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Abstract 

Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for 
squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape 

of the tumor cells. Increasing evidence suggests that the onset, progression, and lack 

of/no response of HNSCC to ICI are emergent properties arising from the interactions 

within the tumor microenvironment (TME). Deciphering how the diversity of cellular and 

molecular interactions leads to distinct HNSCC TME subtypes subsequently governing 

the ICI response remains largely unexplored. We developed a cellular-molecular model of 

the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and 

molecularly mediated paracrine interactions. An exhaustive simulation of the HNSCC TME 

network shows that distinct mechanistic balances within the TME give rise to the five 

clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic 

only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond 

a critical proliferation rate, drastically worsens the ICI response by hampering the 

accessibility of the CD8+ killer T cells to the tumor cells. Our analysis reveals that while 

an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune 

desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with 

ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-

8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. 

Overall, we provide an integrated quantitative framework that explains a wide range of 

TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific 

targets that can lead to an improved ICI outcome.  
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Introduction 
 
Squamous cell carcinoma of the head and neck (HNSCC) is a collection of head and neck 

cancers typically initiated from the mucosal cells in the larynx, pharynx, and oral cavity 

(1,2). Recent clinical observations suggest that the response to immunotherapy strongly 

correlates with the cellular composition of the associated tumor microenvironment (TME) 

(3,4). These observations necessitate elucidating the non-tumor cells' precise role in the 

survival and growth of tumor cells. The existing targeted therapies focusing on the intrinsic 

signaling factors within the tumor cells underplay the prospect of the TME functioning as 

a 'networked system' with emergent properties (5–7). On the other hand, immunotherapies 

such as immune checkpoint inhibitors (ICI) attempt to strengthen the immune response of 

the TME through the elimination of specific molecular programs (such as programmed 

death-1 (PD1)/ programmed death ligand-1 (PDL1) or α-CTLA4) crucial for the immune 

escape of tumor cells (8). Although the ICI treatments, under certain conditions, yield 

favorable outcomes, the majority of the HNSCC patients remain non-responsive to ICI 

treatment, indicating the need for the analysis of the interactions of the TME components 

(tumor, immune, and fibrotic) towards a comprehensive understanding of the possible 

mechanisms for insensitivity to immunotherapy.   

 

Mathematical modeling of the tumor cell population can provide a quantitative 

understanding of the role of TME constituents and estimate the patient-specific anti-cancer 

dosage amount (9). Swan (1995) proposed that designing the chemo-dosage to reduce 

the tumor size with minimum side effects (loss of healthy tissue) amounts to solving an 

optimal control problem (10). Although recent studies have proposed model-free 

mechanisms for solving data-driven optimal control problems, they lack explainability and 

fail to answer pertinent questions about understanding therapy resistance (10,11).  

  

Depending on the granularity, the existing mathematical models can be divided into at 

least three distinct categories— i) gene level, ii) cell population-based, and iii) cell-state 

transition networks. The gene-level modeling begins with the underlying gene regulatory 

network of the cell in consideration (tumor cells in this context) (12–14). The multi-state 

nature of the dynamical system constituted from modeling the gene regulatory networks 
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points to the existence of different cell states and their distinct responses to therapeutic 

strategies (15). In a stochastic setting, a non-zero transition probability (governed by 

mutations and intercellular interactions) may exist for each trajectory in a particular cell 

state's neighborhood to gravitate toward a different cell state (12, 16-19). Modeling a gene 

regulatory network requires dealing with a large dimensional system with highly non-linear 

dynamics, making the model less intuitive and inconvenient for theoretical interventions. 

Extending the scope of the gene-level analysis to the 'non-tumor' cells is computationally 

taxing due to the large dimension of the system. Therefore, although the gene-level 

analysis inspires novel targeted therapies focused on the tumor cells, a TME-wide 

understanding may not be feasible with this framework. 

 

Cell-population-based networks overcome the dimensionality issue at gene levels by 

modeling the interaction between different cell types and the response of tumor cells to 

anti-tumor therapies (20–23). Cell-level modeling primarily focuses on analyzing the 

response to a particular treatment regime. In chemotherapy-based modeling, the cell-level 

models involve the external drugs and the tumor cell population (20,24). In contrast, an 

immune-therapy-centric model revolves around the killer T-cells and the tumor cells (22, 

23). The cell population-based models do not capture the inherent complexity in reliable 

detail. For instance, as discussed above, each cell type can have multiple distinct cell 

states with functionally opposite effects on the growth of the tumor cells. Cell-type 

population modeling cannot capture this inherent complexity, thereby failing to explain 

some peculiar therapeutic outcomes.  

  

The development of high-throughput, single-cell transcriptomic analysis has made it 

possible to identify discrete cellular states. Further, the existing biological knowledge and 

transition path theory-based algorithms are also used to create conversion links between 

the cellular states, thereby paving the way for a cell-state-based network representation 

(16). The cell state models begin with different cellular states of a given cell type. The 

cellular states for each cell type can transition among themselves in the presence of 

specific biological promoters (25). For instance, in the epithelial-to-mesenchymal 

transition (EMT) program, the epithelial cell states convert to mesenchymal cells in the 

presence of several pro-inflammatory cytokines (26). Further, two distinct cell states from 
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different cell types can affect the proliferation of each other via either paracrine interactions 

or cytokine secretions (27– 29). The possible cell states for a given cell type are evaluated 

from the single-cell RNA sequencing data literature. Based on the expression of marker 

genes, tumor cells can be divided into multiple distinct expression states depending on 

the type of cancer. For instance, in HNSCC, Puram et al. (2017) have identified seven 

different HNSCC tumor cell states, namely cycling (G2/M, G1/s), partial EMT, hypoxia, 

epithelial differentiation (1,2), and stressed from the single RNA sequence data of 6000 

single cells collected from 18 patients (30). A similar pattern of cell state multiplicity has 

also been discovered from melanoma patients' single-cell RNA sequence analysis (4). 

Like tumor cells, single-cell datasets also indicate multiple cell states for non-tumor cells 

such as T cells, fibroblasts, and macrophages.  

  

The cell-state transition models, by design, can potentially circumvent the explainability 

issues encountered in cell population-based models. Further, since the number of cell 

states represents the cardinality of the attractor sets in the underlying regulatory dynamics, 

the model's dimensionality is reduced from the gene-level models (15). Although several 

scholarly interventions have attempted to propose cell state models in the context of 

cancer, extension of the same to the entire TME for cancer (particularly HNSCC) remains 

an open area of study. 

 

Considering the limitations and possibilities of different modeling paradigms, this work 

operates at the cell state level, wherein we reconstruct an essential interaction atlas for 

HNSCC based on an extensive literature survey. In the state space form, we represent 

the population and concentration of the cellular states and molecular species. Via an 

exhaustive scanning across the model parameter space, we identify five distinct stationary 

TME compositions that resemble the well-known, clinically verified TME subtypes, such 

as immune/fibrotic, immune/non-fibrotic, non-immune/fibrotic, and desert. Further, our 

investigation shows the immune/fibrotic composition can further be classified into two 

subcategories: fibro-dominated (fibro-rich) and immune-dominated (immune-rich). We 

observe that the quantitative balance between cancer-associated fibroblasts (CAF)-tumor 

interactions and the cytotoxicity of the killer T cell governs the post-ICI outcome in fibro 

and immune-dominated scenarios. While the immune desert TME, in most of the 
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scenarios, remains insensitive to the ICI therapy, the immune-dominated HNSCC TME is 

characterized by a significant reduction of tumor cells and CAF compared to its pre-ICI 

population. The fibro-dominated TME, due to CAF-induced remodeling of the extracellular 

matrix, alters the accessibility of the killer T cells to the tumor cells. Our models suggest 

that a one-time IL-2-based intervention, beyond a critical T cell proliferation rate, can 

overcome the ICI insensitivity posed by an immune desert TME. We identify cytokines 

such as OPN and LIF as important targets to improve the ICI response of a fibro-

dominated scenario. Finally, IL-8 and lactate show distinct signatures across different 

HNSCC TME subtypes identified by the model, indicating the potential to be considered 

essential biomarkers for therapy resistance. 

 

Results 
 

Fig. 1. Construction of cell-state specific tumor-microenvironment network for 
HNSCC: We begin with the relevant cell types in a HNSCC TME obtained from the 

literature. The existing cell-type-specific models do not capture the interactions reliably, 

for mutually opposite effects may exist between two cell types (e.g., T cells and tumor 

cells). Subsequently, the literature on single-cell studies of HNSCC TME reveals the 

functionally distinct cellular states for different cell types (Puram et al. (2019), Bagaev et 

al. (2021)). Similarly, we searched for the possible interactions between different cell 

states of interest to establish a cell-state interaction network. Further, we considered 

relevant molecular species from the HNSCC literature that affect the population of 

individual cell states. 

 

We reconstruct the overall TME network structure for HNSCC from an extensive survey 

of the existing literature (30-90). As shown in Figure 1, from the perspective of 
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immunotherapy (specifically anti-PD1 therapy), the tumor cells are divided into three 

different cellular states, namely, 1) stem, 2) without Programmed death ligand-1 (PDL1) 

expression (PDL1−), and 3) with PDL1 (PDL1+). The T cell modules contain three different 

cell types with four distinct cellular states obtained from the single cell RNA sequence 

(scRNA-seq) analysis of the HNSCC TME by Puram et al. (2017). The CD8+ cytotoxic 

killer T cells, CD4+ helper T cells, CD4+ CD25+ regulator T cells, and CxCL13+ exhausted 

T cells. Fibroblasts are found in two different cellular states, namely, the wild-type 

fibroblasts that partake in either a tumor-suppressing role or remain quiescent. However, 

the wild-type fibroblasts, at a later stage of tumor development, may transition into an 

invasive phenotype that promotes the growth of tumor cells and alters the T to tumor cell 

accessibility. Similarly, the present work considers two different macrophage states based 

on their polarities. Finally, the proposed network incorporates eight different molecular 

species (chemokines, cytokines, and metabolites), namely- Interleukins (IL) IL-2, IL-8, IL-

10, Interferon Gamma (IFNG), Osteopontin (OPN), Interferon regulatory factor 8 (IRF8), 

Leukemia inhibitory factor (LIF), and Lactate (Lac).  

  

With the modeling rules and assumptions declared in the methodology section, the 

proposed model develops into a dynamic system with twenty-four states and ninety-one 

parameters. The state variables denote the population (concentration) of the different cell 

states (molecular species). The assumption of spatial homogeneity translates to a system 

of ordinary differential equations (ODE). 
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Fig. 2. Explaining the phenotypic heterogeneity of the HNSCC TME. (a) The nodes 

are either the cell states or the molecular species, whereas the edges represent diverse 

forms of interactions. The acronyms C_0, C_PDL1+, and C_PDL1- refer to stem, PDL1+ 

(programed death ligand1), and PDL1- tumor cells, respectively. T_K+, T_K-, T_Help, 

T_Reg, and T_Ex stands for PD1+ (programmed death 1), PD1- killer T cells, Helper T 

cells, Regulatory T cells, and Exhausted T cells, respectively. M_1 and M_2 refer to 

macrophages of M1 and M2 phase, respectively. Further, F_WT and CAF correspond to 

wild-type and invasive cancer-associated fibroblasts, respectively. The acronyms IL-2, IL-

8, IL-10 LIF, IFNG, IRF8, OPN, ICAM1, and Lac denote Interleukin-2, Interleukin-8, 

Interleukin-10, Leukemia Inhibitory Factor, Interferon Gamma, Interferon Regulatory 

Factor-8,  Osteopontin, Intercellular Adhesion Molecule-1, and Lactate, respectively. (b) 
We simulated the dynamics for 10,000 parameter combinations based on the 

reconstructed network system to obtain the possible steady-state clusters. We found five 

distinct clusters: desert, immune desert, fibro desert, immune-dominated, and fibro-

dominated. (c-g) Bar charts for the median population of tumor cells, killer T cells, and 

CAF population across different cohorts. The lower and upper intervals indicate the 25% 

and 75% quartiles, respectively.  
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Classification of TME compositions: To find out the possible TME compositions, we 

simulated the HNSCC TME system in Figure 1, with ten thousand different parameter sets 

pertaining to the growth, proliferation, conversion, and death fluxes for CAF, Killer T, tumor 

cell population. We have also repeated the exercise in the scenario of competitive 

resources for five different maximum resource capacities. Interestingly, we observed that 

resource competition provides a better overall outcome than fixed resource rates (Fig. 

S2). However, in both scenarios (fixed and competitive resources), we observe five distinct 

cohorts in the CAF-tumor-killer T cell landscape. The non-desert TME compositions can 

have two different varieties, namely, fibro-dominated, and immune-dominated. A fibro-

dominated TME (cohort 1 of Fig. 2(b) and 2(c)) is identified with an elevated level of CAF 

population and tumor cell population compared to the killer T cells. 

 

Meanwhile, the immune-dominated TME lacks the population of PDL1 tumor cells and 

contains a strong presence of cytotoxic T cells (cohort 2 of Fig. 2(b) and 2(d)). 

Interestingly, the immune and fibro-dominated TME contains similar levels of immune and 

CAF cells. Therefore, it is not the abundance of CAF and immune cells but the balance 

between the tumor-promoting role of CAF and the cytotoxicity of killer T cells that 

determines the tumor cell population, which serves as the crucial distinguishing factor 

between the two TME phenotypes. Further, the ratio between the PDL1- to PDL1+ tumor 

cells can be a potential biomarker for distinguishing two distinct TME phenotypes.  

   

 On the other hand, the desert phenotypes are identified as having zero or very few 

immune systems or (and) CAF population. Owing to the absence of the CAF population, 

the immune/non-fibrotic TME composition (cohort 3 of Fig. 2(b) and 2(d)) is characterized 

by a lower tumor cell count compared to the immune desert scenario (cohort 4 of Fig. 2(b) 

and 2(e)). We observe that although the immune-dominated, immune/non-fibrotic, and 

desert arrangements can be characterized with a lower tumor cell population compared 

to the fibro-dominated and immune-desert phenotypes (cohort 5 of Fig. 2(b) and 2(f)), the 

HNSCC TME is never completely depleted of the tumor cells in the pre-ICI setting primarily 

due to the resource availability and immune escape and exhaustion mechanisms specific 

to each of the identified stationary TME compositions. 
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Fig. 3. The immune-desert scenario: (a-b) Time profiles for killer and exhausted T cells 

for different T cell exhaustion rates. A high T-cell exhaustion program that can drive an 

immune system with a high proliferation rate to the immune-desert phenotype. (c) Phase 

space for killer T cells versus the regulatory T cells for different regulatory T cell promoting 

roles of CAF. Demonstrates the possibility of an immune-cold scenario with abundant 

regulatory T cells due to high CAF-Treg interaction. (d)-(e) Post-ICI trajectories of killer T 

cells, tumor cells, and exhausted T cells for different balances between the anti-PD1 

binding rate and T cell exhaustion rate. Unlike other low-proliferation induced immune-

desert phenotypes (represented in dotted lines), the ICI intervention can improve the 

exhaustion-driven immune desert scenario. (f) Lactate reduction can further reduce the 

total post-ICI tumor cell count.  

 

Diversity within the immune desert: We observe that the immune desert (desert) 

contributes as the primary source of high PDL1- tumor cells. Interestingly, even for a 

significant fraction of the fibro-dominated scenario, the final killer T cell population settles 
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to extremely low levels despite a high proliferation-to-death balance. Further, several 

scenarios pertaining to the immune desert setting reveal a moderate to high exhausted 

and regulatory T cell population. Therefore, we simulated the TME system for varying 

proliferation and exhaustion rates for different T cells in the immune module to understand 

the diverse mechanisms of immune depletion as well as the possible compositional 

variants within the immune desert. Our analysis reveals that apart from a critically low 

proliferation rate, a strong T cell exhaustion program may lead to an immune desert 

phenotype (Fig 3(a-b)). Interestingly, a specific scenario may mimic the immune desert 

phenotype wherein the immune system is composed of many regulatory T cells with 

almost no cytotoxic or helper T cells. We observe that a higher paracrine interaction rate 

between CAFs and the regulatory T cells can trigger the immune-cold scenario despite a 

low proliferation-to-death ratio for the regulatory T cells (Fig 3c).   

  

Effect of ICI: specific to TME subtypes? As discussed, none of the identified stationary 

TME compositions leads to a complete depletion of tumor cells. The PDL1+ tumor cell 

population remains high in most of the scenarios—this necessitates an ICI-based 

intervention (anti-PD1) that eliminates the PD1 program in the killer T cells, enabling it to 

recognize PDL1+ tumor cells, thereby stalling the exhaustion program of the killer T cells. 

We studied the role of anti-PD1 dosage for all the different parametric conditions mapping 

to the desert (cold) and dominated TME phenotypes.  

  

Are all immune deserts non-responsive to ICI? As discussed previously, multiple 

mechanisms exist behind the emergence of an immune desert HNSCC TME. To 

investigate whether the ICI response to the immune desert scenario is dependent on the 

specific desert mechanism, we simulated the proposed system with a non-zero anti-PD1 

level for different variants of parametric conditions reflective of all the possible cohorts 

within the immune-dessert phenotype in the pre-ICI scenario. To resemble a realistic 

scenario, the killer T cell population and IL-2 concentration are kept non-zero in the initial 

condition for the ICI simulation. We observed that for high binding rate of the anti-PD1 

species, the exhaustion-driven immune-desert can be overcome by reducing the effective 

exhaustion rate whereas, a proliferation rate of the killer T cell below a critical level remains 

completely insensitive to ICI therapy (Figure 3(d-e)). Expectedly, like the exhausted T 
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cells, the total tumor cell population reduces with the increase in the efficiency of the anti-

PD1 therapy. However, the post-ICI in all the scenarios, leaves with a non-zero, remanent 

tumor cells. This is due to the low levels of effective cytotoxicity of the killer T cells. We 

observe that lowering residual lactate levels can improve the performance of the ICI 

therapy (Figure 3(f)). Moreover, our findings suggest that the responsiveness of immune 

deserts to ICI therapy is not uniform and depends on the specific desert mechanism. This 

understanding can potentially guide the development of more personalized and effective 

ICI therapies.  

Fig. 4. Immune/non-fibrotic, favorable case: (a-b) Shows despite the absence of CAF, 

the pre-ICI PDL1- tumor cells critically depend on the balance between the oncogenic (via 

Texh) and cytotoxic activities of T cells. (c) The intervention of ICI drives toward an 

aggressive cytotoxic T-cell-driven immune response. (d) Indicates the pivotal role of 

residual fixed resource supply rate (nutrients, blood flow, oxygen supply) in governing the 

possibility of recurrence despite a favorable prognosis.  

 

Immune/non-fibrotic presents a favorable scenario for ICI. The immune/non-fibrotic 

scenario is identified by the parametric conditions that drive the CAF population to zero in 

the pre-ICI setting. The pre-ICI, zero CAF population rules out the possibility of the 

formation of immune-inaccessible pockets inside the TME. Further, due to the absence of 

the most dominating interaction from CAF to TAM, a immune/non-fibrotic scenario may 

also be identified with a low M2 macrophage population (91). Therefore, the primary TME 

constituents impacting tumor cell growth are the immune cell states. For this scenario, we 

simulated the proposed model for varying rates of oncogenic roles of exhausted tumor 

cells and killer T cell cytotoxicity. A high ratio of the interaction rate between the exhausted 

T cell and tumor cells to the cytotoxicity of the killer T cells enhances the total tumor cell 

population in the pre-ICI setting. Further, this increase in the total tumor cell population is 
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fueled by the increase in the population of PDL1+ tumor cell population (Figures 4(a)-

4(b)).  

  

The ICI intervention predictably yields an improved prognosis with a significant shrinkage 

in the tumor cell population. With a prominent level of cytotoxicity, the anti-PD1 

intervention can lead to a zero exhausted T cell population (Fig 4(c)). Application of anti-

PD1 favors the balance towards the tumor suppression, thereby steering the resultant total 

tumor cell population towards zero. Although anti-PD1 yields a favorable outcome for the 

immune/non-fibrotic scenario, our simulation indicates that the post-ICI scenario does not 

necessarily lead to a zero-tumor cell population for high resource availability (Figure 4(d)) 

--- This can lead to the recurrence of the disease in a post-ICI scenario. Note that due to 

the absence of CAFs, the growth of tumor cells occurs at a much longer timescale when 

compared to a fibro-dominated situation.  

Fig. 5 Immune-dominated-- High immune accessibility, moderate CAF:   For a given 

CAF-tumor interaction rate, lower T-cell cytotoxicity leads to higher PDL1- to PDL1+ tumor 

cell population. (a) For high levels of cytotoxicity, the tumor cell population remains 
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insensitive to the proliferation rate (!!"#$%&) of the killer T cells in the immune dominated 

scenario. (b) CAF plays a dual role in governing the helper T cell population. CAF reduces 

the helper T cells via the regulatory T cells. However, a high tumor-promoting role of CAF 

increases the resident PDL1- -tumor cells that, in turn, increases the helper T cells via 

antigen sensing mechanism. (c) A high exhaustion rate can potentially increase the share 

of the PDL1- tumor cell population owing to the abundance of the exhausted tumor cells 

and their tumor-promoting effects. (d) The post-ICI scenario significantly reduces the 

tumor cells and CAF. The application of anti-PD1 reduces the resident CAF population 

and drastically reduces the tumor cell population. (e) The post-ICI tumor cell population 

is proportional to the tumor-promoting role (via paracrine interaction) of the remaining 

CAF population.   

 
ICI reduces the CAF population in immune-dominated HNSCC TME. As discussed in 

the previous sections, the immune-dominated TME subtype can be identified with an 

abundant killer T cell population and a low PDL1- to PDL1+ tumor cell population. 

Therefore, the primary potential factors governing the growth, immune escape (in pre-ICI 

condition), and the efficacy of the ICI treatment are the killer T cells, exhausted T cells, 

and resident CAF population. To determine the pro-tumor components' dependence in the 

HNSCC TME on the resident killer T cell population, we simulated our model with an 

increasing killer T cell proliferation rate. Interestingly, we found out that beyond a critical 

proliferation rate, the final population of killer T cells does not vary significantly with respect 

to the proliferation rate (Fig.5(a)). This is due to the insensitivity of the CAF population to 

the proliferation rate of the killer T cells (Fig. S3). Further, the CAF population remains 

unchanged across the killer T cell proliferation rate—This may explain the CAF abundance 

in an immune-dominated TME. On the other hand, for high levels of cytotoxicity, the 

balance between the tumor cells vis-a-vis the PDL1 signature remains heavily skewed 

towards the PDL1+ tumor cells (Fig.5(b)). Additionally, in resource competition 

environment, high levels of resource availability can be identified with high helper T cell 

counts owing to the abundance of PDL1- tumor cells. Our simulation suggests existence 

of a threshold maximum resource holding beyond which the helper T cell population 

becomes independent of the balance between the opposing roles of CAF (Γ) vis-a-vis the 

helper and killer T cell population (Fig. S4). 
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To determine how the exhaustion of the T cell intervenes in the immune response in a 

pre-ICI setting, we simulated the immune-dominated TME system with different cytotoxic 

levels and repeated the exercise for different exhaustion rates. Interestingly, the PDL1- -

tumor cell population critically depends on the exhaustion rate of the killer T cells, but in 

the presence of highly cytotoxic killer T cells, the pre-ICI tumor cell population does not 

possess any significant dependence on the proliferation rate of the killer T cells (Figure 

5(c)).  

  

To examine the efficacy of an ICI-based treatment for immune-dominated subtypes, we 

selected 10,000 different parameter sets corresponding to the immune-dominated 

subtype. We simulated both the pre-ICI and post-ICI scenarios. We observed that for high 

immune accessibility, the immune-dominated TME subtypes significantly reduce the total 

tumor cell population along with the CAF population (Fig 5(d)). Although the post-ICI 

outcomes for immune-dominated phenotypes can be identified with a significant reduction 

in the CAF or, equivalently, an increase in the wild-type fibroblasts, the chance of 

recurrence persists due to non-zero CAF-tumor cell interaction flux owing to non-zero 

OPN and CAF levels (Fig. 5(e), Fig. S5). Therefore, targeting the CAF population can also 

be a potential therapeutic strategy in an immune-dominated TME. 

 

Fig. 6. Fibro dominated, a modified immune desert: (a) depicts the conceptual 

framework of the proposed hypothesis on the CAF-pockets protected from the immune 

response. (b) demonstrate the fact that the immune accessibility index governs the post-

ICI proportion of immune-accessible and immune-inaccessible tumor cells. (c) Phase-

space for LIF and total tumor cell population. The change in LIF levels due to the ICI 
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therapy reduces with respect to decreasing accessibility. (d) Contrary to the immune-

dominated TME, the post-ICI CAF population remains almost constant at low immune 

accessibility due to a lack of change in the post-ICI LIF levels compared to its pre-ICI 

counterpart.  

  
Fibro-dominated: Effective immune desert? Unlike the immune-dominated subtypes, 

the fibro-dominated TME is identified by exceedingly high CAF-tumor cell paracrine rates, 

low immune accessibility, and an abundant CAF population. As illustrated in Fig. 6(A), an 

HNSCC TME with low immune accessibility index can be conceived as dividing the TME 

locally into two distinct regions vis-a-vis the tumor cells—1) immune-accessible tumor cells 

and 2) CAF-protected tumor cells (Fig. 6(a)).  

  

 To find out the dependence of the overall ICI outcome on immune accessibility, we 

simulated the fibro-dominated HNSCC TME model with different immune accessibility 

indices. We observed the ICI dose response deteriorates linearly with the reduction of 

immune accessibility. Further, the balance between the anti- and pro-tumor roles of the T 

cell states modulates the slope of the dose efficacy-immune accessibility curve (Fig. 6(b)). 

Further, unlike the immune-dominated scenario, the post-ICI CAF population remains 

almost identical to the pre-ICI counterpart in the low immune-accessible scenario (Fig. 

6(d)). The invariance of the CAF population to ICI in the fibro-dominated setting is one of 

the most critical prognostic differences between the immune-dominated and fibro-

dominated TME subtypes. A simulation study of the CAF-immune accessibility index for 

multiple CAF proliferation rate reveals that the immune accessibility index increases 

gradually (smoothly) with respect to the growth of CAF (Fig. S6(a)). However, there exists 

a threshold timepoint dependent on the CAF proliferation rate, beyond which the immune 

accessibility deteriorates drastically (Fig. S6(b)). To understand the mechanism, we 

studied the phase space in the LIF-tumor cell plane. Unlike the immune-dominated 

conditions, we observed that lower immune accessibility does not significantly change the 

LIF levels--- a significant player in the conversion from the wild-type fibroblasts to CAFs. 

Thereby retaining the pre-ICI conversion flux (Figure 6(c)).  
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As mentioned, the post-ICI responses for parametric conditions resembling the fibro-

dominated and the immune-desert scenario are similar (barring T cell counts inside the 

whole TME) regarding the change in the tumor cells and pro-tumor components. These 

results motivate us to ask whether both the TME subtypes (immune-desert and fibro-

dominated) require similar combinational therapies to improve the ICI response.  

 

Leveraging the molecular landscape of the TME- possible targets and biomarkers: 
According to the proposed model, the post-ICI outcomes for different pre-ICI TME 

subtypes are significantly distinct. Although the fibro desert and immune-dominated result 

in the shrinkage of the total tumor cell population, the immune-desert, and fibro-dominated 

TME subtypes remain largely insensitive to ICI-based treatment. Therefore, to circumvent 

the ICI insensitivity emergent in some TME subtypes, we explore the prospect of 

modulating the well-known molecular species in the HNSCC TME. The no-show of ICI 

response for immune-desert TMEs can be attributed to the zero (or very few) pre-ICI killer 

T cell population. Therefore, any combination therapy in an immune desert scenario 

should aim to modulate the proliferation to death and conversion balance for the killer T 

cell (#"'&&($ ! *(&&). For this purpose, we chose IL-2 to enhance the killer T cell population in 

an immune desert scenario.  

 

On the other hand, the insensitivity to ICI in the fibro-dominated parameter regions 

emerges due to either a high CAF-tumor cell paracrine rate or a low immune accessibility 

index. The common bottleneck in both scenarios is the abundance of the CAF population. 

Therefore, targeting the CAF via selected molecular species may improve immune 

accessibility and reduce the CAF-tumor paracrine rate. For this purpose, we selected 

OPN and LIF as the target molecular species for both molecules, which play a crucial role 

in the proliferation of- and conversion to CAF. 
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Fig. 7. One-time IL-2 spikes— reprogramming immune-desert: (a) A spike in the initial 

IL-2 levels (beyond a threshold) can drive the system trajectories towards an immune-

non-dessert steady state. (b) Although some trajectories return to the immune-desert 

arrangement, the trajectory settles in a non-zero killer T cell population beyond a threshold 

IL-2 injection. (c) Time profiles for killer T cells for different external IL-2 levels. 

ICI+IL-2, reprograms the immune-desert TME. As discussed in the preceding sections, 

a significant fraction (due to low Killer T cell proliferation) of the immune-desert TME 

subtypes do not respond to ICI treatment. The primary reason is the depletion of killer 

PD1− killer T cells under pre-ICI conditions. Further, due to the small killer T cell 

population, the final, pre-ICI, IL-2 concentration settles to an extremely low level. 

According to the HNSCC TME network, the population of the killer T cells can be 

enhanced through IL-2. Therefore, we simulated an immune-desert TME with one-time, 

initial IL-2 spikes of varying amplitude. Interestingly, we observed that for one time, IL-2 

spikes beyond a threshold level, the cell state population trajectories move away from the 

immune-desert to an immune-non-desert trajectory (Fig. 7(a-c)), which renders a 

favorable post-ICI outcome for a high immune accessibility index. The threshold one time 

IL-2 levels required to drive the TME away from immune desert is dependent on the 

balance between the IL2-driven autocrine and exhaustion, death rate of killer T cells (Fig. 

S7). 
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Fig. 8. OPN and LIF knockout, from fibro-dominated to fibro-dessert: (a-b) 
Demonstrate the effect of OPN reduction on the proportion of the inaccessible to 

accessible tumor cells in two scenarios: with and without LIF. As shown in both cases, 

below a certain threshold of OPN concentration, the balance between the accessible and 

inaccessible tumor cells improves significantly. An additional knockout of LIF extends the 

OPN-knockout-driven reduction in tumor cells towards complete removal. (c) Suggests 

that OPN reduction modulates the immune accessibility index of the TME. Further, a 

LIF+OPN reduction drives the TME towards full accessibility.  

Restoring sensitivity to ICI for immune-inaccessible, fibro-dominated TME. 
According to the proposed network, the cancer-associated fibroblasts grow through i) self-

proliferation via OPN-mediated autocrine interaction and ii) LIF-induced conversion from 

wild-type fibroblasts. Therefore, we study the effect of OPN and LIF reduction on the ICI 

outcome for a fibro-dominated TME with very low immune-accessibility. To understand 

how the balance between the immune-accessible and immune-accessible tumor cells 

depends on the OPN level, we simulated the proposed HNSCC model for different OPN 

reduction rates. We repeated this exercise in the presence of LIF and with LIF being 

knocked out. We observe that the reduction of OPN modifies the balance between the 

tumor cells vis-à-vis immune accessibility towards the accessible tumor cells. Further, a 

LIF knockout and OPN reduction significantly improved over both the OPN-based 

treatment (Fig 8(a-b)) and LIF-knockout (Fig. S9).  Interestingly, the tumor cell balance 

reduces drastically beyond a parameter-dependent threshold anti-OPN concentration. 

Moreover, the reduction in the total CAF count leads to an improvement in immune 

accessibility, thereby bettering the chances of recovery (Fig. 8(c)).  
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The potential combination therapies for immune-desert and fibro-dominated are clearly 

different. Although the HNSCC TME subtypes produce similar diagnoses (barring the total 

T cell counts in the TME) vis-à-vis different tumor cell state populations, the IL-2-based 

treatment in the immune desert focuses on strengthening the immune system. In contrast, 

the OPN+LIF knockouts target the CAF population in the TME to better the immune 

accessibility landscape. 

Fig 9. IL-8: Potential biomarker for identifying TME subtype: (a-b) Show that with high 

immune accessibility, the IL-8 level is low and is further reduced following a neo-adjuvant 

ICI therapy, whereas the scenario with low immune accessibility (characteristic of a fibro-

dominated TME) can be identified with a slight increase in the post-ICI IL-8 level. Although 

the IL-8 trend is similar for immune-dominated and immune/non-fibrotic TME, the absolute 

levels differ significantly between the two subtypes. (c) The removal of both OPN and LIF 

reprograms the TME towards a immune/non-fibrotic subtype. Therefore, the IL-8 level 

post-OPN and LIF knockout followed by ICI also drops drastically compared to its pre-ICI 

and pre-removal counterparts. 

IL-8: Primary distinguishing factor for different TME subtypes. As established in the 

preceding sections, TME subtypes play a governing role in determining the post-ICI 

outcomes. Unlike other cellular species, most molecular species do not exhibit specific 

signatures unique to TME subtypes. For instance, the IL-2 levels remain similar in both 

the immune-dominated and fibro-dominated scenario for the resident killer T cell 

population, which does not present significant variation between immune-dominated and 

fibro-dominated subtypes (Fig. 2(b-d)). The fold change of the OPN levels (pre- vs. post-

ICI) remains indistinguishable for fibro-dominated and immune-dessert scenarios for the 

post-ICI CAF population. It does not undergo significant changes in the TME subtypes 
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(Fig. 6(c)). The scenario for LIF is similar (Fig. 6(d)). Therefore, we set out to investigate 

the prospect of IL-8 as a potential biomarker for TME subtypes. 

Interestingly, we found out that IL-8 exhibits distinct trajectories for different TME subtypes 

(Figures 9(a-b)). In the immune dessert scenario, due to the absence of effective killer T 

cells, the post-ICI IL-8 does not change. Although the immune/non-fibrotic and immune-

dominated TME subtypes are marked by a significant decrease in the IL-8 levels, the 

absolute levels of IL-8 concentration are significantly different for both scenarios. More 

importantly, unlike other inflammatory cytokines such as OPN and LIF, the IL-8 level 

shows a slow increase in the post-ICI scenario for an immune inaccessible fibro-

dominated scenario. This can be verified by the recent experimental observations by Hill 

et al. (2023) in HPV-negative HNSCC patients. The IL-8 levels in the plasma slightly 

increase for non-responsive HPV-negative patients compared to its pre-ICI counterpart. 

 

Fig 10. Lactate removal improves overall immune response: (a) Lower levels of 

residual lactate concentration inside the TME enhance the cytotoxicity of the killer T cells 

in the pre-ICI setting. (b) The negative impact of lactate on the immune response 

continues to the post-ICI scenario, wherein a high lactate level impedes the PD1-killer T 

cell activity, leading to a high tumor cell population. (c) For high-killer T cell cytotoxicity, 

lactate can also serve as a distinguishing factor between immune-accessible and 

inaccessible HNSCC TMEs. In highly immune-accessible TMEs, the application of anti-

PD1 renders a significant decrease in lactate compared to its pre-ICI counterpart. In 

contrast, the low immune-accessible TME correlates with higher post-ICI lactate levels.  
 
Lactate reduction improves the overall ICI response: Lactate is a well-known 

metabolite reported in the literature on several solid tumors, including HNSCC. 
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Interestingly, a non-responsive TME has been identified with elevated lactate levels, 

whereas a good prognosis, in some scenarios, has been identified with lower lactate levels 

(91).  

 

We leverage the proposed model to understand the effects of lactate on the population of 

tumor and non-tumor cells. For this purpose, given a specific set of parameters, we 

calculated the proportion of PDL1- to PDL1+ tumor cells for varying killer T cell cytotoxicity 

levels (Fig. 10(a)). We repeated the simulation for various residual lactate levels. We 

observed that an increasing amount of lactate pushes the TME away from immune-

dominated to an effective immune-desert (or CAF-dominated) scenario (Fig. 10(b)). 

Therefore, targeting lactate can increase the killer T cell efficiency and move the TME to 

an immune-dominated region for moderate to high immune accessibility.  

 

On the other hand, to study the lactate signature for different immune accessibility 

scenarios, we simulated the system for various values of immune accessibility. We chose 

the model parameters so that high immune accessibility resembles an immune-dominated 

scenario. We obtained the phase space for post-ICI lactate and tumor cell populations. 

Interestingly, the ICI intervention reduces the residual lactate levels at most immune 

accessibility, barring extremely inaccessible situations (Figure 10(c)). Interestingly, the 

post-ICI lactate level slightly increases from its pre-ICI counterpart. This suggests the 

potential use of lactate as a biomarker for low immune accessibility. 

 

Discussion  

In this work, we developed a mathematical model for the HNSCC TME that explains a 

range of clinically (and experimentally) observed phenomena ranging from multiple TME 

subtypes to distinct responses to immunotherapy. Considering the trade-off between the 

ease of computation (theoretical/ computational analysis) and the granularity 

(explainability), we chose different transcriptomic cell states (and molecular species) as 

the agents of the proposed model. It enabled us to work with a more minor dimensional 

system (compared to gene regulatory network formalism) and without significant 

compromise on explainability. With an exhaustive search across the parameter space, we 

identified five distinct TME compositions, each representing clinically observed TME 
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subtypes: fibro-dominated, immune-dominated, immune/non-fibrotic, immune-desert, and 

desert (4,91,92). Our model suggests that different parameter balances determine the 

possible path of the cell state population trajectories toward a particular TME phenotype. 

Whether the exact factors that govern these balances may be epigenetic or owe their 

emergence to mutation remains an open area of study. We observe these pre-ICI TME 

compositions govern the post-ICI response. Our model predicts that while the 

immune/non-fibrotic and immune-dominated HNSCC subtypes constitute a favorable 

situation for ICI therapy, immune-desert and fibro-dominated TMEs remain insensitive to 

therapy resistance for a wide range of model parameters. We predict the TME-specific 

molecular species that can modulate the ICI response for the ICI-insensitive subtypes.     

  

Further, our model predicts multiple compositional possibilities within the immune-desert 

subtype due to the different mechanisms behind immune depletion. An exhaustion-driven 

immune desert leads to the colonization of the immune landscape by exhausted and 

regulatory T cells. Similar observations have been reported in the recent work by Bao et 

al. (2024), wherein a spatial transcriptomic analysis of the immune module for twenty-six 

colorectal cancer patients revealed the non-responder to chemotherapy can be attributed 

to the immune-cold condition, defined as the abundance of regulatory T, and exhausted 

CD8+ and CD4+ T cells (93). Leveraging the integrative framework, our model predicts 

that the CAF-promoted immune cold scenario can lead to immune depletion due to the 

effective shutdown of the helper T cells, and the immune landscape can be hijacked by 

the regulatory T cells. A high exhaustion rate can also render an immune scenario 

colonized primarily by the exhausted and regulatory T cells.  

  

Our analysis shows that these identified TME compositions in pre-ICI settings govern the 

prognosis during and after ICI therapy. Our simulation studies indicate that two pre-ICI 

TME compositions, resembling 1.) the immune desert and 2) fibro-dominated TME 

subtypes remain primarily insensitive to ICI therapy. While the ICI resistance due to the 

immune-desert phenotype is well established, the recent work by Quek et al. (2024), from 

the single cell analysis of five melanoma patients, showed the existence of resistant TME 

subtypes with abundant CAF and non-zero killer T cell population—This supports our 

result depicting a fibro-dominated scenario being insensitive to ICI therapy (94). Lack of 
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clinical response in several HNSCC ICI clinical studies can be mapped to the immune-

desert nature of the underlying TME. The post-ICI tumor cell count remains significant 

despite a meager increase in the proportion of CD8+ killers to exhausted T cells (97-98). 

According to our model, although an ICI intervention increases the proportion of killers to 

exhausted T cells, the post-ICI tumor cells remain significant due to the oncogenic role of 

the exhausted T cells. Our model predicts a reduction of elevated lactate levels may 

improve the scenario by increasing the effective cytotoxicity of the killer T cells, thereby 

leading to an aggressive immune response.   

  

Interestingly, according to our model, the abundant CAF population can also lead to a 

condition wherein the TME, despite a significant killer T cell population, exhibits an 

immune-desert scenario vis-a-vis the ICI response. Recent work by Xiao et al. (2023) on 

the effect of CAF on the CAR-T cell therapy for desmoplastic pancreatic tumor patients 

revealed that the resident CAF population inhibits the killer T cell-driven immune response 

via the construction of a physical barrier between the T and Tumor cells (98). The immuno-

suppressive role of CAFs and the associated pathways have also been reported in the 

literature (95,97,98). Bao et al. (2024) observed a class of non-respondent (to 

immunotherapy) melanoma tumors with a non-zero killer T cell population (93). Our model 

predicts that beyond a threshold population levels of CAF, the immune response 

deteriorates drastically. Further, the CAF-driven barrier divides the local tumor cells into 

immune-accessible and inaccessible classes. Further, due to resource competition, the 

application of anti-PD1 increases inaccessible immune cells, rendering the total tumor cell 

count largely unaffected.  

  

On the other hand, under the parametric conditions resulting in immune/non-fibrotic and 

immune-dominated TME subtypes, the proposed model yields preferable outcomes to ICI. 

As suggested by the model, unlike the immune/non-fibrotic subtype, the pre-ICI diagnosis 

of an immune-dominated TME can potentially present with abundant CAFs and killer T 

cells. The central differentiating feature between the pre-ICI conditions for fibro-dominated 

and immune-dominated subtypes is the presence of CAF-protected, immune-inaccessible 

tumor cells. In this sense, it may be hypothesized that fibro-dominated is an advanced 

scenario of immune-dominated TME.  
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The model-guided approach enables us to propose possible molecular targets to 

circumvent the poor prognosis caused by the pre-ICI stable TME compositions. Our study 

shows that non-responsive outcomes to ICI treatment due to an immune-desert TME may 

be circumvented by a one-time IL-2 spike, which reprograms the TME towards an 

immune-hot scenario. Multiple studies on different cancer types, including melanoma, 

reported that the IL-2-based treatments (99, 100), in some scenarios, lead to a complete 

or partial response (99). Our model predicts that a one-time IL-2 spike beyond a threshold 

can drive the immune desert HNSCC TME toward an immune-hot scenario. According to 

our model, immune-hot TME can only yield a desirable prognosis in immune-accessible 

tumors, i.e., if the TME composition is not fibro-dominated. This can explain the scenario 

where an IL-2-based combination therapy does not yield a favorable response. Although 

the history of IL-2 based treatment dates back to the some of the earliest immune based 

therapies and carried extensive toxicity, new strategies of delivery, dosing and timing 

could be considered to shift a TME rather than use to drive the entire therapeutic approach 

(101).  

  

Unlike the immune-desert TME, the model proposes an OPN+LIF-based intervention for 

the fibro-dominated scenario. As observed in this study, the OPN and LIF knockout 

significantly improves the accessibility landscape via a drastic reduction of the CAF 

population inside the TME. This is also supported by the experimental observations of 

elevated OPN and LIF levels in ICI-resistant patients in across different cancers (102-

106). Therefore, the two non-responsive TME compositions, namely the fibro-dominated 

and the immune-desert, require different interventions (apart from the standard ICI) to 

improve the prognosis. Therefore, it is essential to differentiate these two different TME 

compositions. Our model proposes that IL-8, unlike most molecular species, may have 

distinct features for the TME subtypes. In a recent study on the response of HNSCC 

patients to ICI across HPV signatures, Hill et al. (2023) reported that the HPV-negative 

HNSCC patients presented with increased levels of IL8 (compared to pre-neoadjuvant ICI 

setting) in the scenario of no-response. Meanwhile, the post-ICI IL-8 levels significantly 

reduced the number of responders (88). Our model predicts that the post-ICI IL-8 remains 
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high and identical to the pre-ICI counterpart in an immune-desert scenario due to the lack 

of significant change in the tumor cell and M2 macrophage population. 

 

In contrast, the post-ICI IL-8 levels increase for a fibro-dominated scenario compared to 

its pre-ICI counterpart. This can be reasoned as follows: The post-ICI scenario for fibro-

dominated and non-immune desert HNSCC TME can be identified with a significant 

(marginal) increase in killer T cells, which in turn leads to an increase in the IL-10 levels. 

Further, elevated IL-10 levels result in aggressive conversion to M2 macrophages from 

the resident M1 macrophages. Therefore, the overall population of all the IL-8 contributors 

in the HNSCC TME, the CAF, tumor cells, and M2 macrophages shows a marginal 

increase compared to its post-ICI counterpart.  

  

The proposed model is limited by its scope and granularity and, the objective of this work. 

The crucial notion of staging and metastasis of the primary tumor over time has yet to be 

a part of this model. This can inspire further modification and complexity over and above 

the existing model schema. Moreover, like any mathematical modeling exercise, the 

correctness of the conclusions drawn from the proposed model is conditioned on the 

specific dynamic and the assumptions thereof. Throughout this work, the proposed 

modeling and analysis framework assumes spatial homogeneity, at least for the molecular 

species. This implies that the diffusion current of the molecular species is faster than the 

timescales of interactions. Further, since the model is built from the existing literature, 

there may exist a degree of confusion about the exactness of the proposed HNSCC TME 

network. Additionally, although the proposed model attempts to provide a comprehensive 

picture of the TME, it is not a complete and extensive description of TME, leaving the 

scope for further modification and updating of the current version. 

 

 Overall, the proposed model is able to explain a wide range of clinical observations across 

patients and contains the scope to be tuned to particular patient-specific quantitative 

information, including the single-cell transcriptome analysis and immunohistochemistry of 

the TME. Therefore, using the patient-specific single-cell transcriptomic dataset to tune 

the model can be an exciting area of future study.  
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Materials and Methods 
In this section, we outline the workflow of the manuscript. We first reconstructed the 

TME network structure for HNSCC from the literature. Subsequently, we used rate laws 

applicable to each of the interaction types to formulate a quantitative systems model of 

HNSCC TME. 

 

Reconstruction of the TME components and interactions from literature. We include 

four cell types as the constituting modules of the TME, namely i) tumor cells, 2) T cells, 3) 

macrophages, and 4) fibroblasts (3, 9, 32, 33). We also consider eight molecular species 

secreted from one or many of the four cell types. Interleukin-2 (IL-2), interleukin-6 (IL-6), 

interleukin-8 (IL-8), interferon gamma (IFNγ), lactate (Lac), intercellular adhesion 

molecule (ICAM), Osteopontin (OPN), and interferon regulatory factor-8 (IRF-8)— these 

eight molecular species are crucial for the conversion, proliferation, and apoptosis of the 

cell types present in the TME. 

 

Tumor cells. Characteristic to the TME, tumor cells are associated with high epithelial 

scores and high mutational burden. Recent single-cell transcriptome analysis 

revealed the diversity within the tumor cells. In the scenario of HNSCC, Puram et al. 

(2017) proposed seven distinct tumor cell states with diverse groups of biomarkers 

(30). The transcriptome analysis of a number of cancer cell lines reveals a specific stem-

like pattern which, upon further analysis has been reported to transition into different 

tumor cell states to facilitate immune escape, metastasis, and drug resistance (3, 5, 18, 

26, 28)— this may also be understood as the phenomena of ‘cooperation’ between tumor 

cells (34).  

Since this work is centered around immuno-therapy, we classify the tumor cells based on 

their response to the activities of the immune cells. It is well-known that the natural killer 

(NK)-cells and the killer T cells recognize the tumor cells without programmed death 

ligand1 (PDL1) (22, 35). Interestingly, several studies confirmed that a PD-L1 expression 

in tumor cells is a known strategy for immune escape (22, 36, 37). 

Therefore, the proposed formalism consists of three different tumor cell states— 1) tumor 

stem cells, 2) tumor cells without PDL1, and 3) tumor cells with PDL1 expression. Further, 
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the tumor cells secrete inflammatory cytokines (such as OPN, IL–8) and lactate that aid 

in self–proliferation and sustenance in the presence of immune onslaught (38–41).  

T-cells. The T-cells, as the main driver of the immune response, destroy the stem-like 

and PDL1− tumor cells. The killer and helper T-cells also secrete many pro-immune 

cytokines such as IFNγ, IL-2, and ICAM1 (42–44). Upon a classification exercise of the 

transcriptome of the non-tumor cells, Puram et al. (2017), identified four different cell 

states within the T-cell cluster— namely 1) PD1+ killer, 2) helper T cells, 3) regulatory T 

cells, and 4) exhausted T cells (30).  

The helper T cells promote the growth of the killer T cells in the presence of PDL1− tumor 

cells (45). On the other hand, regulatory T-cells control the population of helper T cells to 

circumvent the overactive immune response (31). Further, there also exists a significant 

population of killer-like T cells (also known as exhausted T-cells) that are derived from 

the interactions between the PD1+ killer T cells, PDL1+ tumor cells, and M2-phase 

macrophages. With ICI-based therapies, the killer PD1+ T cells are converted to PD1−, 

thereby reducing the conversion flux towards the exhausted T cells and improving the 

overall immune response (30, 46). 

Macrophages. Macrophages play a dual role within the TME. The M1 phase 

macrophages aid in the production of killer T cells (22, 47). Further, the M1 macrophages 

also secrete transcription factors that can play a crucial role in inhibiting the secretion of 

pro-inflammatory cytokines. The M1 macrophages also secrete IRF8, inhibiting OPN 

secretion in TME, thereby improving the prospect of ICI therapy.  

Unlike the M1 phase, the M2 phase macrophages serve a pro-tumor role in several ways, 

such as accelerating the conversion of killer T cells to an exhausted state (48, 49). 

Fibroblasts. Fibroblasts are the most common unit apart from the tumor cells to be found 

inside the TME. Broadly classified in two distinct phenotypes– myofibroblasts and 

invasive, fibroblasts modulate the proliferation flux of the tumor cells via paracrine 

interactions. Further, the invasive fibroblasts can also protect the tumor cells from being 

attacked by the killer T cells (50, 51). Additionally, fibroblasts also secrete several 

cytokines (IL-8 and OPN) that can further the growth of tumor cells and hamper the 

immune response (52, 53). 
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Modeling of the TME dynamics. This section presents the specific interactions and 

crosstalk between different constitutive units discussed in the preceding sections. We 

establish the general modeling rules and assumptions adopted throughout this work. 

A.1. Rules. The following are the general rules adopted for the model. 

1. The dynamics is modeled using ordinary differential equations (ODE) i.e., the cell-

state populations and the molecular concentrations are modeled as functions of 

time. 

 

2. Proliferation: Each cell state (xj) has its own proliferation flux expressed in terms of 

logistic growth 

 

                                         $+#$%& = !+#$%&&+ '1 −
,!

,!"#$⬚ *  

where, !+#$%&  , and &+-., are the associated rate for proliferation and the carrying 

capacity of xj respectively. 

 

 

3.  Conversion: Each cell state (xj) can convert to a different cell state (xi) within the 

same cell type with 

4.  the proposed flux rate 

                                          

                                        $+,'*%01 = !+,'*%01&+  
where, !+,'*%01 is the associated conversion rate. 

                              

5.  Paracrine interaction: If a cell-state xi promotes the proliferation rate of cell xj then 

the   modified proliferation rate for xj can be expressed as 

$2#$%&+ = $+#$%& '1 + !+,'#.$.
-+,'&'

.',+3 + /',+&'
* 

    where, !+,'#.$., .+,'3, and -+,' are the rate constant, dissociation constant, and the 

spatial proximity index between xi and xj respectively. 
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6.  Regulatory inhibition: The regulatory inhibition between two species xi (source) and 

xj (target) modulates the proliferation in the following manner 

                                       

$+,'$(4 = 0 1
.+,'
$(4 + -+,'&'

1 

 where, .+,'$(4 , is the dissociation constant for the regulatory inhibition.  

         

7.  Elimination: If a cell state xi eliminates/ destroys another cell state xj the associated 

flux can be expressed as 

                                                    $+,'5'&& = !+,'5'&&-+,'.*&+&'    
 where, !+,'5'&& is the rate constant corresponding to the elimination reaction. The term 

-+,'.* modulates the accessibility (proximity) from the cell state &' to &+. 
 

8.  Death/Degradation: Every species is assumed to have a natural death (for cell 

states) or degradation (molecular species) rate that is reflected in the following 

manner 

                                                             

                                                   $+6 = !+6&+ 
 where, !+6 is the natural death/ degradation rate. 

 

F.2. Calculating the proliferation to death balance (#) 
As illustrated from our study, the clinically observed TME subtypes can be mapped as the 

pre-ICI steady state of the proposed TME model for HNSCC. For this purpose, we 

introduced a quantity # that is defined as the ratio between the maximum proliferation 

factor of a given cell state to the corresponding death and conversion rate. We calculate 

the maximum proliferation factor(3,-.,) for a given cell state (x) in the following manner: 

(3,-.,) = !,#$%&  671 + !{,,+}#.$.8
 

+∈:'
 

Where, 9, is the set of all the incoming, neighbor nodes of x. It is to be noted that since 

the paracrine interaction dynamics, according to the proposed model, is rational, 
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polynomial bounded above by the paracrine rate constant the net proliferation rate of a 

cell state is always bounded above by (3,-.,).  
On the other hand, the depreciation of the cell state x occurs through the processes of 

killing, conversion, and natural death. Therefore, the log-transformed net proliferation to 

death balance # can be calculated as 

# = log' 3,-.,
!,,+5'&& + !,,+*%01 + !,6

* 

Now, for total tumor cells, we used the maximum #   across different tumor cell states.  

 
CAF-mediated alteration of immune accessibility: It is well-known in literature that CAF 

plays a crucial role in remodeling the extra cellular matrix and thereby altering the 

accessibility from the T cells to the tumor cells. To address this critical phenomenon in the 

proposed model, we defined the quantity immune accessibility index (0 ≤ I a≤ 1) - a 

bounded hyper-parameter defined as the ratio between the total carrying capacity of 

immune accessible tumor cells to that of fibroblast protected tumor cells. We also 

proposed an expression for the immune accessibility index. We observed that the lack of 

immune accessibility alters the TME towards a fibro-dominated environment. We propose 

the following way to calculate immune accessibility index (Ia) 

                                      Ia:="()"*+
= 1 − tanh(-. BC3. !;$) 

where, !<= and !>? denote the carrying capacities of immune-accessible and CAF-

protected tumor cells respectively, - determines the fraction of CAFs near the tumor cells, 

and !;$ is the barrier formation rate for the CAFs. As depicted in the expression for the 

immune accessibility index, is a bounded quantity in the closed interval [0,1] wherein Ia=1 

refers to the situation where all the tumor cells are accessible to the immune system, 

whereas Ia=0 denotes the impenetrability of the immune cells to the TME.  

As established before, the CAF population around the tumor cell states significantly 

affects immune accessibility. Therefore, for any given CAF population, -, and !;$ we 

propose the following rule for the penetration of the immune cells (3@6D ) as 

                                        3@6D = 3@6EAB,C@=>, 
where F  is the width of CAF barrier. 
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Simulation: All the simulations are done using MATLAB 2022B (Mathworks Inc., Natick, 

MA). The ordinary differential equations in the models are simulated using ode23s in 

MATLAB 2022B. The figures have been created using Biorender.com.  
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Figure Legends 
 
Figure 1. Construction of cell-state specific tumor-microenvironment network for 
HNSCC: We begin with the relevant cell types in an HNSCC TME obtained from the 

literature. The existing cell-type-specific models do not capture the interactions in a 

reliable manner for there may exist mutually opposite effects between two cell types (e.g., 

T cells and tumor cells). Subsequently, the literature on single-cell studies of HNSCC TME 

reveals the functionally distinct cellular states for different cell types (Puram et al. (2019)). 

Similarly, we searched for the possible interactions between different cell states of interest 

to establish a cell-state interaction network. Further, we considered relevant molecular 

species from the HNSCC literature that affect the population of individual cell states. 

 

Figure 2. Explaining the phenotypic heterogeneity of the HNSCC TME. (a) The nodes 

are either the cell states or the molecular species, whereas the edges represent diverse 

forms of interactions. The acronyms C_0, C_PDL1+, and C_PDL1- refer to stem, PDL1+ 

(programed death ligand1), and PDL1- tumor cells, respectively. T_K+, T_K-, T_Help, 

T_Reg, and T_Ex stands for PD1+ (programmed death 1), PD1- killer T cells, Helper T 

cells, Regulatory T cells, and Exhausted T cells, respectively. M_1 and M_2 refer to 

macrophages of M1 and M2 phase, respectively. Further, F_WT and CAF correspond to 

wild type and invasive cancer associated fibroblasts, respectively. The acronyms IL-2, IL-

8, LIF, IFNG, IRF8, OPN, ICAM1, and Lac denote Interleukin-2, Interleukin-8, Leukemia 

Inhibitory Factor, Interferon Gamma, Interferon Regulatory Factor-8,  Osteopontin, 

Intercellular Adhesion Molecule-1, and Lactate, respectively. (b) Based on the 

reconstructed network system, we simulated the dynamics for 10,000 different choices of 

parameters to obtain the possible steady state clusters. We found five distinct clusters 

namely desert, immune desert, fibro desert, immune-dominated, and fibro dominated. (c-
g) Bar charts for the median population of tumor cells, killer T cells, CAF population across 

different cohorts. The lower and upper intervals indicate the 25% and 75% quartiles, 

respectively. 

 

Figure 3. The immune-desert scenario: (a-b) Demonstrate a high T-cell exhaustion 

program that can drive an immune system with a high proliferation rate to the immune-
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desert phenotype.  (c) Demonstrates the possibility of an immune-cold scenario with 

abundant regulatory T cells due to high CAF-Treg interaction. (d)-(e) Unlike other 

immune-desert phenotypes, the ICI intervention can improve the exhaustion-driven 

immune desert scenario. (f) Lactate reduction can further reduce the total post-ICI tumor 

cell count. 

Figure 4. Immune/non-fibrotic, favorable case, and recurrence: (a-b) Shows despite 

the absence of CAF, the pre-ICI PDL1- tumor cells critically depend on the balance 

between the oncogenic (via Texh) and cytotoxic activities of T cells. (c) The intervention of 

ICI drives towards an aggressive cytotoxic T cell driven immune response. (d) Indicates 

the pivotal role of residual fixed resource supply rate (nutrients, blood flow, oxygen 

supply) in governing the possibility of recurrence despite a favorable prognosis. 

 

Figure 5. Immune-dominated-- High immune accessibility, moderate CAF:   For a 

given CAF-tumor interaction rate, lower T-cell cytotoxicity leads to higher PDL1- to PDL1+ 

tumor cell population. (a) For high levels of cytotoxicity, the tumor cell population remains 

insensitive of the proliferation rate () of the killer T cells in the immune dominated scenario. 

(b) CAF plays a dual role in governing the helper T cell population. CAF reduces the helper 

T cells via the regulatory T cells. However, a high tumor-promoting role of CAF increases 

the resident PDL1- tumor cells that, in turn, increases the helper T cells via antigen sensing 

mechanism. (c) A high exhaustion rate can potentially increase the share of PDL1- tumor 

cell population owing to the abundance of the exhausted tumor cells and its tumor-

promoting effects. (d) The post-ICI scenario significantly reduces the tumor cells and CAF. 

The application of anti-PD1 reduces the resident CAF population and drastically reduces 

the tumor cell population. (e) The post-ICI tumor cell population is proportional to the tumor 

promoting role (via paracrine interaction) of the remaining CAF population. 

 

Figure 6. Fibro dominated, a modified immune desert: (a) depicts the conceptual 

framework of the proposed hypothesis on the CAF-pockets protected from the immune 

response. (b) demonstrate the fact that the immune accessibility index governs the post-

ICI proportion of immune-accessible and immune-inaccessible tumor cells. (C) Contrary 

to the immune-dominated TME, the post-ICI CAF population remains almost constant at 

low immune accessibility due to a lack of change in the post-ICI LIF levels compared to 
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its pre-ICI counterpart. (d) Phase-space for LIF and total tumor cell population. The 

change in LIF levels due to the ICI therapy reduces with respect to decreasing 

accessibility. 

 
Figure 7. One time IL-2 spikes— reprogramming immune-desert: (a) A spike in the 

initial IL-2 levels (beyond a threshold) can drive the system trajectories towards an 

immune-non-dessert steady state. (b) Indicates that although some of the trajectories 

return to the immune-desert arrangement, the trajectory settles to a non-zero killer T cell 

population beyond a threshold IL-2 injection. (c) establishes the effect of IL-2 based 

treatment on the efficiency of ICI. 

 

Figure 8. OPN and LIF knockout, from fibro-dominated to fibro-dessert: (A-B) 
Demonstrate the effect of OPN reduction on the proportion of the inaccessible to 

accessible tumor cells in two scenarios: with and without LIF. As shown in both the cases, 

below a certain threshold of OPN concentration, the balance between the accessible and 

inaccessible tumor cells improves significantly. This is further extended towards complete 

removal with the knockout of LIF. (C) Suggests that OPN reduction modulates the immune 

accessibility index of the TME. Further, a LIF+OPN reduction drives the TME towards 

complete accessibility. 
 

Figure 9. IL-8: Potential biomarker for identifying TME subtype: (a-b) Show that with 

high immune accessibility, the IL-8 level is low and is further reduced following a neo-

adjuvant ICI therapy, whereas the scenario with low immune accessibility (characteristic 

of a fibro-dominated TME) can be identified with a slight increase in the post-ICI IL-8 level. 

Although the IL-8 trend is similar for immune-dominated and immune/non-fibrotic TME the 

absolute levels differ significantly between the two subtypes. (c) Illustrates the role of OPN 

and LIF knockout on the IL-8 profile. The removal of both OPN and LIF reprograms the 

TME towards a immune/non-fibrotic subtype. Therefore, the IL-8 level post OPN and LIF 

knockout followed by ICI also drops drastically compared to its pre-ICI and pre-removal 

counterpart. 
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Figure 10. Lactate removal improves overall immune response: (a) Lower levels of 

residual lactate concentration inside the TME improves the cytotoxicity of the killer T cells 

in the pre-ICI setting. (b) The negative impact of lactate on the immune response 

continues to the post-ICI scenario wherein a high lactate levels impedes on the PD1-killer 

T cell activity thereby leading to a high tumor cell population. (c) In the presence of high 

killer T cell cytotoxicity, lactate can also serve as a distinguishing factor between immune 

accessible and inaccessible HNSCC TMEs. In the highly immune accessible TMEs, 

application of anti-PD1 renders significant decrease of lactate compared to its pre-ICI 

counterpart whereas, the low immune accessible TME corelates with higher post-ICI 

lactate levels. 
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