was also more direct evidence
of the therapeutic benefits of CD4+ T cells in neoantigen
vaccination, with CD4+ T cell responsed to neoantigen vaccines
being more prevalent than CD8+ T cell responses (20, 21). CD4+ T
cells have also played a pivotal role in cancer induced by viruses.
The expression of the EBV signaling protein LMP1 in B
lymphocytes triggered CD4+ T cell responses against various
tumor-associated antigens (22). Thanks to the rapid development
of single-cell sequencing experiments and analytical techniques,
some studies found that CD4+ conventional T cells-related
IncRNAs signature was associated with hepatocellular carcinoma,
breast cancer prognosis, therapy, and tumor microenvironment (23,
24). However, few studies have focused on the prognosis of CD4+
conventional T cells-related genes in OC.

As a result of bulk sequencing, we averaged the genetic and
expression profiles of the different tumor subpopulations (25). New
technologies based on single-cell sequencing have opened new
avenues for understanding intra-tumoral heterogeneity and
capturing different tumor states with unprecedented resolution
and scale (26, 27). In the present study, based on bulk and single-
cell sequencing datasets, we established a prognostic signature based
on CD4TGs for OC. Clinical features, overall survival (OS),
progress-free survival (PES), tumor microenvironment,
immunotherapy, and chemotherapy were evaluated between high
and low riskscore subpopulations.

Materials and methods
Data acquire

We downloaded RNA-seq gene expression data of transcripts
per million (TPM) values, clinical information, and masked
annotated somatic mutation datasets of OC (tumor type was
high-grade serous ovarian cancer) from The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/). Only primary solid
tumor patients were kept in the analysis. Single-cell RNA-seq data
(GSE118828, GSE147082) and prognosis validation datasets
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(GSE26193, GSE63885, GSE140082) were obtained from GEO
databases (https://www.ncbi.nlm.nih.gov/geo/) (28-34). TCGA
data tpm value was log2(x+1) transformed and z-scored, GEO
matrix was z-scored.

Identifying CD4Tconv-related differential
expressed genes OC

The Tumor Immune Single Cell Hub 2 (TISCH2) was a
resource of single-cell RNA-seq (scRNA-seq) data from human
and mouse tumors, which conducted comprehensive
characterization of gene expression in the TME (35). We firstly
obtained CD4TGs from TISCH2 with the criteria (|log2FC| > 1 and
Adjusted p-value < 0.05). We then intersected the genes in two
scRNA-seq GEO datasets, the TCGA dataset, and three external
validation GEO datasets. 265 CD4TGs were harvested in the final.

Comprehensive analysis of single-cell
datasets and cell cluster annotation

scRNA-seq dataset analysis was performed using the R package
Seurat (v4.1.1) (36). UMAP analysis was done through Seurat’s
built-in function RunUMAP and umap-learn’s built-in algorithm,
and the Leiden algorithm. Finally, dimplot, featureplot, violin, and
dotplot were used for visualization. The metabolic scores of
different clusters of cell subtypes were calculated by the R package
scMetabolism with the method AUCell in reactome pathway (37).
The results of the scMetabolism calculations were integrated and
visualised with dotplot pheatmap to demonstrate the metabolism of
different clusters of cell subtypes. We also used AddModuleScore
function to calculate the risk score in cell subsets level and sample
level of the two single-cell GEO datasets.

Construction of CD4+Tconv-related genes
riskscore signature

To screen genes associated with OS in OC patients, univariate
Cox regression, least absolute shrinkage and selection operator
(LASSO) regression, and multivariate Cox regression were
executed sequentially to figure out eleven meaningful CD4
+Tconv-related genes. Based on their expression and
corresponding multivariate Cox regression coefficients, the
riskscore was calculated as follows:

Riskscore = Ymultivariate Cox regression coefficient (gene i) x
gene expression value (gene i). The patients were divided into high-
risk and low-risk subgroups by median riskscore in TCGA datasets.
We also randomly splited the TCGA dataset into train and test
datasets at a 1:1 ratio to predict OS by Kaplan-Meier (K-M) survival
analysis. The patients were divided into high-risk and low-risk
subgroups by best cutoff riskscore value (R package “survminer”) to
validate OS or PFS by Kaplan-Meier (K-M) survival analysis in
validation GEO datasets.
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Nomogram and calibration

In the whole TCGA dataset, time-dependent receiver operating
characteristic (ROC) curve analysis was conducted to determine the
prognostic value of riskscore over time. We also explored the role of
the riskscore in different clinical subgroups (age, grade, stage, tumor
residual size). The nomogram was constructed using multivariate
Cox regression analysis by integrating clinical information and
riskscore (R package “regplot”), and calibration curves were used
to check the accuracy of the nomogram. The clinical benefits
conferred by prognostic evaluation of the nomogram were further
compared using decision curve analysis (DCA).

Functional enrichment analysis

Tool GSEA v4.3.2 from the MSigDB database (http://
software.broadinstitute.org/gsea/msigdb/) was used to find the
highly related GO and HALLMARK pathways between high-risk
and low-risk subgroups based on the criterion of selection (FDR q-
value < 0.25, Nominal p-value < 0.05 and [NES| >= 1.5) (38, 39).

Tumor microenvironment and immune
infiltration level analysis

The “estimate” package was used to determine immune scores,
stroma scores, and estimate scores. The abundance of immune cells
was estimated using TIMER (40). Immunophenoscore (IPS)
derived from The Cancer Group Atlas(TCIA, https://tcia.at/
home) was used to predict the response to checkpoint blockade
(41, 42). A single-sample gene set enrichment analysis (ssGSEA)
was performed to quantify immune cells and immune function (R
packages: “GSVA” and “GSEABase”). Immune subtypes
information was derived from the previous study (43).

Drug sensitivity analysis

The origin data of chemotherapy response was from Genomics
of Drug Sensitivity in Cancer (GDSC version 2) (https://
www.cancerrxgene.org/) (44), and we downlaoded curated data
from https://osf.io/temyk. R package oncoPredict was used to
predict the chemotherapy response difference between high-risk
and low-risk subgroups (45).

Quantitative real-time PCR

RNA was extracted from ISOE, SKOV3, and A2780 cellines
using the Trizol and then reverse-transcripted into cDNA. Primers
were designed and obtained from the genewiz company. For real-
time PCR, cDNA was used as template, and the PCR reaction was
performed using QuantStudio(TM) 7 Flex System. The primer
sequences used were listed in Supplementary Table 9.
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Statistical analysis

All statistical analyses were performed by R software 4.2.2 or
GraphPad 8. p-value < 0.05 was deemed to be statistically significant
unless noted otherwise. Ns, *, **, *** and **** stand for p-value
>0.05, p-value <=0.05, pvalue <=0.01, pvalue <=0.001, and pvalue
<=0.0001, separately. Survival analysis was carried out using the R
packages “survival” and “survminer”. We used the Wilcoxon test
when comparing two groups and Kruskal-Wallis when comparing
more than two groups.

Results

The whole workflow of this study was shown in Figure 1. We
firstly obtained two single-cell sequencing (scRNA-seq) datasets
from online database, and intersected the significant differential
expression genes. Then TCGA bulk-seq data was used to screen
prognosis genes by univariate Cox regression. LASSO algorithm
was conducted to remove genes with coeffient zero. We furtherly
filter gene by stepwise Cox (direction = both), calculated gene
coeflients and finally built the risk model. We also made more
tumor prognosis-related analyses.

Analysis of OC single-cell sequencing data

Based on the TISCH2 database, we obtained two scRNA-seq
datasets, GSE118828 (SMART-seq2 platform) and GSE147082
(Drop-seq platform) and re-analysed using R package Seurat. The
markers for each cell type were listed in Supplementary Table 1 and
shown in Supplementary Figure S1. It was easy to find the classical
marker, CD3D, CD3E, CXCR4, IL7R mainly expressed on
CD4Tconv (CD4+ conventional T) subset (Supplementary
Figure 1). As shown in Figures 2A, B, 3A, B, we could find that

Single-cell Single-cell
data(GSE118828) ata( GSE147082)
Intersection of CDATeon-related genes (/log2FC|
> 1 and Adjusted p-value < 0.05)

Sereen prognosis genes by univariate Cox regression
Remove genes with coefficient zero genes by LASSO

[ Ry
ek

|

Development a prognostc signature
with CD4Teonv-relate

FIGURE 1
Workflow diagram. The specific workflow graph of data analysis of
the study

Frontiers in Immunology

10.3389/fimmu.2023.1151109

CD4Tconv ranked third proportion in two datasets, just behind
fibroblasts and malignant cells. In dataset GSE118828, the GSEA
analysis of KEGG pathways showed CD4Tconv was significantly
enriched in nature killer cell mediated cytotoxicity, T cell receptor
signaling pathway, JAK-STAT signaling pathway, complement and
coagulation cascades pathways (Supplementary Figures 2A, B). In
dataset GSE147082, the GSEA analysis of KEGG pathways showed
CD4Tconv was significantly enriched in nature killer cell mediated
cytotoxicity, JAK-STAT signaling pathway, T cell receptor signaling
pathway, ecm receptor inter pathways (Supplementary Figures 2C,
D). These results suggested that CD4Tconv played a vital role in OC
immunity-related pathways and was worthy of further study. We also
investigated the metabolic status of different clusters of cell types. The
result showed that CD4Tconv were enriched in metabolism of RNA,
metabolism of amino acids and derivatives, selenoamino acid
metabolism, phospholipid metabolism, pi metabolism, inositol
phosphate metabolism pathways in dataset GSE118828
(Supplementary Figure 3A). This same metabolism result was also
validated in dataset GSE147082 (Supplementary Figure 3B).

Development and validation of prognostic
signatures associated with CD4+TGs in OC

After intersecting the genes in two scRNA-seq GEO datasets, the
TCGA dataset, and three external validation GEO datasets. 265
CD4TGs were harvested finally. The genes list was in
Supplementary Table 2. We first used univariate Cox regression
analysis to screen significant genes in OS and found nineteen genes.
The list of the genes was in Supplementary Table 3, and the forest plot
was shown in Figure 4A. To narrow the list of the genes and get a
more robust model, we furtherly conducted the LASSO algorithm
according to the optimum lambda value and multivariate Cox
regression analyses (Figures 4B, C). eleven genes were selected and
generated the riskscore model in the final. The riskscore was
calculated as follows: riskscore = (0.678 * CD3D expression) +
(-0.897 * KLRBI1 expression) + (0.535 * ITK expression) + (0.827 *
IL2RB expression) + (-0.261 * CCR7 expression) + (-0.633 * ICOS
expression) + (-0.619 * TSC22D1 expression) + (-0.413 * IFNG
expression) + (-0.298 * DNAJA1 expression) + (-0.464 *
SPONT1 expression) + (-0.195 * MYLK expression). We splitted the
internal validation TCGA dataset into train and test datasets at a ratio
of 1:1. According to the median riskscore, OC patients were divided
into high-risk and low-risk subgroups in the TCGA dataset. The
results indicated that the high-risk group had a poorer prognosis in
the train, test, and whole datasets (Figures 5A-C). In addition, we
found the PFS also was significant between high-risk and low-risk
subgroups in the TCGA whole dataset (Figure 5D). To avoid the
difference of prognosis caused by the difference in clinical data, we
compared the clinical features (age, grade, stage, tumor residual size)
between high-risk and low-risk subgroups in the TCGA whole
dataset and found there was no significant difference (Figure 5E),
the statistic comparison result was in Supplementary Table 4. The
detailed clinical information was in Supplementary Table 5. Thus
proving the difference in prognosis was due to our risk signature
instead of the imbalance in clinical data grouping. Additionally, we
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evaluated riskscore in different clinical characteristics to further
develop the application. Age, stage III, stage IV, and R1 were
significant prognostic between high-risk and low-risk subgroups in
the TCGA whole dataset (Figure 5F). The above analyses were mostly
based on only the TCGA dataset. We seeked some external datasets to
validate the model to test the accuracy and robustness of the model. It
could be seen that the OS were all significant in three independent
GEO datasets based on the best cutoff in the riskscore, GSE26193 (p =
0.025), GSE140082 (p < 0.001), GSE63885 (p = 0.047) (Figures 6A—
C). We also found that the high-risk group has a poorer PES,
consistent with the TCGA whole dataset (Figure 6D). To test
whether A can be an independent prognostic factor, we combined
clinical features (age, grade, stage, tumor residual size) and our pre-
calculates riskscore into an integrated analysis. The univariate Cox
regression analysis result showed the riskscore was significant (p <
0.001), and the hazard ratio was 1.415 (95% confidence interval,

A
OV_GSE147082
™ ':’
fndothelial X j Celltype (major-I
8 Fil#oblasts [ ;]
@® CD4Tconv
*ﬂYOﬁbro_b Asts g‘g)o/Macro ® CDsT
v 3 " ~NTorolif © Endothelial
iy, Malign (E 4Tcony ® Fibroblasts
’ 4 - @ Malignant
L e ® Mono/Macro
¥ ® Myofibroblasts
@® Plasma
* @ ® Tprolif
Plasma
FIGURE 3

Ovary cancer single-cell data analysis based on the GSE147082 dataset. (A) The UMAP plots with cells coloured by cell type were displayed. (B) The

pie plot showed the cell number distribution of each cell type.
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1.228-1.631) (Figure 7A). The multivariate Cox regression analysis
result showed the riskscore was an independent significant prognosis
factor (p < 0.001), and the hazard ratio was 1.431 (95% confidence
interval, 1.240-1.652) (Figure 7B). Time-dependent ROC analysis was
performed to evaluate the predictive ability of the risk signature. The
area under the curve (AUC) values at 1, 3, and 5 years for predicting
OS were 0.716, 0.679, 0.746 in the TCGA train dataset, 0.643, 0.581,
0.526 in the TCGA test dataset, 0.684, 0.629, 0.638 in the TCGA
whole dataset respectively (Figure 7C). ROC curves were also
compared with other previous established risk models including a
panel of three IncRNAs signature (AC136601.1

LINC02273 AC011445.1) (46) (Supplementary Figure 4A), a
panel of five IncRNAs signature (GAS5, HCP5, PART1, SNHGI1,
SNHGS5) (47) (Supplementary Figure 4B), a panel of six IncRNAs
signature (AC006001.2, LINC02585, AL136162.1, AC005041.3,
AL023583.1, LINC02881) (48) (Supplementary Figure 4C), a

Malignant (3266)

Mono/Macro (657)
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/ Plasma (336)
e~ TPrOl (173)
‘ B (496)

CD4Tconv (733)

CD8T (191)
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Establishment of the CD4+ conventional T cells-related genes signature in ovary cancer. (A) Prognosis-associated genes were extracted by
univariate Cox regression analysis. (B) Ten-fold cross-validation for variable selection in LASSO regression analysis. (C) LASSO coefficient profile of

candidate genes.

panel of eight mRNAs signature (JAK2, IL2RG, EEF1E1, UBB,
EPS8, FOXO1, STAT5A, PAPPA) (49) (Supplementary Figure 4D),
a panel of twelve mRNAs signature (CLDN4, EPCAM, MCM3,
CXCL13, MIF, FOXO1, UBB, SEC22B, TCEAL4, ECI2, OGN, CFI)
(50) (Supplementary Figure 4E). By comparing

the area under the curve (AUC) of ROC in 1 year, 3 years and 5
years. The detailed risk genes expression, riskscore and risk group
were in Supplementary Table 6. We found that the predictive
performance of our signature exceeded all the above risk models.
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Analyzing and estimating nomogram and
risk gene expression

To predict the survival risk of OC patients and improve the
clinical utility of the risk model, we created a nomogram based on
all OC patients with riskscore and four other critical clinical features
of OC to calculate an integrated point for each patient in the TCGA
cohort. The result demonstrated that the nomogram point could
accurately quantify survival rates (Supplementary Figure 5A). The
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FIGURE 5

Prognosis value of the eleven CD4+ conventional T cells-related genes signature in the training, testing, and whole TCGA datasets. (A—C) Overall
survival (OS) analysis in the training, testing, and whole TCGA datasets. (D) Progress-free survival (PFS) in the whole TCGA dataset. (E) Clinical
information comparison between the high-risk and low-risk groups. (F) The prognostic value was stratified by the age, stage, and tumor residual size

between high-risk and low-risk subgroups in the whole TCGA dataset.

calibration curves showed that the actual OS rates at 1-, 3-, and 5-
year of patients and those estimated by the nomogram were close
(Supplementary Figure 5B). The decision curve analysis (DCA)
result suggested that the net rate of return for the OS rates evaluated
by the combined risk model performed better than the other clinical
characteristics (Supplementary Figure 5C). We explored the
expression levels of the genes selected for risk pattern analysis in
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two single-cell datasets GSE118828 and GSE147082 by dotplot and
violin plots (Supplementary Figures 6A-D). Consistently, most of
risk genes (such as CD3D, KLRBI1, ITK, CCR7 and ICOS) were up-
regulated in CD4Tconv, while other risk genes (such as TSC22D1,
SPON1 and MYLK) were down-regulated in CD4Tconv. The risk
score calculated by AddModuleScore function was displayed in cell
subsets level and sample level, CD4Tconv cells had relatively high
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External validation of the CD4+ conventional T cells-related genes signature by best cutoff riskscore value. (A—C) Overall survival (OS) analysis in
GSE26193, GSE140082, and GSE63885. (D) Progress-free survival (PFS) analysis in GSE63885.

level of risk scores (Supplementary Figures 6E, F). Besides, the
expression of risk genes was also analyzed in TCGA dataset
(Supplementary Figure 7A), along with validation cohorts
GSE63885 (Supplementary Figure 7B), GSE26193 (Supplementary
Figure 7C) and GSE140082 (Supplementary Figure 7D). We also
analyzed the risk gene expression in two ovarian cancer celllines
(SKOV3, A2780) and one normal ovarian celline (ISOE), the results
were in Supplementary Figure 8A.

Functional enrichment analysis of the 11
CD4TGs risk model

To examine differences in biological function between high-risk
and low-risk groups based on the riskscore. We first screened the
differential genes among high-risk and low-risk groups with the
following criteria: |logFC| > 0.5 and a false discovery rate (FDR) <
0.05. The differential gene expression comparison was shown in
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Figure 8A. The detailed differential genes information was in
Supplementary Table 7. GSEA software was used to search for
GO and HALLMARK terms across the whole TCGA dataset in
high-risk and low-risk groups with all genes comparison
information. The significant enriched GO terms in the low-risk
group were GOBP ALPHA BETA T CELL ACTIVATION, GOBP
ANTIGEN RECEPTOR MEDIATED SIGNALING PATHWAY,
GOBP IMMUNE RESPONSE REGULATING CELL SURFACE
RECEPTOR SIGNALING PATHWAY, GOBP IMMUNE
RESPONSE REGULATING SIGNALING PATHWAY, GOBP T
CELL RECEPTOR SIGNALING PATHWAY, GOCC T CELL
RECEPTOR COMPLEX, et al. (Figure 8B). The significant
enriched HALLMARK terms in the low-risk group were
HALLMARK ALLOGRAFT REJECTION, HALLMARK IL2
STAT5 SIGNALING, HALLMARK IL6 JAK STAT3
SIGNALING, HALLMARK INTERFERON ALPHA RESPONSE,
HALLMARK INTERFERON GAMMA RESPONSE, HALLMARK
PROTEIN SECRETION, et al. (Figure 8C).
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FIGURE 7

Riskscore as an independent prognostic factor. (A) Univariate Cox regression analysis of riskscore, age, stage, grade, tumor residual size. (B) Multivariate Cox
regression analysis of riskscore, age, stage, grade, tumor residual size. (C) 1-, 3-, and 5-year time-dependent receiver operating characteristic (ROC) curves of

the training, testing, and whole datasets, respectively.

The relationship between riskscore and
tumor microenvironment

It was essential to exploit the role of TME in ovarian cancer
progression and metastasis to discover novel therapeutics for this
deadly disease due to the successful drugs targeting TME. Figure 9A
showed the correlation between immune infiltration level and
riskscore based on the TIMER, CIBERSORT, CIBERSORT_ABS,
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms. It
was easy to find that most immune cell infiltration levels were
negatively correlated with riskscore (Figure 9B, Supplementary
Table 8). Such as Macrophage M1, T cell CD4+ memory resting,
and T cell follicular helper by algorithm CIBERSORT-ABS, T cell
regulatory (Tregs) by algorithm QUANTISEQ (Figure 9B). We
assessed immune scores and estimate scores in OC based on the
estimate algorithm, and we found that low-risk groups tended to have
higher scores (Figure 9C). Additionally, we used the ssGSEA to
examine the distribution of immune cell infiltration and the
enrichment of immune-related functional pathways in high-risk and
low-risk subgroups, it was obvious that the majority of immune cell
infiltration levels were significantly higher in the low-risk group and
immune-related functional pathways were significantly enriched in
the low-risk group (Figures 9D, E). We also found almost all immune
checkpoints exhibited higher expression in the low-risk group, such as
CD274, CD28, and LAG3 (Figure 9F). Human leukocyte antigen
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(HLA) genes were essential in antigen presentation. Our results also
implied that most HLA genes had high expression levels in the low-
risk group (Figure 9G). Thorsson et al. dentified six immune subtypes
in 33 diverse cancer types, which was a resource for exploring
immunogenicity in cancer. There was a significant immune
subtypes composition difference between high-risk and low-risk
groups (Figure 9H), indicating the different TME among the two
risk groups. The above results proved that the riskscore was closely
related to TME and time in OC patients. Therefore, we further
explored the role of riskscore in immunotherapy through the TCIA
database. The results indicated that the patients in the low-risk group
were more sensitive to immunotherapy (Figures 91-K).

Mutation and chemotherapeutic
drug responses

We assessed the top fifteen mutated genes in both risk groups. The
oncoplot presented that most genes had different mutation frequency
in the low-risk than high-risk group, such as genes APOB, FLG2 had
higher mutation frequency in the low-risk (Supplementary Figures 9A,
B). We also evaluated chemotherapeutic drug responses in patients of
two groups. The results showed that chemotherapeutic drugs had lower
half-maximal inhibitory concentration (IC50) in the low-risk group,
such as ML323, Pictilisib, and Ruxolitinib (Supplementary Figures 9C).
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FIGURE 8
Gene set enrichment analyses (GSEA) of the Risk Groups. (A) Differential
gene expression levels between high-risk and low-risk groups. (B)
Highly enriched GO terms in the low-risk group. (C) Highly enriched
Hallmark pathways in the low-risk group (all p < 0.05; FDR <0.25;

INES| > 1.5). ns, p > 0.05; *p <= 0.05; **p <= 0.01; ***p <= 0.001;
*Frkp <= 0.0001.

Discussion

In the world, OC is the leading cause of mortality among
gynecologic malignancies with a high mortality on incidence ratio,
accounting for the greatest proportion of gynecologic cancers.
Although after primary treatment with surgery resection and
chemotherapy, most patients achieved a complete response, 65-80%
succumbed to recurrence with chemotherapeutic resistance in the first
five years. In the past two decades, growing evidence suggested that
immunotherapies have been widely used in the clinical treatment of
various tumors. Despite treatments in cancer vaccines (such as BVX-
0918), immune modulators (such as checkpoint inhibitors and
cytokines), targeted antibodies (such as monoclonal antibodies),
adoptive cell therapy (such as chimeric antigen receptor (CAR)- and
TCR-engineered T cells) have been rapidly developing,
immunotherapy response rates among ovarian cancer patients
remained modest. Therefore, there was still a need to explore other
biomarkers that may facilitate the not responded patients. The
combination of therapeutic immunotherapy and chemotherapeutic
therapy may improve treatment efficiency significantly.

Cytotoxic T cells were essential effectors of anti-tumor
immunity. CD4+ T cell refered to a population of T lymphocytes
which exhibited T cell receptors (TCRs) that specifically recognized
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peptide antigens presented in association with Class II major
histocompatibility complex (MHC II) molecules. CD4+ T cell
were remarkably versatile and possessed multifunctional
characteristics. These cells made up the secondary component of
adaptive T cell-mediated immunity. In response to signals that
varied based on the situation, CD4+ T cells had the ability to
differentiate into multiple distinct functional subtypes. In response
to signals that vary based on the situation, CD4+ T cells have the
ability to differentiate into multiple distinct functional subtypes (51,
52). Much of the previous studies have put the focus of research on
CD8 T cell instead of CD4 T cell function in cancer (53-55). Most
insights into CD4+ T cells have focused on anti-viral immunity and
autoimmunity, such as human cytomegalovirus (56, 57), epstein-
barr virus (58), and autoimmune encephalomyelitis (59). In recent
years, multiple studies have demonstrated that CD4+ T cells are
critical to the response to cancer immunotherapy. Kwek et al.
revealed pre-existing levels of PD-1+CD4+ T cells instead of CD8
+ T cells in the circulation associated with improved overall survival
in prostate cancer patients treated with ipilimumab (15). Cohen
first discovered that B cell maturation antigen-specific chimeric
antigen receptor (CAR) T cells reponse were positively associated
with higher premanufacturing CD4/CD8 T cell ratio in multiple
myeloma (18). The neoantigen vaccination derived from RNA-seq
and whole-exome sequencing datasets that were currently of
interest to major pharmaceutical companies, the neoantigens
recognized by CD4 T cell and MHC class II-restricted manner
played a vital role in the recovery of cancer patients (60, 61).
Currently, there have been many predictive signatures
developed to predict patient prognosis outcomes for a better
understanding of precision genomic medicine. Such as immune-
related genes risk signature in glioblastomas (62), cuproptosis-
related genes risk signature in hepatocellular carcinoma (63),
ferroptosis-related genes signature in hepatocellular carcinoma
(64). However, there were a handful of known studies with CD4
T cells related signatures, such as CD4+ conventional T cells-related
IncRNA signature in breast cancer and hepatocellular carcinoma
prognosis (23, 24). Recent applications of scRNA-seq in dissecting
TME have allowed a detailed understanding of the biology of
tumor-infiltrating immune cells properties of heterogeneity and
potential roles in both tumor progression and response to immune
checkpoint inhibitors and other immunotherapies. In the present
study, we constructed a novel risk signature to predict prognosis
and survival for OC based on the CD4+ conventional T cells-related
genes based on scRNA-seq and TCGA bulk-seq datasets. Internal
validation was conducted firstly by splitting the TCGA bulk-seq
datasets into train and test at a ratio of 1:1. We then validated the
risk signature OS and PFS in another three GEO datasets. This
result proved that our risk signature was robust. The risk signature
was an independent prognostic factor through multivariate Cox
regression analysis. Nomogram was used to improve the clinical
unity of riskscore. Calibration curve, DCA, and ROC were
performed to test the accuracy of the risk signature. Furthermore,
we compared our model with some models reported in the past and
found our model was better in 1 year,found our model was better in
1 year, 3 years and 5 years. We also found that there were significant
differences in the expression of many immune checkpoint genes
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expression, some of which promoted immunity and some inhibited
immunity. Among them, the survival condition of patients in the
high-risk group was even worse, which may be due to the formation
of an immunosuppressive microenvironment in this group of
patients.We also expanded the risk signature to immunotherapy
by thoroughly analysing the TME status difference between high-
risk and low-risk groups. Chemotherapeutic drugs were also
examined among high-risk and low-risk groups.

However, this study had certain limitations. Firstly, the present
findings require further prospective validation by multicenter study
cohorts. Secondly, further study of the functions and molecular
mechanisms of these 11 CD4TGs in combination with more in vitro
and in vivo experiments were required in OC. Nonetheless, we
provided clues to identify CD4TGs that could be used as potential
prognostic biomarkers and therapeutic targets with a good clinical
prediction value.

Conclusion

Overall, we identified 11 CD4TGs involved in a risk model as a
biomarker in OC based on scRNA-seq datasets, TGCA bulk-seq
datasets and GEO probe datasets. Significant differences in survival
rate and TME status were observed between the high-risk and low-risk
groups, thus implying useful information for predicting clinical
outcomes and may become a therapeutic target for patients with OC.
As the nature of cancer immunotherapy was increasingly revealed, our
study may provide new ideas on the role of CD4TGs in treating OC.
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SUPPLEMENTARY FIGURE 1

The expression of classical markers across different subsets in two single-cell
RNA-seq datasets. (A) The expression of some classical markers on dotplot,
(B) umap, (C) violin plots across different cell subsets in dataset GSE118828.
(D) The expression of some classical markers on dotplot, (E) umap, (F) violin
plots across different cell subsets in dataset GSE147082.

SUPPLEMENTARY FIGURE 2

Functionally enriched KEGG pathways. (A) The heatmap showed functionally
enriched up-regulated KEGG pathways identified based on differential genes
in each cell type in dataset GSE118828. (B) The heatmap showed functionally
enriched down-regulated KEGG pathways identified based on differential
genes in each cell type in dataset GSE118828. (C) The heatmap showed
functionally enriched up-regulated KEGG pathways identified based on
differential genes in each cell type in dataset GSE147082. (D) The heatmap
showed functionally enriched down-regulated KEGG pathways identified
based on differential genes in each cell type in dataset GSE147082.

SUPPLEMENTARY FIGURE 3

The single-cell metabolic features of cell subsets. (A) The metabolic status of
different clusters of cell types in dataset GSE118828. (B). The single-cell
metabolic features of cell subsets in dataset GSE147082.

SUPPLEMENTARY FIGURE 4

The ROC of other previous established risk models at 1 year, 3 years and 5
years. (A) 3 IncRNA risk model. (B) 5 IncRNA risk model. (C) 6 IncRNA risk
model. (D) 8 mRNA risk model. (E) 12 mRNA risk model.
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SUPPLEMENTARY FIGURE 5

Analyzing and Estimating Nomogram. (A) Nomogram that integrated the
riskscore, age, grade, stage, and tumor residual size predicted the probability
of the 1-, 3-, and 5-year OS. (B) Calibration curves analysis for 1-, 3-, and 5-
year OS. (C) decision curve analysis (DCA) of the nomogram in TCGA whole
dataset for evaluating the clinical usefulness in 1-year OS.

SUPPLEMENTARY FIGURE 6

The expression levels of the genes selected for risk pattern analysis in single-cell
dataset. (A) In single-cell dataset GSE118828 by dotplot. (B) In single-cell dataset
GSE118828 by violin plot. (C) In single-cell dataset GSE147082 by dotplot. (D) In
single-cell dataset GSE147082 by violin plot. (E) The risk score calculated by
AddModuleScore function was displayed in cell subsets level in datasets
GSE118828 and GSE147082. (F) The risk score calculated by AddModuleScore
function was displayed in sample level in datasets GSE118828 and GSE147082.

SUPPLEMENTARY FIGURE 7
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