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Introduction: The nanostructural modification of the oral implant surface can effectively mimic the morphology of natural bone 
tissue, allowing osteoblasts to achieve both proliferation and differentiation capabilities at the bone interface of the dental implant. To 
improve the osteoinductive activity on the surface of titanium implants for rapid osseointegration, we prepared a novel composite 
coating (MAO-PDA-NC) by micro-arc oxidation technique and immersion method and evaluated the proliferation, adhesion, and 
osteogenic differentiation of osteoblasts on this coating.
Methods: The coatings were prepared by micro-arc oxidation (MAO) technique and immersion method, and characterized by 
scanning electron microscopy (SEM) and atomic force microscopy (AFM) for different coatings; the loading of PDA was examined 
using Fourier transform infrared spectroscopy (FTIR); the ion release capacity of the coatings was determined by inductively coupled 
plasma emission spectrometry (ICP-OES); the interfacial bonding of the coatings was examined using nanoscratch experiment 
strength. The cytotoxicity of the coating was examined by live/dead staining kit; cell proliferation viability was examined by CCK- 
8 kit; adhesion and osteogenic effect of the coating were examined by immunofluorescence staining and RT-PCR; osteogenic 
differentiation was examined by alkaline phosphatase staining.
Results: The surface morphology of titanium implants was modified by micro-arc oxidation technology, and a new MAO-PDA-NC 
composite coating was successfully prepared. The results showed that the MAO-PDA-NC coating not only optimized the physical and 
chemical properties of the titanium implant surface but also significantly stimulated the biological properties of osteoblast adhesion, 
proliferation, and osteogenic differentiation on the coating surface.
Conclusion: These results show that MAO-PDA-NC composite coating can significantly improve the surface properties of titanium 
implants and achieve a stable bond between implant and bone tissue, thus accelerating early osseointegration.
Keywords: proliferation, differentiation, micro-arc oxidation, osseointegration

Introduction
With the development of biomaterials and the advancement of multifunctional technologies, new materials for oral 
implants have become commonplace and are gradually coming to the attention of oral implantologists. Currently, 
titanium and its alloys are widely used for dental implants as a biocompatible material with good mechanical properties 
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as well as corrosion resistance.1 However, the surface of titanium-based materials is biologically inert and has limited 
ability to induce new bone formation for ideal osseointegration.2 Therefore, how to achieve rapid as well as better 
osseointegration is a major challenge for contemporary dental implantologists and researchers.

The development of a new generation of titanium implant surfaces that are biologically active and promote 
osseointegration has been a hot topic of research, the key point of which is that the modified titanium implant surface 
is closer to the natural bone tissue morphology and chemical properties, which can provide the growth environment 
required for bone regeneration.3 Several methods based on optimizing the surface properties of titanium implants, 
including changing the surface morphological structure and optimizing the surface chemistry, can effectively modulate 
the osseointegration at the interface of titanium implant materials.4–6 Among the means of titanium surface coating 
modification, the micro-arc oxidation (MAO) method is to form a porous, rough titanium oxide coating on the titanium 
surface and to dope the Ca and P elements in the electrolyte into the coating, thus giving the implant a larger contact area 
with the surrounding bone tissue and imparting osteogenic activity to the coating.7

The incorporation of bioactive materials into the MAO-coated surface is a promising approach. The incorporation of 
biomaterials can further optimize the biological activity of implant implants, improve osteoinduction and shorten the period of 
osseointegration. In recent years, nanoclay has proven to be an attractive bioactive material for bone tissue engineering and is 
widely used in various biomedical research.8,9 On the one hand, nanoclays are composed of simple or complex layered silicates 
with good biocompatibility as well as osteogenic induction capabilities. For example, synthetic silicate nanoplates can induce 
osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in the absence of osteogenic inducing 
factors or bioactive molecules.10 Compared with collagen-based hydrogels, collagen hydrogels containing two-dimensional 
nanosilicates can enhance the formation of the mineralized matrix required for bone tissue growth, thereby promoting the bone 
regenerative capacity and showing great promise for application in bone tissue engineering.11 On the other hand, nanoclay has an 
inhomogeneous charge distribution as well as a high surface-to-volume ratio that can facilitate chemical bonding or physical 
adsorption with biopolymers.8 Therefore, nanoclay is often used to cross-link various polymers, such as polydopamine (PDA), 
and interact with them to form hydrogels with a double network structure, improving physical and mechanical properties.12 PDA 
is a black-brown coating produced by the aerobic weak base environment of dopamine with extremely strong adhesion properties 
and various active functional groups.13,14 Among them, the highly transitive catechol and amine functional groups on the PDA 
chains not only enhance the interfacial interactions between the clay nanosheets and the polymer network through physical cross- 
linking but also achieve functional coating loading by non-covalent and covalent chemical reactions with the substrate.15,16 For 
example, the optimal combination of high adhesion and toughness was achieved by a two-step preparation of polydopamine clay 
polyacrylamide (PDA-clay-PAM) hydrogels, and the excellent adhesion properties of this hydrogel were attributed to nanoclay- 
induced PDA oxidation, which maintained a large number of free catechol groups in the hydrogel. Also, the toughness of this 
hydrogel may be attributed to the presence of covalent and non-covalent cross-linked PDA polymer networks and nanoclay 
reinforcements. In addition, cellular experiments demonstrated that the PDA-clay-PAM hydrogel facilitated cell adhesion and 
proliferation with good cell affinity.16 Therefore, strategies that mimic PDA adhesion to overcome the limitations of cell and 
tissue repulsive hydrogels, titanium implants, and scaffold materials introduce important advances in the design of biomaterials 
with adequate adhesion and excellent mechanical properties.

In this study, we chose the MAO technique as a method to fabricate dental implants to form microporous structures 
on titanium surfaces for a variety of material surfaces. Based on the mussel-inspired PDA adhesion mechanism, we 
embedded dopamine powder into the nanoclay layer on the MAO coating surface to confine dopamine oxidation to the 
clay layer space, thus forming a PDA clay layer rich in catecholamine moieties on the MAO coating surface (MAO- 
PDA-NC coating). We further investigated the activity, adhesion and osteogenic differentiation of osteoblasts on this 
coating to provide an experimental basis for early and rapid osseointegration of titanium implants in a clinical setting.

Materials and Methods
Preparation of Materials
The titanium sheets (10 mm × 10 mm × 1 mm) used in this study were obtained from commercially pure titanium sheets. 
The surface of the titanium sheet was sandpapered and polished, and then gradually cleaned with acetone, anhydrous 
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ethanol, and deionized water in an ultrasonic cleaning machine in turn. Firstly, to prepare the micro-arc oxidation 
coatings, the samples were prepared as porous surface layers by micro-arc oxidation in an electrolyte solution consisting 
of 35.2 g/L of calcium acetate monohydrate (C4H6CAO4H2O, Macklin, Shanghai, China) and 12.24 g/L of sodium 
pentahydrate β-glycerophosphate (C3H7NA2O6P·5(H2O), Aladdin, Shanghai, China). Secondly, MAO-PDA coatings 
were prepared. Dopamine hydrochloride powder (Aladdin, Shanghai, China) was added to 10 mM Tris-HCl buffer 
solution (pH = 8.5, Aladdin, Shanghai, China) at a concentration of 2 mg/mL and stirred continuously for 24 h to obtain a 
black PDA solution.13 Then, the MAO samples were soaked in the PDA solution overnight away from light, thus 
obtaining the MAO-PDA coating. Finally, preparation of MAO-PDA-NC coating, Halloysite nanoclay (Aladdin, 
Shanghai, China) at 35 mg/ml was added to 10 mM of Tris-HCl buffer and the solution was put into a constant 
temperature stirrer for 2 h. Subsequently, dopamine hydrochloride powder was added and stirring was continued. The 
MAO samples were put into overnight immersion protected from light to obtain MAO-PDA-NC coating.

Material Surface Characteristics
To analyze the physical characteristics of the material surface, the surface morphology and pore size of the samples were 
analyzed by scanning electron microscopy (SEM, Hitachi, 3400N, Japan), and the chemical composition of the coatings was 
analyzed using an energy-dispersive X-ray spectroscopy(EDS, Bruker, Germany), and the surface roughness of the coatings 
was evaluated using an atomic force microscope (AFM, Bruker, Germany). And the Fourier transform infrared spectroscopy 
(FTIR, Thermo Scientific Nicolet iS20, USA) spectra of the dried samples were obtained using a PerkinElmer Spectrum One 
spectrometer, the wetting properties of the coating surfaces were assessed using a contact angle meter (SL200B, Solon, 
China), and inductively coupled plasma/optical emission spectroscopy (ICP-OES, PerkinElmer Avio 200, USA) was used to 
analyze the ion release from the different coatings. Nanoscratcher (Hysitron TI 950, USA) detects the integrated load-bearing 
capacity between MAO+PDA+NC coating and the base system to obtain the interfacial bond strength magnitude.

Cell Culture of Rat BMSCs
The Sprague Dawley (SD) rats used in the experiments were obtained from the Animal Centre of the Ninth People’s 
Hospital of Shanghai Jiao Tong University, and animal ethical approval was obtained for all animal experiments 
performed. Primary bone marrow mesenchymal stem cells were isolated from selected 3-week-old Sprague Dawley 
male rats. Rats were executed by spinal dislocation and the tibia and femur were removed under aseptic conditions, and 
rat bone marrow mesenchymal stem cells (rBMSCs) were collected and repeatedly washed with a culture medium, 
centrifuged, and suspended. The culture medium was changed every other day until the cells reached 80–90% for 
passage, and the 2nd-4th generation cells were selected for subsequent experiments. The cells used in this study were 
cultured and expanded in Dulbecco’s modified Eagle’s medium (DMEM, HyClone, Logan, UT) with 10% fetal bovine 
serum (FBS), 1% penicillin/streptomycin (Gibco, Carlsbad, CA) and cultured at 37 °C in a 5% CO2 humidified 
environment.

Live/Dead Fluorescence Staining and Cell Counting Kit-8 (CCK-8) Assay
To assess the cell viability on different samples, the live-dead cell staining solution (Beyotime, Cat: C2015M, Shanghai, 
China) was applied to detect cell activity and cytotoxicity. Briefly, 2.0×104 cells/well were inoculated on the samples. 
After 24 h of incubation, the culture medium was discarded, the cells were washed with PBS, and the appropriate volume 
of assay working solution was added and incubated at 37 °C for 30 min. Cells were observed by fluorescence microscopy 
(Olympus, Tokyo, Japan) immediately after the incubation.

Cells were inoculated on different samples as described previously and after 1, 3, and 5 days of incubation, the 
medium was mixed with CCK-8 reagent (DOJINDO, Kumamoto, Japan) in a 10:1 ratio and added to 24-well plates and 
incubated for 1.5 h. Subsequently, 100 μL/well supernatant was pipetted to a 96-well plate, and the absorbance was 
measured at 450 nm using an enzyme analyzer. The experiments were performed three times.

To observe the morphological characteristics of BMSCs on the material surface, the cytoskeleton was determined by 
staining with tetramethylrhodamine (TRITC)-globulin. BMSCs were inoculated at a density of 5 × 104/well and cultured 
on different samples. After 24 h of incubation, 4% paraformaldehyde was fixed and 0.5% Triton X-100 was 
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permeabilized. Subsequently, they were sealed with bovine serum albumin (BSA). Finally, TRITC (Yeasen, Shanghai, 
China) was used to label the cytoskeleton and DAPI (Solarbio, Beijing, China) to label the nucleus. Images were taken 
under a fluorescence microscope (TE2000-U, Nikon, Tokyo, Japan).

Cell Adhesion Examination of Different Coatings
Cells were cultured on different samples for 3 days and immunofluorescence staining was performed to observe the 
expression of the Vinculin gene. Cells were fixed with 4% paraformaldehyde and washed with PBS; subsequently, 0.5% 
Triton X-100 was permeabilized and incubated with 5% bovine serum protein for 1 h. Primary antibodies specific for 
Vinculin (Beyotime, Shanghai, China) were first incubated on the cells overnight and then on Alexa Fluor 488 AffiniPure 
Donkey anti-Rabbit IgG (H+L) antibody (Yeasen, Shanghai, China) for 1 h. The cytoskeletal structures were stained with 
TRITC phalloidin and nuclear staining was performed with DAPI. A fluorescence microscope (TE2000-U, Nikon, 
Tokyo, Japan) was used for measurements.

To further examine cell adhesion on different samples, the expression of Integrin adhesion-associated genes was 
detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Cells were inoculated with 5×104 /well on 24- 
well plates and cultured in DMEM medium for 7 days before total cellular RNA was extracted using Trizol reagent 
(Invitrogen, Grand Island, NJ). Integrin adhesion-associated genes Integrin β3, Integrin α2, Integrin α3, and Integrin α4 
expression was assessed by real-time PCR using SYBR Premix Ex Taq II (Takara). The relative expression levels of each 
related gene were normalized to the relative expression levels of the housekeeping gene GAPDH as described above. The 
primer sequences of the genes mentioned in the experiments are shown in Table 1.

Osteogenic Performance Analysis of Different Coatings
The expression of osteogenic genes was detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Cells 
were inoculated with 5×104 /well on 24-well plates and cultured in DMEM medium for 7 days before total cellular RNA 
was extracted using Trizol reagent (Invitrogen, Grand Island, NJ). Expression of the osteogenesis-related genes ALP, 
OPN, Runx2, and OSX was assessed by real-time PCR using SYBR Premix Ex Taq II (Takara). The primer sequences of 
the genes mentioned in the experiments are shown in Table 2.

Immunofluorescence was used to detect the expression of Runx2, OCN and OPN. Cells were inoculated with 5×104 

/well on 24-well plates and cultured in DMEM medium for 5 days. Cells were fixed with 4% paraformaldehyde and 
washed with PBS; subsequently, 0.5% Triton X-100 was permeabilized and incubated with 5% bovine serum protein for 
1 h. Primary antibodies specific for Runx2 (Cell Signaling Technology, Shanghai, China), OCN (Beyotime, Shanghai, 
China) and OPN (Beyotime, Shanghai, China) were first incubated on the cells overnight and then on Alexa Fluor 488 
AffiniPure Donkey anti-Rabbit IgG (H+L) antibody (Yeasen, Shanghai, China) for 1 h. The cytoskeletal structures were 
stained with TRITC phalloidin and nuclear staining was performed with DAPI. A fluorescence microscope (TE2000-U, 
Nikon, Tokyo, Japan) was used for measurements.

Alkaline phosphatase (ALP) staining and ALP activity analysis were used to verify the osteogenic effect. 5×104 cells/ 
well were inoculated in 24-well plates containing osteogenic medium and cultured for 14 days before fixation and staining 
of the cells using an alkaline phosphatase kit (Beyotime Biotechnology, Shanghai, China), and the samples were observed 
under a microscope for staining. Semi-quantitative analysis of alkaline phosphatase was performed to determine alkaline 
phosphatase activity by measuring the OD value of absorbance at 405 nm. Total protein values were measured at 562 nm 

Table 1 Primers for the Expression of Adhesion-Related Genes in BMSCs

Gene Forward Primer Sequence Reverse Primer Sequence

Integrin β3 CCGTGACGAGATTGAGTCA AGGATGGACTTTCCACTAGAA

Integrin α2 GGAACGGGACTTTCGCAT GGTACTTCGGCTTTCTCATCA

Integrin α3 AAGGGACCTTCAGGTGCA TGTAGCCGGTGATTTACCAT
Integrin α4 GCTTCTCAGATCTGCTCGTG GTCACTTCCAACGAGGTTTG

GAPDH GACATCAAGAAGGTGGTGAAGC TGTCATTGAGAGCAATGCCAGC
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using the Bio-Rad protein analysis kit. The results of the alkaline phosphatase analysis were normalized and expressed as 
total protein OD per mg of cells.

Analysis of the Osteogenic Properties of Sample Extracts
Four different groups of samples were placed in the serum-free and double antibodies-free medium for 7 days, and the extracts 
were subsequently collected for subsequent experiments. A control group (cultured in a normal medium) as well as TI, MAO, 
MAO+PDA, and MAO+PDA+NC extract groups were established by adding 10% serum as well as 1% double antibodies to 
the extracts. RT-PCR, ALP activity assays, as well as OPN (Beyotime, Shanghai, China) immunofluorescence staining were 
performed to assess the osteogenic potential of ions released from the extracts of different samples.

Statistical Analysis
All of the above experiments were repeated at least three times, and the results were expressed as mean ± standard 
deviation (SD). They analyzed the results using Origin (Origin Lab Corporation, North Hampton) software. One-way 
analysis of variance and multiple comparison tests were used to determine statistical significance. Statistically significant 
differences between groups and controls are indicated by “*”. “NS” indicates no significant difference.

Results
Characterization and Properties of Different Coatings
MAO technique was used to treat titanium flakes and different MAO-active coatings were prepared by adding PDA and 
Nanoclay components. Surface morphological characteristics between the different samples using SEM, and it was found 
that MAO, MAO+PDA, and MAO+PDA+NC coatings had relatively simple textures as well as micron/nanometer pits 
that provided transport channels for cell, energy, and nutrient uptake (Figure 1A). Observation of porosity and pore size 
of the different samples (Figure 1B and C), and the results showed that there was no significant difference in the shape 
and size of the micro/nanoscale particles between the groups. The 3D morphology and roughness of the different samples 
were observed using AFM. Among them, the surface roughness of TI was 228 nm, while the surface roughness of the 
MAO, MAO+PDA, and MAO+PDA+NC group were 377.9, 401.7, and 553.8 nm, respectively. The MAO+PDA+NC 
coating formed a rougher surface compared to the other groups, while there was no significant difference between MAO 
and MAO+PDA groups (Figure 1D and E). It was shown that the surface morphology of titanium treated by microarc 
oxidation underwent significant changes, forming micro/nanostructures, while the surface roughness was altered by the 
addition of nanomaterials, thus promoting the normal biological function of osteoblasts.

EDS evaluated the surface elemental composition of the different samples. During the micro arc oxidation process, 
the Ca and P elements from the electrolyte were successfully incorporated into the generated oxide layer to form different 
MAO active coatings. Among them, the chemical compositions of the MAO and MAO+PDA groups were consistent 
(Figure 2A), probably because PDA is mostly attached to the surface of titanium sheets by coordination and/or chelation 
of catechol groups, and its chemical composition is similar to that of true melanin in nature. Halloysite nanoclay, a 
member of the montmorillonite mineral family, consists of silicate crystals rich in a variety of chemical elements. Not 
only Ca and P elements in the electrolyte could be observed in the MAO+PDA+NC coating, but also Al and Si elements 
were found, indicating that nanoclay was successfully loaded on the coating surface (Figure 2A and B).

Table 2 Primers for the Expression of Osteogenesis-Related Genes in BMSCs

Gene Forward Primer Sequence Reverse Primer Sequence

ALP GGGACTGGTACTCGGACAAT GGCCTTCTCATCCAGTTCAT
OPN GACGATGATGACGACGACGATGAC GTGTGCTGGCAGTGAAGGACTC

OCN GGTGCAGACCTAGCAGACACCA AGGTAGCGCCGGAGTCTATTCA

OSX CGGCAAGGTGTACGGCAAGG GAGCAGAGCAGACAGGTGAACTTC
Runx2 ACAACCACAGAACCACAAG TCTCGGTGGCTGGTAGTGA

GAPDH GACATCAAGAAGGTGGTGAAGC TGTCATTGAGAGCAATGCCAGC
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The water contact angle is used to determine the hydrophilic state of the surface interface of the coating. The surface 
contact angles of the TI, MAO, MAO+PDA and MAO+PDA+NC groups were 49.24°, 42.14°, 7.74°, and 10.12°, 
respectively (Figure 3A and B). The results showed that the contact angle decreased and the hydrophilicity increased in 
the different MAO active coating groups compared to the pure TI group. With the addition of PDA coating, the material 
surfaces of MAO+PDA and MAO+PDA+NC groups have smaller contact angles, which indicates that the contact angle 

Figure 1 Characterization of the templates. 
Notes: (A) Surface morphology of TI, MAO, MAO+PDA, and MAO+PDA+NC was observed by the SEM. (B) Surface porosity distribution of MAO, MAO+PDA, and MAO 
+PDA+NC coating. (C) Frequency distribution of surface aperture in MAO, MAO+PDA, and MAO+PDA+NC. (D) AFM images showing three-dimensional structures of TI, 
MAO, MAO+PDA, and MAO+PDA+NC. (E) Quantitative evaluation of coating surface roughness (Ra). Scale bar: 10 and 20μm.
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of the material can be reduced and hydrophilicity can be improved by introducing PDA coating on the surface of MAO 
coating.

FTIR spectroscopy verified the successful PDA deposition. The MAO+PDA group had two distinct broad absorption 
bands at about 3410 cm-1 and 1590 cm-1, and the MAO+PDA+NC group also had two distinct broad absorption bands at 
about 3470 cm-1 and 1730 cm-1 (Figure 3C). All of the FTIR spectra exhibited a broad band at 3470 cm-1, 3410 cm−1 that 
can be assigned to intermolecular hydrogen-bonded O-H stretch with the N-H stretch of secondary amine buried 
underneath. The band at 1730 cm−1 corresponding to C=O stretching vibration and the band at 1590 cm−1 that can be 
attributed to the aromatic ring stretching vibration of the polyindole structures. The samples were immersed in PBS for 1, 
3, and 7 days, and the release of ionic elements from the different coatings was examined using ICP-OES (Figure 3D). 
The cumulative release curve shows that, similar to the EDS results in Figure 2, the release amount of Ca and P elements 

Figure 2 EDS determination of the elemental composition of the coatings. 
Notes: (A) EDS elemental analysis of TI, MAO, MAO+PDA, and MAO+PDA+NC. (B) Energy-dispersive X-ray spectroscopy analysis of MAO+PDA+NC coating and its 
mapping of the ions.
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in the nanoclay is significantly lower than that in the MAO and MAO+PDA groups. In addition, the release of Al, Si and 
Na elements in the MAO+PDA+NC coating presents a slow and continuous process, in which the release amount of Na 
element is not significantly different from that of the other two groups, which is attributed to the small amount of Na 
element in the silicate.

The nanoscratch experiment was performed by probing the surface of the MAO+PDA+NC sample perpendicular to the 
surface for relative scratching and recording the loading and scratching distance in real time. We find out the most obvious 
turning point of the curve according to the graph, the Normal Displacement graph shows that the indenter of the scratch at about 
50 s-15000 nm does gradually deepen the scratch, and the slope of the curve gradually increases after the 50 s, thus we know that 

Figure 3 Surface properties of the coatings. 
Notes: (A and B) Surface contact angles of TI, MAO, MAO+PDA, and MAO+PDA+NC. (C) ATR−FTIR spectra of samples at the range of 4000−750 cm−1. (D) ICP-OES 
examined the release of different coatings on 1, 3, and 7 days. **P < 0.01 indicates significant difference between groups. NS indicates no significant difference between the 
compared groups.
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the coating thickness is about 15000 nm, and the load at this point is called the critical load, the value of 400 mN (Normal Force) 
(Figure 4A). The coefficient of friction refers to the Lateral Force/Normal Force, which is an index to characterize the friction and 
wear performance. Generally speaking, the lower the coefficient of friction, the higher the wear resistance under the same 
conditions. Our experimental results show that the wear resistance of the MAO+PDA+NC coating surface is better as the load 

Figure 4 Interfacial bond strength of MAO+PDA+NC coatings. 
Notes: (A) The thickness of the coating and the critical load are derived from the coordinates corresponding to the curve. (B) Friction coefficient refers to the Lateral 
Force/Normal Force.
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increases (Figure 4B). These results indicate that our prepared MAO+PDA+NC coating with a thickness of about 15000 nm has a 
better interfacial bond strength and better wear resistance.

Cytocompatibility and Biocompatibility of Different Coatings
To assess the potential toxicity of nanoclay nanoparticles, previous studies demonstrated that osteoblasts MC3T3-E1 
were placed in different concentrations of Halloysite nanoclay nanoparticles (0.0035–35 mg/mL) and found that 
Halloysite nanoclay nanoparticles were not toxic to MC3T3-E1 osteoblasts, and thus after administration of the overall 
cell survival rate remained unchanged after the injection of up to 35 mg/mL Halloysite nanoclay.17 In this study, the 
highest concentration of 35 mg/mL nanoclay nanoparticles was taken and soaked on the surface of MAO with the 
addition of adhesion molecule PDA, and the biocompatibility of MAO+PDA+NC nanocomposite coating was evaluated 
by using rat bone marrow mesenchymal stem cells. The distribution of the live-dead state of cells on the material after 24 
h was observed by staining the surface of different coatings with live and dead cells, where green fluorescence is for live 
cells and red fluorescence is for dead cells. The results of the live-dead staining images show a large amount of green 
fluorescence and a small amount of sporadic red fluorescence expression on the surface of the material (Figure 5A), 
which proves that the modified coatings have no adverse effects on cells and have excellent biocompatibility. The cell 
proliferation capacity of the nanocomposite coating MAO+PDA+NC was investigated and the results indicated that 
BMSCs grew on this coating showed a time-dependent growth trend throughout the culture period (1, 3, and 5 days), 
with the MAO+PDA+NC group showing significantly higher proliferation activity on days 3 and 5 than all other groups 
(Figure 5B). The cytoskeletal morphology was observed after 1 day of incubation on the surface of different samples, and 
it was found that good cytoskeletal extension and cell attachment were observed in the MAO+PDA+NC group compared 
to all other groups (Figure 5C), thus confirming that the MAO+PDA+NC coating facilitated cell attachment and growth. 
All these results confirm that our nanocomposite coatings can support cell attachment and proliferation with good 
cytocompatibility as well as biocompatibility for controlling cell function in tissue engineering applications.

Cell Adhesion of Different Coatings
Our next experiments verified the powerful adhesion effect of PDA by detecting the expression of integrin family gene 
and Vinculin proteins. BMSCs cells were divided into different groups for inoculation, and immunofluorescence staining 
confirmed the expression of Vinculin protein. After 3 days of culture, the fluorescence intensity of MAO+PDA and MAO 
+PDA+NC groups was significantly higher than the other groups (Figure 6A). The effects of different coatings on the 
expression of cell-associated adhesion factors were subsequently examined by RT-PCR. The results showed that the 
expression of Integrin β3, α2, α3, and α4 in MAO+PDA and MAO+PDA+NC groups were significantly higher than 
those in TI and MAO groups (Figure 6B). Among them, the MAO+PDA group showed the best adhesion effect, which 
was weakened after the addition of nanoclay, and it was speculated that this might be caused by the space limitation of 
nanoclay-induced PDA oxidation.

Effect of Different Coatings on Osteogenic Differentiation
After determining that nanoclay is non-toxic to cells and does not damage cell membranes, we performed extensive 
osteogenic differentiation experiments to determine the role of nanoclay in the osteogenic differentiation of BMSCs. Our 
research results showed that the expression of ALP, OPN, Runx2, and OSX osteogenic related genes were significantly 
upregulated and the expression of Runx2, OCN and OPN protein was increased in the nanoclay modified nanocomposite 
coating compared to the non-NC treated cells; however, the expression of osteogenic genes and protein was lowest in the 
TI group (Figure 7A–D). Overall, our results confirmed that the MAO+PDA+NC coating possessed good osteogenic 
differentiation and that the TI group had the weakest osteogenic effect. To further validate the bioactive characteristics of 
MAO+PDA+NC coating in promoting and enhancing the osteogenic phenotype of BMSCs, we chose to culture the cells 
using a standard growth medium without osteoinductive factors (such as dexamethasone) and assayed the ALP activity of 
this coating. ALP activity is associated with osteoblast differentiation and greatly influences the process of cell matrix 
mineralization in osteoblasts.18 In the normal medium, we observed the effects of MAO, MAO+PDA, and MAO+PDA 
+NC coatings on ALP activity during culture, in which ALP activity was significantly increased in the MAO+PDA+NC 
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group (Figure 7E and F), which further demonstrated that the MAO+PDA+NC composite coating has better osteoin-
ductive activity.

Effect of Ion Release from MAO+PDA+NC Coating Surface on Osteogenesis
Nanoclay has been widely used to enhance bioactivity and osteogenesis on the surface of biomaterials, but the 
mechanism by which it works has not been determined. Previous studies have shown that bioactive ions released from 
nanoclay scaffolds/hydrogels form an inducible microenvironment that stimulates osteogenic differentiation of primary 

Figure 5 Biocompatibility and cytocompatibility of the different coatings. 
Notes: (A) Live (green)−Dead (red) cell staining and statistical analysis of BMSCs cultured on the titanium surface of different groups for 1 day. (B) BMSCs were cultured in 
different groups for CCK-8 analysis. (C) Fluorescence image analysis of cytoskeletal morphology on various coating surfaces. **P < 0.01 indicates a significant difference 
between MAO+PDA+NC and other groups; NS indicates no significant difference between the compared groups. Scale bar: 100 μm.
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rat osteoblasts (ROBs), thereby promoting bone regeneration.19,20 Therefore, we further verified the effect of bioactive 
ions released by nanoclay breakdown on osteogenic differentiation. We chose to place samples from each group into a 
medium without antibiotics and serum and collected the extracts after 7 days and cultured the cells in the presence of 

Figure 6 Adhesion of the different coatings. 
Notes: (A) Vinculin expression detected by an immunofluorescence staining method. (B) Expression of the Integrin adhesion-associated genes Integrin β3, Integrin α2, 
Integrin α3, and Integrin α4. **P < 0.01 indicates significant difference between groups. Scale bar: 100μm.
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Figure 7 Osteogenic induction of the different coatings. 
Notes: (A) Expression of the bone-related gene of ALP, OSX, Runx2, and OPN. (B–D) Runx2, OCN and OPN expression was detected by an immunofluorescence staining 
method. (E and F) ALP staining of BMSCs on different templates and quantitative analysis. **P < 0.01 indicates significant difference between groups. Scale bar: 30μm and 
100μm.

International Journal of Nanomedicine 2022:17                                                                                   https://doi.org/10.2147/IJN.S378387                                                                                                                                                                                                                       

DovePress                                                                                                                       
4785

Dovepress                                                                                                                                                            Zhou et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


serum and antibiotics. The ALP staining and semi-quantitative results showed that the ALP activity was significantly 
upregulated in the added nanoclay group compared to all other groups. While there was no significant difference between 
TI and blank control groups, there was also no significant difference in ALP activity between MAO+PDA and MAO 
groups due to the similar ionic elements released (Figure 8A and B). In addition, RT-PCR results showed that the 
expression of osteogenic genes Runx2, OCN, and OPN was upregulated due to the addition of nanoclay compared to 
other groups (Figure 8C). Fluorescence staining results showed that OPN protein expression was more obvious in MAO 
+PDA+NC group (Figure 8D). In conclusion, these results suggest that the presence of ionic elements in nanoclay is 
responsible for enhancing bone healing and stimulating bone formation.

Discussion
To improve the biological and mechanical properties of the surface of titanium implants, many studies have been 
conducted on the morphological modification of the surface of oral implants. The means of modification of the material 
surface mainly involves physical modification, chemical modification, and biological modification. Different functiona-
lized nano-coatings are prepared by modifying the surface of titanium implants to create a good microenvironment for 
promoting bone regeneration.21–23 Among them, micro-arc oxidation technology is used to mix various chemical 
elements by adjusting the electrolyte composition, thus preparing an MAO active coating containing micron or nanoscale 
porous morphology to stimulate osteoblasts to perform normal biological functions and promote osseointegration.24 

However, studies have reported that simple micro- and nanoporous structures cannot fully satisfy the need for 
osseointegration,25 and the adhesion properties of the coating surface need to be further confirmed. Therefore, it is 
particularly essential to prepare a new MAO active coating that can both increase the adhesion of the material surface and 
meet the requirements of osseointegration for ensuring successful implant placement in the defect area.

Nanoclay is a novel nanomaterial with stable mechanical and biological properties, which not only has excellent 
osteoinductive properties but also can enhance the interaction with polymers and bioactive components through its unique 
charge properties.8–11 For example, charged groups on the polymer backbone can form covalent bonds with the nanoclay 
surface through electrostatic interactions, where the nanoclay acts as a crosslinking center and individual particles are 
connected to multiple polymer chains, thus forming a physical crosslinking network.8,16 In addition, the polymer structure, 
molecular weight, and hydrophilicity also determine the interaction between nanoclay and polymer.26,27 Notably, inspired by 
the powerful wet adhesion properties of mussels, the biopolymer PDA has entered the limelight. Due to its rich content of 
reactive functional groups, PDA not only has unique adhesion properties but also superior hydrophilic properties.28–30 It has 
been shown that nanoclay can induce the oxidation of dopamine to form PDA-clay nanosheets rich in catechol groups, which 
contributes to the uniform distribution of nanoclay in the polymer network and further enhances mechanical and adhesion 
properties.16 Given this, we envisioned a new composite coating by embedding PDA-clay nano layers into MAO active 
coating, so that this composite coating can achieve both adhesion and osteogenesis effects.

Nanostructural modifications on the surface of the titanium implant material, while leading to an increase in surface 
roughness, also change the hydrophobic state of the surface, providing more binding sites for the cells.31,32 From the 
perspective of surface microscopic roughness, by introducing a nanoclay component to the MAO coating surface, the 
roughness of the material surface increases, which can better simulate a cellular environment suitable for rapid alveolar 
bone growth. From the perspective of material surface wettability, poor material surface wettability, poor cell affinity, and 
poor cell adhesion, and the introduction of hydrophilic substances to reduce surface tension is an effective means to 
improve cell affinity.33 In addition, the active coating on the implant surface provides the conditions needed for 
osteoblasts to proliferate and promote new bone formation.34,35 The results of our cell proliferation experiments showed 
that MAO+PDA+NC nanocomposite coating had no adverse effects on cells and was able to promote cell proliferation 
and growth, and skeleton staining revealed that cells spread completely on the surface of the coating, proving good 
surface interface compatibility between the coating and cells, which is conducive to cell attachment and adhesion.

The nanosized surface of the titanium implant material has a greater influence on the adhesion of the cells. When cells 
adhere to the material surface, they are firstly adsorbed on the material surface by cell adhesion proteins, which bind to cell 
membrane receptors before mediating cell adhesion, and such adhesion is more conducive to osteoblast differentiation and 
bone tissue regeneration.36–38 Vinculin is an actin-binding protein that forms an adhesion complex based on calmodulin and 
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Figure 8 Osteogenic induction of active ions released from the different coatings. 
Notes: (A and B) ALP staining of BMSCs on different groups and quantitative analysis. (C) Expression of the bone-related gene of Runx2, OCN, and OPN. (D) OPN 
expression was detected by an immunofluorescence staining method. **P < 0.01 indicates significant difference between groups.
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integrins and is thought to enhance intercellular and extracellular matrix adhesion.39 Integrins are transmembrane hetero-
dimers composed of α and β subunits, a family of adhesion molecules that sense, respond to, and interact with different 
extracellular matrix components with high specificity, mediating adhesion between cells and the extracellular matrix.40 Our 
study verified the adhesion of MAO+PDA+NC coated surface by detecting the expression of Vinculin protein and integrin 
family genes. In addition, it was shown that enhanced cell adhesion and proliferation were associated with improved surface 
hydrophilicity and the presence of functional groups.41,42 We also found that due to the richness of PDA coatings in various 
reactive functional groups and their superior hydrophilicity, the adhesion effect is particularly pronounced when PDA 
substances are introduced to the surface of MAO coatings. In contrast, with the addition of nanoclay particles with high 
specific surface area, the interfacial bonding between the clay and PDA coating leads to the formation of physical crosslinks 
within the nanocomposite network, reducing the number of chemical crosslinks required for network formation, while at the 
same time, the oxidation of PDA in the nanoclay layer is limited, making the free catechol groups interacting with 
nanoclay require a higher fracture to separate the bonded joints and their adhesion would be compromised.43,44 In conclusion, 
the introduction of different material compositions and functional groups on the surface of MAO coatings can modulate the 
adsorption capacity of the cells on the coating surface.

Rapid osseointegration is a key factor in determining the success of dental implants, and porous titanium oxide coatings 
prepared by MAO have been shown to be an effective method for enhancing osteogenesis; therefore, nanoclay materials with 
osteoinductive activity were added to evaluate the ability of nanoactive coatings to promote early and rapid interfacial 
osseointegration of titanium implants. Runx2, OSX, OPN, OCN, and ALP are important osteogenic markers that regulate the 
formation and differentiation of bone tissue. Among them, Runx2 belongs to the Runx family of transcription factors and is 
expressed in late mesenchymal condensed and osteochondral progenitor cells of skeletal development and acts as a master 
regulator of osteogenesis.45 Osterix (OSX) is thought to be a downstream target of Runx2, acting at later stages of osteogenesis 
and maturation, controlling the maturation of functional osteoblasts and further differentiation towards osteocytes.45,46 OPN 
and OCN are involved in the late stages of osteogenic differentiation. And OPN is an extracellular structural protein that is 
secreted and synthesized by preosteoblasts, osteoblasts and osteocytes and is thought to be important for bone remodeling.10 

ALP is an early indicator of the osteogenic phenotype and plays an important role in the initial stages of bone matrix 
mineralization.47 Our study compared the osteogenic differentiation of various coatings. At the protein level, immunofluor-
escence staining showed that the expression of both Runx2, OCN and OPN in the MAO+PDA+NC group was significantly 
better than that in the control group; at the gene level, RT-PCR detected significantly higher expression of Runx2, ALP, OSX, 
and OPN genes in the MAO+PDA+NC group than in the other groups; at the matrix mineralization level, ALP staining and 
semi-quantitative results indicated that MAO+PDA+NC coating could significantly promote the mineralization process of 
osteoblasts and promote bone formation. In addition, previous studies have reported the important role of silicate on 
osteogenic differentiation. Therefore, we explored the ability of the ionic components of the coating retardation on osteogenic 
differentiation and mineralization of BMSCs in vitro, and based on the experimental results, we found that the ionic 
components released from the MAO+PDA+NC group played a more important role in the induction of osteogenic 
differentiation. We speculate that this may be attributed to the synergistic effect of the silicate ionic component with the 
elemental component in the micro arc oxidation electrolyte, which needs further verification. These findings suggest that 
MAO-PDA-NC nanocomposite coatings can enhance osteogenic differentiation of BMSCs toward early and late stages of 
osteogenesis and promote early and rapid osseointegration of titanium implants.

Conclusions
In this study, we successfully prepared a bioactive nanocomposite coating (MAO-PDA-NC) by micro-arc oxidation 
technique and confirmed that the coating not only optimizes the physical and chemical properties of the ware surface but 
also significantly stimulates a variety of biological properties such as adhesion, proliferation and osteogenic differentia-
tion of osteoblasts on the material surface. The new nanocomposite coating provides new insights into the exploration of 
implant surface nano-modification and is expected to play an active role in the early osseointegration of implant 
placement. Based on this study, further exploration of the molecular regulatory mechanisms involved in osseointegration 
by the MAO-PDA-NC composite coating and the factors that may induce immune responses during this process is 
needed, which will provide new ideas for future therapeutic targets to improve implant osseointegration.
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