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Genetic relationship between purebred and synthetic pigs for 
growth performance using single step method

Joon Ki Hong1, Kyu Ho Cho1, Young Sin Kim1, Hak Jae Chung1, Sun Young Baek1,  
Eun Seok Cho1,*, and Soo Jin Sa1,*

Objective: The objective of this study was to estimate the genetic correlation (rpc) of growth 
performance between purebred (Duroc and Korean native) and synthetic (WooriHeukDon) 
pigs using a single-step method.
Methods: Phenotypes of 15,902 pigs with genotyped data from 1,792 pigs from a nucleus 
farm were used for this study. We estimated the rpc of several performance traits between 
WooriHeukDon and purebred pigs: day of target weight (DAY), backfat thickness (BF), 
feed conversion rate (FCR), and residual feed intake (RFI). The variances and covariances 
of the studied traits were estimated by an animal multi-trait model that applied the Bayesian 
inference.
Results: rpc within traits was lower than 0.1 for DAY and BF, but high for FCR and RFI; in 
particular, rpc for RFI between Duroc and WooriHeukDon pigs was nearly 1. Comparison 
between different traits revealed that RFI in Duroc pigs was associated with different traits 
in WooriHeukDon pigs. However, the most of rpc between different traits were estimated 
with low or with high standard deviation.
Conclusion: The results indicated that there were substantial differences in rpc of traits in 
the synthetic WooriHeukDon pigs, which could be caused by these pigs having a more 
complex origin than other crossbred pigs. RFI was strongly correlated between Duroc and 
WooriHeukDon pigs, and these breeds might have similar single nucleotide polymorphism 
effects that control RFI. RFI is more essential for metabolism than other growth traits and these 
metabolic characteristics in purebred pigs, such as nutrient utilization, could significantly 
affect those in synthetic pigs. The findings of this study can be used to elucidate the genetic 
architecture of crossbred pigs and help develop new breeds with target traits.
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INTRODUCTION 

The breeding objective of nucleus swine farms is to improve commercial pig performance. 
Breeders select purebred pigs because they assume there is a strong relationship between 
performance of the purebred pigs and their progenies. However, the accuracy of this selec-
tion depends on the genetic correlation (rpc) between purebred and crossbred performance. 
The three main components that affect this performance are genotype-by-genotype inter-
actions, genotype-by-environment interactions, and the different definitions of traits can 
reduce the rpc [1]. Synthetic pigs originated from purebred pigs; however, with increasing 
generations, they may develop genetically different characters, as has been observed in 
Iberian pigs [2]. Several studies on rpc concentrated on the relationship with crossbred 
performance [3-6]. This information can be used to verify the genetic influence of pure-
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bred pigs on synthetic pigs, which helps elucidate the crossbred 
genetic architecture underlying complex traits. This verification 
can also be used to help develop new synthetic populations 
and improve target traits.
  WooriHeukDon pigs are a synthetic breed that was pro-
duced by crossing Duroc with Korean native pigs in Korea 
[7]. The rpc of performances traits between purebred (Duroc 
or Korean native) and WooriHeukDon pigs may be low be-
cause WooriHeukDon pigs are now genetically distinct [7], 
and the number of common sires was small [1]. However, 
feed efficiency traits can be more complex than growth traits. 
Feed efficiency is related to nutrient utilization, and energy 
digestibility and selection, and improved feed efficiency can 
improve various functions that use energy and nutrients [8,9].
  We assumed that, in the same feeding environment, the 
genetic characteristics of energy digestibility were similar 
between purebred and synthetic pigs. Our Duroc, Woori-
HeukDon, and Korean native pigs were raised at the same 
farm under the same feeding system. Therefore, we estimated 
the rpc of several performance traits between WooriHeukDon 
and purebred pigs: day of target weight (DAY), backfat thick-
ness (BF), feed conversion rate (FCR), and residual feed 
intake (RFI).

MATERIALS AND METHODS 

Dataset
We used data provided by the National Institute of Animal 
Science in Korea. The pedigree included 13,031 Duroc, 1,529 
Korean native, and 2,267 WooriHeukDon pigs (Table 1). The 
population structures of these breeds were determined using 
CFC v1.0 [10].
  WooriHeukDon pigs are a synthetic breed that was pro-
duced by crossing Duroc with Korean native pigs in Korea. 
A total of 50 pure pigs (42 Duroc and 10 Korean native) were 
used to produce WooriHeukDon pigs from 2008 to 2010. Ini-
tially, pure Korean native boars were crossed with Duroc 
sows to produce F1 animals. Then, Duroc boars were used 
to sire the F2 generation and produced 25% Korean native 
and 75% Duroc pigs, which were further crossed with F1 
individuals to finally yield 37.5% Korean native and 62.5% 
Duroc pigs. Furthermore, WooriHeukDon (37.5% Korean 

native and 62.5% Duroc) pigs were selected for about seven 
generations from 2010 to 2018.
  The experimental protocols describing the management 
and care of the animals were reviewed and approved accord-
ing to the Guide for the Care and Use of Laboratory Animals 
(National Institute of Animal Science, Animal Care Com-
mittee of Korea) on 19 August 2019 (approval number: NIAS 
2019-1709). All pigs were raised in an experimental farm of 
NIAS and had a space allowance of at least 1 m2 with solid 
concrete flooring. Pigs were fed ad libitum and water was 
constantly accessible through nipple drinkers. We tested all 
pigs that were raised under the same facilities. The feeding 
program and measurement of traits were conducted in ac-
cordance with the pig testing standards of the Korean Animal 
Improvement Association (http://www.aiak.or.kr/eng).
  The performance tests of each trait started soon after 
each animal reached a live body weight of 30 kg and were 
continued until a target weight (TW) of 90 kg (70 kg for 
Korean native) was attained. On average, fewer than 160 
days were required to attain this TW. Average daily gain 
(ADG, g/d) was calculated as TW minus start weight di-
vided by the length of the period. BF was measured using 
an A-mode ultrasound device (Renco Lean-Meter series 
12, Renco Corporation, Minneapolis, MN, USA). Average 
backfat thickness (ABF) was obtained by calculating the 
average BF of the shoulder (on the 4th thoracic vertebrae), 
mid-back (on the last thoracic vertebrae), and loin (on the 
last lumbar vertebrae). Approximately four to six female pigs 
were kept in a pen. Alternatively, one or two male pigs from 
the same litter were kept in a pen to calculate feed intake. 
Feed disappearance from each pen was recorded during 
performance tests to calculate average daily feed intake 
(ADFI). FCR was calculated as ADFI divided by ADG. DAY 
and BF were calculated as follows [11]:

  DAY = age at the test 
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Table 1. Number of animals and pedigree information of each breed

Item Duroc Korean native WooriHeukDon 

Birth year 1995 to 2018 1995 to 2018 2008 to 2018
Number of founders 297 29 61 
Number of individuals 13,031 1,529 2,267 
Longest ancestral path 19 14 10 
Family (Full-sib groups) size 2 to 21 2 to 14 2 to 19
Average inbreeding coefficients (min.–max.) 0.032 (0.0004–0.315) 0.128 (0.016–0.390) 0.070 (0.023–0.348)
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  ADFI = μ+b1ADG+b2BF+b3AGEonset+e,

where AGEonset is the age at which the animal was tested; b1, 
b2, and b3 are the linear coefficients of the regression for co-
variates; and e is the RFI. The phenotypic dataset, which 
included DAY, BF, FCR, and RFI, was obtained from perfor-
mance tests (Table 2). Korean native pigs had records only 
for DAY and BF.

Genotyping of animals
The genomic DNA of pigs was extracted from their blood 
samples from 2010 to 2018 using a standard protocol. A 
total of 1,792 pigs (881 Duroc, 204 Korean native, and 707 
WooriHeukDon) were genotyped using the Illumina Por-
cineSNP60 v2 BeadChip panel, which comprised 61,565 
single nucleotide polymorphism (SNP) markers [13]. The 
quality control of the SNP markers included deletion of in-
dividuals with parent–progeny Mendelian conflicts or with 
a missing rate of >0.90, and removal of monomorphic SNP 
genotypes, and SNPs located on sex chromosomes, with 
minor allele frequency (MAF)<0.05, genotype call rates of 
<0.90, and Hardy–Weinberg equilibrium of 0.15 [14]. After 
quality control, the final dataset contained genotypes from 
1,771 pigs (878 Duroc, 196 Korean native, and 697 Woori-
HeukDon pigs). The total number of autosomal SNPs was 
reduced to 42,486.

Genetic parameter estimation
Genetic correlation (rpc) of performance between purebred 

and WooriHeukDon pigs was estimated for corresponding 
traits (e.g., DAY in Duroc and WooriHeukDon pigs) and 
different traits (e.g., DAY in Duroc and RFI in WooriHeuk-
Don pigs). Genetic (rg) and phenotypic (rp) correlations 
between different traits were estimated within breeds.
  The variances and covariances of the studied traits were 
estimated by an animal multi-trait (10 traits) model that 
applied the Bayesian inference using GIBBS2F90 [15]. The 
Gibbs samplers were run as single chains of 220,000 rounds. 
The first 20,000 rounds were discarded as burn-in, thinning 
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used for post-Gibbs analyses, which were completed using 
POSTGIBBSF90 [15].
  The effects of sex (male or female) on both DAY and BF 
and birth year- month (134 levels) were fitted as fixed effects. 
The models also included the random effects of birth litter 
(2,790 levels). Animals were fitted as a random effect in the 
model. The statistical model for each group of traits was as 
follows:

  y = Xb+Za+Wc+e, 

in which y is the vector of observations; X, Z, and W are the 
corresponding incidence matrices; b is the vector of fixed 
effects; a is the vector of random additive genetic effects 
(breeding values), 
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Table 2. Number of observations (N), mean, standard deviation (SD) for phenotype and heritability

Breed Trait N
Phenotype Heritability

Mean SD Mean SD  95% HPD1)

Duroc DAY 12,412 138.73 11.92 0.31 0.03 0.26–0.36
BF 12,292 12.48 1.92 0.30 0.03 0.24–0.36
FCR 4,578 2.30 0.30 0.49 0.04 0.42–0.58
RFI 2,307 165.47 152.05 0.51 0.04 0.43–0.59

WooriHeukDon DAY 2,063 148.84 12.68 0.36 0.05 0.25–0.46
BF 2,048 16.60 3.71 0.38 0.06 0.27–0.50
FCR 551 2.36 0.39 0.48 0.08 0.32–0.64
RFI 290 98.41 88.49 0.48 0.07 0.35–0.62

Korean native DAY 1,427 192.42 24.70 0.57 0.06 0.45–0.69
BF 1,414 20.58 4.09 0.76 0.06 0.65–0.87

DAY, day of target weight; BF, backfat thickness; FCR, feed conversion rate; RFI, residual feed intake.
1) 95% HPD, highest posterior density interval containing 95% of the observations.
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the relationship matrix among individuals based on pedigree 
information, and G is the relationship matrix among indi-
viduals based on genomic information. The G matrix was 
built according to PM VanRaden [18]. Both A22 and G were 
subsequently combined, because the two matrices were 
similar. I is an identity matrix of appropriate dimensions. 
Phenotype variance is the sum of random and residual vari-
ances. Heritability (h2) was calculated as the additive genetic 
variance divided by the phenotype variance.

RESULTS 

Heritability estimation
Heritability (h2) obtained from the studied model is present-
ed in Table 2. In Duroc pigs, heritability was high (h2>0.5) 
for RFI, and moderate (h2 = 0.2 to 0.5) for DAY, BF, and FCR. 
In WooriHeukDon pigs, all traits were moderately herita-
ble. Heritability estimates in Korean native pigs were high 
for DAY and BF. Across the breeds, heritability estimates 
for DAY (0.36±0.05) and BF (0.38±0.06) in WooriHeukDon 
pigs were higher than those in Duroc pigs (DAY 0.31±0.03 
and BF 0.30±0.03), whereas heritability estimates for FCR 
(0.48 ±0.08) and RFI (0.48±0.07) in WooriHeukDon pigs 
were somewhat lower than those in Duroc pigs (FCR 0.49 

±0.04 and RFI 0.51±0.04). Korean native pigs had nearly 
twice the estimated heritability compared with the other 
breeds for both DAY (0.57±0.06) and BF (0.76±0.06).

Genetic correlation between traits within breeds
The rg estimates within breeds are given in Table 3. The rg es-
timates between traits were typically low to moderate for all 
breeds, although this was not the case for rg between FCR 
and RFI. Additionally, the association of RFI with other 
traits was weaker than with FCR. The rg between DAY and 
BF was low, and ranged from 0.07 to 0.10. In both Duroc 
and WooriHeukDon pigs, the rg of DAY was moderately 
positive (0.25 to 0.38) with FCR but negative (–0.16 to –0.26) 
with RFI. BF was weakly associated (0.02 to 0.07) with FCR 
and RFI in Duroc pigs. Alternatively, in WooriHeukDon 
pigs, BF also had low rg (0.06) with RFI but moderate rg (0.34) 
with FCR. FCR was strongly positively associated (0.61 to 
0.81) with RFI in both Duroc and WooriHeukDon pigs.

Purebred–synthetic genetic correlations
The rpc estimates are presented in in Table 4. The rpc estimates 
within traits were low (less than 0.10) for DAY and BF. In 
Duroc and WooriHeukDon pigs, there were strong corre-
lations for RFI and FCR; the rpc estimates were 0.99 for RFI 

Table 3. Posterior mean for genetic correlations (upper diagonal) and phenotypic correlations (lower diagonal) between traits

Breed Trait DAY BF FCR RFI

Duroc DAY - 0.08 0.07 0.25 0.07 –0.16 0.08
BF 0.120.01 - 0.07 0.07 0.02 0.07
FCR 0.430.02 0.00 0.00 - 0.87 0.02
RFI –0.010.02 –0.01 0.02 0.84 0.01 -

WooriHeukDon DAY - 0.27 0.12 0.38 0.13 –0.26 0.18
BF 0.200.03 - 0.34 0.14 0.06 0.17
FCR 0.460.04 0.25 0.05 - 0.61 0.10
RFI –0.110.06 –0.06 0.06 0.34 0.06 -

Korean native DAY - 0.07 0.10 - -
BF 0.100.06 - - -

DAY, day of target weight; BF, backfat thickness; FCR, feed conversion rate; RFI, residual feed intake.
Posterior standard deviations are given as subscripts.

Table 4. Posterior mean for genetic correlations (rpc) between purebred and WooriHeukDon traits

Breed Trait
WooriHeukDon

DAY BF FCR RFI

Duroc DAY 0.050.19 –0.080.17 –0.110.14 –0.160.08

BF –0.100.14 0.020.14 –0.020.11 0.020.07

FCR –0.210.20 0.030.17 0.530.12 0.860.02

RFI –0.260.18 0.060.17 0.610.10 0.990.00

Korean native DAY 0.070.12 0.010.12 0.040.10 –0.010.08

BF 0.030.08 0.010.08 0.020.07 0.000.05

DAY, day of target weight; BF, backfat thickness; FCR, feed conversion rate; RFI, residual feed intake.
Posterior standard deviations are given as subscripts. The rpc within traits are given as bold.
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and 0.64 for FCR. For rpc estimates between different traits, 
DAY in WooriHeukDon pigs was more correlated with both 
FCR and RFI than DAY in Duroc pigs. The rpc estimates 
for DAY in WooriHeukDon pigs were –0.21 for FCR and 
–0.26 for RFI of Duroc pigs.

DISCUSSION

Heritability and genetic correlation within breeds
The heritability of growth and BF have been reported in 
many studies. In general, growth traits have moderate heri-
tability, whereas BF has moderate to high heritability [11,19-
22]. In this study, DAY and BF also had moderate heritability 
in Duroc and WooriHeukDon pigs (Table 2). The higher 
heritability estimates for DAY and BF in Korean native pigs 
was consistent with previously published estimates [23,24]. 
Estimated heritabilities for feed efficiency (FCR, RFI) were 
close to 0.5 in both breeds and somewhat higher than those 
(0.30 to 0.42) of previous studies [25-28].
  Our low to moderate genetic correlations between DAY 
and BF in all breeds (Table 3) coincided with those of previ-
ous studies [11,22,29]. In Duroc and WooriHeukDon pigs, 
FCR was favorably genetically correlated with DAY and BF. 
This result is consistent with previous reports of FCR being 
negatively related to growth and positively related to BF [8,30]. 
However, because ratio traits such as FCR are not ideal for 
elucidating feed efficiency [31], RFI is a commonly used to 
measure feed efficiency. In this study, the genetic correlation 
between FCR and RFI was very high in Duroc pigs, which 
indicated that this correlation was greater in the sire than 
other lines [30]. RFI is more independent of production 
than FCR in Duroc and WooriHeukDon pigs. Additionally, 
the genetic correlations of RFI were low with BF but some-
what moderate with DAY in Duroc and WooriHeukDon 
pigs. Generally, RFI has a neutral relationship with other 
traits [8]. In particular, superior breeds for growth and lean 
meat, such as Pietrain pigs, had a more neutral relationship 
between RFI and other growth traits [30,32]. However, RFI 
can also have a slightly unfavorable relationship with growth 
[12,33-35]. RFI in WooriHeukDon pigs has a more unfavor-
able relationship with growth compared with that in Duroc 
pigs; this means that the faster WooriHeukDon pigs grow, 
the more they consume to maintain energy. WooriHeuk-
Don pigs have slower growth and more backfat than Duroc 
pigs (Table 2) because were developed by the genetic char-
acteristics of both Duroc and Korean native pigs. Therefore, 
there might be differences in the genetic relationship be-
tween RFI and growth based on breed characteristics.

Genetic correlation between purebred and synthetic 
performance
The rpc for DAY and BF were lower than 0.1 (Table 4), and 

these values were substantially different from those produced 
by other studies that estimated rpc between purebred and 
crossbred performance for growth traits. Wientjes and Calus 
[1] reviewed existing literature that report rpc estimates in 
pigs, and noted that the average rpc was 0.66 for growth traits 
and 0.69 for backfat. A low rpc may occur because of bio-
logical differences, genotype-by-environment interactions, 
and the different definition of the considered trait [1,35,36]. 
In this study, there should be no genotype-by-environment 
interactions for rpc because all pigs were tested in the same 
environmental facility. The weighting criterion of Korean 
native pigs (70 kg) differed from that of WooriHeukDon 
pigs (90 kg), which might be one factor that contributed to 
the very low rpc between the two breeds. Additionally, un-
like most crossbred pigs, WooriHeukDon pigs are a product 
of a more complex combination of crosses and have their 
own generations, which could have resulted in biological 
differences from purebreds. Duroc and WooriHeukDon 
pigs are selected based on the same traits, DAY and BF. How-
ever, crossbreed genomic information is made up of a mosaic 
of genomic regions inherited from different breeds, and 
there might be different allele effects for the same trait [37]. 
Unlike WooriHeukDon pigs, Korean native pigs have only 
been selected for their genetic diversity, which could also 
result in different selection signals between Korean native 
and WooriHeukDon pigs [7].
  However, the rpc for RFI between Duroc and WooriHeu-
kDon pigs was very strong and close to 1 (Table 4). This 
indicated that there could be substantial differences in rpc 
of traits in synthetic pigs, unlike in other crossbred pigs. 
Feed efficiency is complex and includes two or more traits, 
and it is more essential for metabolism than other growth 
traits. High of rpc values for feed efficiency have also been 
obtained in previous studies [5,6,35,38,39]. RFI is related 
to nutrient utilization and energy digestibility, and selec-
tion based on RFI could improve various functions that 
use energy and nutrients [8,9]. There are various reports 
about the potential importance of low RFI in pigs, such as 
high anti-oxidant defenses in the mitochondria of body 
[40], superior ability to cope with stress-related behavioral 
reactivity [41], and low levels of viremia when infected 
with porcine reproductive and respiratory syndrome virus 
[42]. These biologically important characteristics in Duroc 
pigs, such as nutrient utilization and disease resistance, 
might also be found in WooriHeukDon pigs. Because the 
number of similar SNP regions was related to rpc of the trait 
[37], Duroc and WooriHeukDon pigs might have many 
common regions for RFI. The impact of breed-specific SNP 
effects in purebred and synthetic pigs needs further study, 
because our study did not estimate SNP effects for each breed.
  To the best of our knowledge, this is the first report of rpc 
between different traits in pigs. However, there was some 
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limitations of our study with small data sets in both local 
breeds (Korean native and WooriHeukDon). Especially, the 
most of rpc were estimated with high standard deviation. 
Therefore, our results also indicated the value of further 
analysis with a greater population to obtain a more robust 
estimation of rpc between purebred and synthetic pigs.

CONCLUSION

The objective of this study was to estimate rpc of growth per-
formance (DAY, BF, FCR, and RFI) between synthetic 
(WooriHeukDon) and purebred (Duroc and Korean native) 
pigs. The rpc was lower than 0.1 for DAY and BF but high 
for FCR and RFI. In particular, rpc of RFI was close to 1. 
The results indicated that there were substantial differences 
in rpc of traits in the synthetic WooriHeukDon pigs, which 
could be caused by these pigs having a more complex origin 
than other crossbred pigs. We conclude that the RFI of Duroc 
pigs was strongly correlated with that of WooriHeukDon 
pigs, and these breeds might have a lot of common regions 
related to RFI. RFI is more essential for metabolism than 
other growth traits and these metabolic characteristics in 
purebred pigs, such as nutrient utilization, could signifi-
cantly affect those in synthetic pigs. The findings of this 
study can be used to elucidate crossbred genetic architec-
ture and help develop new breeds with particular target 
traits.
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