CellPress

Article

Liquid Crystals Comprising π -Electronic lons from Porphyrin–Au^{III} Complexes

Yohei Haketa, Yuya Bando, Yoshifumi Sasano, Hiroki Tanaka, Nobuhiro Yasuda, Ichiro Hisaki, Hiromitsu Maeda

maedahir@ph.ritsumei.ac.jp

HIGHLIGHTS

lon pairs based on porphyrin-Au^{III} complexes as π -electronic cations were prepared

Porphyrin-Au^{III} complexes formed ionpairing assemblies in combination with anions

Aliphatic substituents in the cations provided liquid crystalline mesophases

Haketa et al., iScience 14, 241-256 April 26, 2019 © 2019 The . Author(s). https://doi.org/10.1016/ j.isci.2019.03.027

Article

Liquid Crystals Comprising π -Electronic Ions from Porphyrin–Au^{III} Complexes

Yohei Haketa,¹ Yuya Bando,¹ Yoshifumi Sasano,¹ Hiroki Tanaka,¹ Nobuhiro Yasuda,² Ichiro Hisaki,³ and Hiromitsu Maeda^{1,4,*}

SUMMARY

Porphyrin–Au^{III} complexes were found to act as π -electronic cations, which can combine with various counteranions, including π -electronic anions. Single-crystal X-ray analyses revealed the formation of assemblies with contributions of charge-by-charge and charge-segregated assemblies, depending on the geometry and electronic state of the counteranions. Porphyrin–Au^{III} complexes possessing aliphatic alkyl chains formed dimension-controlled ion-pairing assemblies as thermotropic liquid crystals, whose ionic components were highly organized by π - π stacking and electrostatic interactions.

INTRODUCTION

An ordered arrangement of π -electronic species is crucial for the fabrication of functional organic materials such as organic electronic devices including field-effect transistors, light-emitting diodes, and photovoltaic cells (Würthner, 2005; Nakanishi, 2011; Koch, 2015). In contrast to the materials comprising single-species components, noncovalent interactions, such as hydrogen bonding, metal coordination, and donoracceptor interactions, are required for the organization of complementary pairs of π -electronic molecules in materials (Kato et al., 2006). The obtained materials would exhibit diverse properties and functionalities according to the particular combinations of constituent building units. Synergetic uses of electrostatic interactions and other noncovalent interactions, including π - π stacking, is very important for the alignment of π -electronic charged species (cations and anions) and the formation of dimension-controlled assemblies including fiber and sheet solid materials, supramolecular gels, and liquid crystals (Faul, 2014; Goossens et al., 2016; Haketa and Maeda, 2017, 2018). An advantage of using electrostatic interactions is the formation of various ion-pairing materials by combining constituent π -electronic ions: for example, 10 kinds of cations and 10 kinds of anions are mixed to ideally provide 100 kinds of ion pairs. Furthermore, assembling modes can be modulated by constituent ions as well as by the environment, thus exhibiting particular properties according to the arrangement of charged building units even in an ion pair. Fundamentally, the stacking of oppositely and identically charged π -electronic ions results in charge-by-charge and charge-segregated assembling modes, respectively, as well as their contributing assemblies (Figure 1A) (Haketa and Maeda, 2017, 2018). Controlling these two characteristic assembling modes is an important issue for the fabrication of electronic materials. In addition, the combinations of cations and anions, not restricted to π -electronic ions, do not always afford ion pairs, whose production and state are significantly influenced by the geometries and electronic states of the constituent ions (Figure 1B). Thus the design and synthesis of charged species, along with their appropriate choice, are crucial for the examination of ion-pairing materials. Over the past few years, the formation of assemblies with charge-by-charge and charge-segregated contributions has been achieved based on π -electronic anions (Diels, 1942; Webster, 1965; Kuhn and Rewicki, 1967; Sakai et al., 2013) combined with appropriate cations in single crystals (Bruce et al., 1984, 1986; Radhakrishnan et al., 1986; Watson et al., 1989; Jayanty and Radhakrishnan, 1999; Richardson and Reed, 2004; Less et al., 2010; Bando et al., 2016). For example, pentacyanocyclopentadienide (PCCp⁻) (Webster, 1965), a stable six π-electron aromatic anionic species with a planar geometry, afforded charge-by-charge assemblies with π -electronic cations in single crystals (Bruce et al., 1986; Bando et al., 2016) and also formed charge-segregated assemblies with bulky tetraalkylammonium cations in single crystals and liquid crystal mesophases (Less et al., 2010; Bando et al., 2016). Furthermore, ion-pairing assemblies, such as supramolecular gels and liquid crystals, were formed with pseudo π -electronic anions as complexes of π -electronic host molecules (receptors) and guest anions (Haketa et al., 2010, 2012; Dong et al., 2012, 2013a, 2013b). More importantly, the above-mentioned soft materials based on π -electronic ion-pairing assemblies exhibit fascinating electric conductivity due to the contribution of charge-segregated assemblies (Dong et al., 2012, 2013a, 2013b; Haketa et al., 2012; Bando et al., 2016). Although the recent development of ionic self-assembly (Faul, 2014) has revealed potential applications for various functional

¹Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525–8577, Jaoan

²Research and Utilization Division, Japan Synchrotron Radiation Research Institute, Sayo 679–5198, Japan

³Green Nanotechnology Research Center, Research Institute for Electronic Science, Hokkaido University, Sapporo 001–0020, Japan

⁴Lead Contact

*Correspondence: maedahir@ph.ritsumei.ac.jp https://doi.org/10.1016/j.isci. 2019.03.027

Figure 1. Conceptual Diagram of Ion-Pairing Arrangement and States

(A and B) (A) Stacking assemblies of oppositely and identically charged π -electronic ions: charge-by-charge and chargesegregated assembling modes and their contributing assemblies and (B) schematic representation of the formation of ion-pairing assemblies (crystals and dimension-controlled assemblies) depending on the combination of appropriately modified cations ([i] non-aliphatic and [ii] aliphatic π -electronic cations) and anions. The assembling strategy in this study focuses on genuine π -electronic ions, whose core units have a charge, rather than the species bearing ionic moieties at the side chains.

nanostructured materials, there have been no studies of dimension-controlled ion-pairing assemblies based on charge-by-charge and charge-segregated assemblies, comprising genuine π -electronic cations and anions.

As porphyrin acts as a dianionic tetradentate ligand for various metal ions, trivalent metal cations can afford positively charged porphyrin-metal complexes as π -electronic cationic species in the absence of axial coordination. An important strategy is the use of Au^{III} (d⁸), which provides planar porphyrin–Au^{III} complexes as stable π -electronic cations that require no axial ligands (Fleischer and Laszlo, 1969; Timkovich and Tulinsky, 1977; Shachter et al., 1987; Brun et al., 1991; Kilså et al., 2001; Andersson et al., 2002; Che et al., 2003; Eng et al., 2005; Wang et al., 2007; Fortage et al., 2008; Sun et al., 2010; Ou et al., 2011, 2013; He et al., 2014; Preiß et al., 2016, 2017), resulting in the potential formation of ion pairs with various anions. Thus far, porphyrin-Au^{III} complexes have been utilized as anticancer agents (Che et al., 2003; Wang et al., 2007; Sun et al., 2010; He et al., 2014), electron-accepting units in donor-acceptor systems (Brun et al., 1991; Kilså et al., 2001; Andersson et al., 2002; Eng et al., 2005; Fortage et al., 2008), and also as precursors for porphyrin-Au^{II} complexes (Ou et al., 2011, 2013; Preiß et al., 2016, 2017). Although there is some research on the molecular structures and assemblies of porphyrin-Au^{III} complex ion pairs in single crystals (Timkovich and Tulinsky, 1977; Shachter et al., 1987; Che et al., 2003; Sun et al., 2010) and in irregularly shaped nanoscale aggregates (So et al., 2008), surprisingly, their dimension-controlled assemblies as soft materials have not been reported. Peripheral modifications of porphyrins enable the modulation of the structures and properties of porphyrin–Au^{III} complexes (π -electronic cations), which significantly affect the assembling states. In the past few decades, apart from porphyrin complexes, several cationic Au^{III} complexes

Figure 2. Synthesis of Porphyrin–Au^{III}-Based Ion Pairs

Meso-tetraarylporphyrin Au^{III} complexes: $Au0^+$ - X^- ($X^- = CI^-$, BF_4^- , PF_6^- , and $PCCp^-$) and Aun^+ - X^- ($n = 8, 12, 16, and 20; X^- = CI^-$, BF_4^- , PF_6^- , and $PCCp^-$).

have been reported, including cyclometalated complexes (Adams et al., 1991; Zhang et al., 2012; Ogawa et al., 2013; Yam et al., 2015; Kumar and Nevado, 2017). Among them, cationic Au^{III} complexes that provide dimension-controlled assemblies are very few, presumably because of their low thermal stability, difficulty for peripheral modification, and unsuitable combination with counteranions (Adams et al., 1991; Zhang et al., 2012; Ogawa et al., 2013). Therefore, there is a great advantage in utilizing porphyrin–Au^{III} complexes as the cationic components of stacking assemblies of π -electronic ions, especially for ordered columnar assemblies via the collaboration of π - π stacking and electrostatic interactions. Herein, the ion-pairing assemblies of porphyrin–Au^{III} complexes with various counteranions are investigated. This article reports the first example of dimension-controlled assemblies based on charge-by-charge and charge-segregated modes mainly as liquid crystals consisting of π -electronic systems, with both cationic and anionic building units.

RESULTS AND DISCUSSION

Preparation of Ion Pairs

Porphyrin–Au^{III} complex cations paired with desired anions were prepared by Au^{III} complexation of porphyrins by treatment with KAuCl₄ and a subsequent anion exchange with the obtained Cl⁻ ion pair of the porphyrin–Au^{III} complexes (Figure 2) (Che et al., 2003). For example, the Cl⁻ ion pair of a meso-tetraphenylporphyrin Au^{III} complex (Au0⁺-Cl⁻), prepared from 2H0, was treated with 3 equiv. of Ag⁺ ion pairs of BF_4^- and PF_6^- , followed by the removal of AgCl, silica gel column chromatography, and recrystallization with CH_2Cl_2/n -hexane, affording purified ion pairs $Au0^+$ - BF_4^- and $Au0^+$ - PF_6^- as red solids with yields of 70% and 55%, respectively. Treating $Au0^+$ -Cl⁻ with a Na⁺ ion pair of PCCp⁻ (Sakai et al., 2013) also afforded an ion pair Au0⁺-PCCp⁻, with an 82% yield, after the purification procedures. In this study, these counteranions were selected due to their characteristic geometries and electronic structures that can control assembling modes. It is noteworthy that the high stability of the ion pairs enables their purification through normalphase silica gel columns and recrystallization under ambient conditions (see the detailed procedures in the Supplemental Information (Figures S1-S40)). Interestingly, the obtained ion pairs showed characteristic polarities according to coexisting counteranions ($Cl^- > BF_4^- > PF_6^- > PCCp^-$) on silica gel chromatography (Figures 3A and S2). The characterization of the ion pairs, especially the determination of the 1:1 molar ratio of cationic $Au0^+$ and corresponding anions, was conducted via elemental analysis. ¹⁹F nuclear magnetic resonance (NMR) was also measured to determine molar ratios for the ion pairs with BF_4^- and PF_6^- . The ion pairs $Au0^+$ -X⁻ (X⁻ = Cl⁻, BF₄⁻, PF₆⁻, and PCCp⁻) showed similar ultraviolet-visible (UV-vis) absorption spectra in CH_2CI_2 derived from Au0⁺ as a monomeric state with the maxima (λ_{max}) of a Soret band at 409 nm ($\epsilon = -4 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$) and a Q band at 521 nm ($\epsilon = -2 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) (Figure S40). The molecular orbitals (MO) of Au0⁺-PCCp⁻, investigated by density functional theory at B3LYP/6-31+G(d,p) with def2TZVP for Au, showed separately localized electron spin densities for Au0⁺ and PCCp⁻ (Figure S61) (Frisch et al., 2013). The theoretical studies support the fact that oppositely charged π -electronic ions exist as electronically independent species.

CellPress

Figure 3. Thin-Layer Chromatography (TLC) Analysis for Ion Pairs TLC analysis for (A) (i) 2H0 as a reference, (ii) Au0⁺-Cl⁻, (iii) Au0⁺-BF₄⁻, (iv) Au0⁺-PF₆⁻, and (v) Au0⁺-PCCp⁻ and (B) (i) Au0⁺-Cl⁻, (iii) Au0⁺-PCCp⁻, and (iii) mixture of Au0⁺-Cl⁻ and TBAPCCp (2 equiv. to the samples in [i,ii] for each) using 5% MeOH/CH₂Cl₂ as an eluent. Dotted circles in (B) indicate the spot of TBAPCCp, which was observed under UV₂₅₄ light. The detailed experimental procedures are described in the captions of Figures S2 and S3.

The polarities of the ion pairs depend on how delocalized negative charges the constituent anions have. Using different polarities, ion pairs based on porphyrin–Au^{III} cations can be separated by silica gel chromatography when two different ion pairs are mixed in one solution (Figure 3B). The ion pairs Au0⁺-Cl⁻ and Au0⁺-PCCp⁻ showed R_f values of 0.06 and 0.52, respectively, with 5% MeOH/CH₂Cl₂ as an eluent (i, ii). Thin-layer chromatography analysis of the 1:1 mixture of Au0⁺-PCCp⁻ and PCCp⁻ as a tetrabutylammonium ion pair (TBAPCCp) in CH₂Cl₂ showed a distinct spot for Au0⁺-PCCp⁻, which was formed by ion exchange in a mixed CH₂Cl₂ solution, and small amounts of Au0⁺-Cl⁻ and TBAPCCp ([iii], Figure S3). The size of the spot of Au0⁺-PCCp⁻ in (iii) is approximately twice of that in (ii). This result clearly showed the preferential formation of Au0⁺-PCCp⁻ along with undetectable TBACI during the ion-exchange process.

Solid-State Structures of Ion Pairs

The exact structures and ion-pairing assemblies of Au0⁺-Cl⁻ in the solid state were elucidated by X-ray analysis, as an examination of a previous study (Timkovich and Tulinsky, 1977), wherein single crystals were prepared by vapor diffusion of CHCl₃/n-hexane (Figures S41 and S42, crystallographic details of all crystals are summarized in Table S1). Two crystal pseudo-polymorphs (type A and B) were obtained from the same crystallization conditions. In both packing types, columnar structures based on a chargeby-charge assembly were observed for Au0⁺ and Cl[−] associated with co-crystallized CHCl₃ molecules (Figure 4). In the type A polymorph, a two-by-two charge-by-charge structure was formed, based on repeating arrangement of a pair of $Au0^+$ -Cl⁻ and the stacking of two $Au0^+$ planes with a distance of 3.75 Å (Figures 4A [ii] and \$48). On the other hand, the type B polymorph showed a one-by-one charge-by-charge columnar structure of $Au0^+$ and Cl⁻ associated with four CHCl₃ molecules with a distance of 9.28 Å between two $Au0^+$ planes (Figures 4B [ii] and S49). It is noteworthy that the proximal Au•••Cl⁻ distances for type A and B polymorphs are 3.00 and 3.12 Å, respectively, which are comparable with the sum of the ionic radii of Au³⁺ and Cl⁻ (3.18 Å), suggesting the formation of contact ion pair (Figures 4A and 4B [iii]). Furthermore, the lines passing through both Au and Cl have angles of 76.9° and 80.2° for the type A and B structures, respectively, not 90°, to the mean planes of $Au0^+$ (core 25 atoms including Au). Therefore, Cl⁻ is not likely coordinated to the core Au^{III}, but proximally located around Au0⁺ as a π -electronic cation by rather electrostatic interactions.

The solid-state structures of the ion pairs $Au0^+$ -BF₄⁻ and $Au0^+$ -PF₆⁻ were also elucidated by X-ray analysis of single crystals prepared by vapor diffusion of CH₂Cl₂/n-hexane and (CH₂Cl)₂/n-hexane, respectively (Figures S43 and S44). A columnar structure comprising stacked $Au0^+$ was observed in the crystal of $Au0^+$ -BF₄⁻ with stacking distances of 3.73 and 3.88 Å between the porphyrin mean planes (core 25 atoms) and Au···Au distances of 5.05 and 5.48 Å (Figures 5A and S50). The counter BF₄⁻ anion was located beside the $Au0^+$ stacking columns, forming a charge-segregated assembly. Similar to $Au0^+$ -BF₄⁻, $Au0^+$ -PF₆⁻ (Figures 5B and S51).

In contrast to the charge-segregated assemblies of $Au0^+$ -BF₄⁻ and $Au0^+$ -PF₆⁻, a charge-by-charge assembly was observed in the single crystal of $Au0^+$ -PCCp⁻, which was prepared by vapor diffusion of (CH₂Cl)₂/CH₃CN (Figures 5C, S45, and S52). A columnar structure comprising alternately stacked $Au0^+$

CellPress

Figure 4. Single-Crystal X-Ray Structures of Au0⁺-Cl⁻

(A and B) (A) Type A and (B) type B: (i) representative packing modes as top views of one layer, (ii) space-filling packing models as side views from the arrows shown in (i), and (iii) top and side views of enlarged ion pairs, as indicated by red-dashed areas in (ii). Atom color code in (i) and (iii): brown, pink, light blue, green, and light orange refer to carbon, hydrogen, nitrogen, chlorine, and gold, respectively. Color code in (ii): cyan and magenta represent cations and anions, respectively.

and PCCp⁻ was observed with stacking distances of 3.37 and 3.40 Å between the porphyrin mean planes (core 25 atoms) and PCCp⁻. The charge-by-charge column is fairly stabilized by π - π stacking, and electrostatic interactions worked for oppositely charged species. The Au···Au distance of 6.77 Å was almost equal to the sum of the stacking distances for Au0⁺ and PCCp⁻, suggesting an almost completely perpendicular stacking. The two farthest cyano nitrogens in a single component of PCCp⁻ have a distance of 7.20 Å, which is suitable for stacking with the porphyrin core planes, thus facilitating the alternate stacking

CellPress

Figure 5. Single-Crystal X-Ray Structures of Au0⁺-X⁻ (X⁻ = BF₄⁻, PF₆⁻, and PCCp⁻)

(A-C) (A) Au0⁺-BF₄⁻, (B) Au0⁺-PF₆⁻, and (C) Au0⁺-PCCp⁻: (i) representative packing modes as top views of one layer, (ii) space-filling packing models as side views from arrows in (i), and (iii) top and side views of enlarged ion pairs, as indicated by red-dashed areas in (ii). Solvent molecules are omitted for clarity. Atom color code in (i) and (iii): brown, pink, yellow, light blue, light green, orange, and light orange refer to carbon, hydrogen, boron, nitrogen, fluorine, phosphorus, and gold, respectively. Color code in (ii): cyan and magenta represent cations and anions, respectively.

process. The electrostatic potentials (ESP) of $Au0^+$ -PCCp⁻, calculated at B3LYP/6-31+G(d,p) with def2TZVP for Au based on the crystal structure, revealed absolutely small negative charges in $Au0^+$ due to stacking with PCCp⁻ compared with $Au0^+$ -Cl⁻, where a more greater electron density was observed in $Au0^+$ at the site proximal to Cl⁻ (Figures S55–S58) (Frisch et al., 2013).

Dimension-Controlled Ion-Pairing Assemblies: Supramolecular Gels

To induce dimension-controlled ion-pairing assemblies in soft materials, aliphatic alkoxy chains were introduced at the meso-aryl moieties of porphyrin–Au^{III} cations. The Cl⁻ ion pairs Aun⁺-Cl⁻ (n = 8, 12, 16, and 20), derived from the corresponding aliphatic porphyrins 2Hn (Maruyama et al., 2010; Nowak-Król et al., 2010) (Figure 2), were further anion exchanged and purified with silica gel followed by recrystallization with CH₂Cl₂/MeOH, resulting in ion pairs Aun⁺-X⁻ (n = 8, 12, 16, and 20; X⁻ = BF₄⁻, PF₆⁻, and PCCp⁻) as air-stablered solids. Notably, this preparation process is easily adapted to the preparation of gram-scale ion pairs. Interestingly, the ion pairs formed anion-dependent nanostructured aggregates. For example, Au16⁺-PCCp⁻ formed a supramolecular gel in octane (10 mg/mL), comprising uniform fibers with diameters of ca. 0.5 µm and lengths of >50 µm, as revealed by optical and atomic force microscopic observations (Figures 6A, 6B, S64, and S65). Au16⁺-BF₄⁻ also formed aggregates as a precipitate in octane (10 mg/mL) consisting of entangled fibers with diameters of 1–3 μ m and lengths of >100 μ m. Other aliphatic ion pairs Au16⁺-X⁻ (X⁻ = Cl⁻ and PF₆⁻) showed no aggregation under these conditions. Synchrotron X-ray diffraction (XRD) analysis for the xerogel of Au16⁺-PCCp⁻ revealed the diffraction peaks of a rectangular columnar (Col_r) structure with a = 4.90, b = 4.36, c = 0.73 nm, and Z = 2 ($\rho = 0.83$) based on a charge-by-charge assembly (Figures 6C, S121, and S122, and Table S20). Furthermore, the broader UV-vis absorption bands of Au16⁺-PCCp⁻ in octane (4 \times 10⁻⁶ M) than those in CH₂Cl₂ suggested the formation of tightly bound ion pairs and resulting aggregates (Figure S66).

Figure 6. Characterization of the Xerogel of Au16⁺-PCCp⁻

(A–C) (A) Optical microscopic image (inset: photograph of the gel), (B) atomic force microscopic image, and (C) XRD pattern (inset: packing model) at RT of the xerogel of $Au16^+$ -PCCp⁻ prepared from *n*-octane gel (10 mg/mL).

Dimension-Controlled Ion-Pairing Assemblies: Thermotropic Liquid Crystals

Differential scanning calorimetry of the metal-free porphyrins 2Hn (n = 8, 12, 16, and 20) and ion pairs Aun^+ -X⁻ (n = 8, 12, 16, and 20; X⁻ = Cl⁻, BF₄⁻, PF₆⁻, and PCCp⁻) revealed the formation of mesophases (Figures S67 and S68), whose transition temperatures are summarized in Table 1 (Table S2), as also observed in the corresponding polarized optical microscopic (POM) observations (Figure S69, also summarized in Figure S70). In the case of using precursory metal-free porphyrins as the reference species of the ion pairs, **2H8** exhibited no mesophases during thermal process, whereas **2H12** showed a transition to the lamellar state at -19° C upon cooling. On the other hand, **2H16** and **2H20** showed mesophase transitions, for example, at 26°C/17°C and 26°C/32°C for **2H16** upon cooling and heating, respectively, with the appearance of a fan-shaped POM texture (Figure 7A).

Compared with the porphyrins, the ion pairs Aun^+ - Cl^- (n = 12 and 16) exhibited mesophases in wide temperature ranges; for example, $Au16^+$ - Cl^- showed transitions at 109°C/37°C and 40°C/111°C for cooling and heating, respectively, with the appearance of a focal conic POM texture (Figure 7B). $Au8^+$ - Cl^- showed no mesophase, whereas $Au20^+$ - Cl^- exhibited complicated mesophase transitions. On the other hand, $Au16^+$ - BF_4^- showed a less clear mesophase between 20°C and 61°C upon heating, whereas $Au20^+$ - BF_4^- showed thermal transitions at 63°C/48°C and 59°C/80°C upon cooling and heating, respectively (Figure 7C). Meanwhile, Aun^+ - BF_4^- (n = 8 and 12) exhibited no mesophases. $Au12^+$ - PF_6^- exhibited mesophases with transition temperatures at 105°C/75°C/-42°C and -40°C/113°C upon cooling and heating, respectively, although the other PF_6^- ion pairs showed no mesophases.

In sharp contrast to the less clear assembling behaviors of the nonplanar counteranions, the ion pairs Aun^+ -PCCp⁻ (n = 16 and 20) exhibited clear mesophases. The mesophase temperatures for Aun^+ -PCCp⁻ (n = 16 and 20) were observed at 292°C/36°C and 43°C/293°C and 260°C/61°C and 67°C/262°C upon cooling and heating, respectively, suggesting the existence of significantly wide-temperature-range mesophases compared with those for the other ion pairs investigated. The PCCp⁻ ion pairs exhibited dendritic POM textures, suggesting hexagonally arranged assemblies (Figure 7D). Interestingly, longer alkyl chains induced higher transition temperatures for the mesophases and lower clearing points, which can be explained by the compromise between the van der Waals interactions of aliphatic chains and the stacking assemblies of Aun^+ and PCCp⁻. In addition, the ion pair $Au8^+$ -PCCp⁻ showed no mesophase with a melting point at ca. 383°C, which corresponds to the decomposition of the ion pair, whereas $Au12^+$ -PCCp⁻ was slightly transformed to other unidentified species after the transition to isotropic liquid (Iso) at >300°C. The observations in Aun^+ -PCCp⁻ (n = 8 and 12) also suggested that their stabilities as seen in the bulk states are maintained even at high temperatures.

Structural Determinations of Ion-Pairing Liquid Crystals

The packing structures of the ion-pairing assemblies in the mesophases were examined by synchrotron XRD analysis (Table 1, Figures S71–S120, and Tables S2–S19). For the metal-free porphyrins, in contrast to the liquid states of **2H8** and **2H12** with shorter alkyl chains (Maruyama et al., 2010; Nowak-Król et al., 2010), the assemblies of **2H16** and **2H20** exhibited lamellar structures with interdigitating alkyl chains (Figure 8A [i, ii]). In contrast, the porphyrin–Au^{III} ion pairs formed characteristic anion-dependent ordered

CellPress

Ion Pairs	Cooling ^b	Heating ^b	
2Hn			
n = 8	lso ^c	lso ^c	
n = 12	lamellar –19 Iso	lamellar –9 Iso	
n = 16	lamellar 17 ^d lamellar 26 Iso	<i>lamellar</i> 26 ^d lamellar 32 Iso	
n = 20	lamellar 43 lamellar 49 Iso	lamellar 53 Iso	
Aun ⁺ -Cl ⁻			
n = 8	Col _h 122 Iso	Col _h 144 ^e Iso	
n = 12	$Col_h - 22^{d} \operatorname{Col}_h 120$ Iso	Col_h –20 ^d Col _h 138 ^e Iso	
<i>n</i> = 16	Col _h 37 Col _h 109 ^f Iso	<i>Col_h</i> 40 Col _h 111 Iso	
n = 20	Col _h 53 Col _h 57 Col _h 61 Col _h 70 Iso	Col_h 60 Col _h 65 Col _h 73 Iso	
$Aun^+-BF_4^-$			
n = 8	Cr 138 lso	Cr 162 Iso	
n = 12	amorphous -45^{d} Iso	amorphous –45 ^d Iso	
<i>n</i> = 16	Col _h 19 ^{d,g} Iso	Col _h 20 ^d Col _h 61 Iso	
n = 20	Col _r 48 ^d Col _h 63 Iso	Col _r 59 ^d Col _h 80 Iso	
Aun ⁺ -PF ₆ ⁻			
<i>n</i> = 8	Cr 148 lso	Cr 161 Iso	
n = 12	Col _{ob} –42 ^d Col _{ob} 75 Col _{ob} 105 ^e Iso	Col _{ob} –40 ^d Col _{ob} 113 Iso	
n = 16	lamellar 10 Iso	lamellar 12 ^d Iso	
n = 20	lamellar 39 Iso	lamellar 51 Iso	
Aun ⁺ -PCCp ⁻			
<i>n</i> = 8	_ ^h	_h	
n = 12	_ ⁱ	_i	
<i>n</i> = 16	Col _h 36 Col _h 292 Iso	Col _h 43 Col _h 293 Iso	
n = 20	Col _r 61 Col _h 260 Iso	Col _r 67 Col _h 262 Iso	

Table 1. Phase Transitions of Porphyrin–Au^{III}-Based Ion Pairs^a

^also presents isotropic liquid, and crystalline states are shown in italic.

^bTransition temperatures (°C, the onset of the peak) from differential scanning calorimetry; first cooling and second heating scans (5°C min⁻¹) and the examinations on first heating are excluded in the discussion.

^cEvaluated from –100°C to 50°C.

^dPeak top temperatures due to the broad differential scanning calorimetry peaks.

 $^{\rm e}{\rm Transition}$ temperatures from POM.

^fTransition temperatures from second cooling.

^gAlthough there may be a transition at \sim 0°C, the detailed examination on the possible mesophase was difficult. ^hDecomposed at 383°C.

ⁱSlightly transformed to other unidentified species after the transition to Iso at >300°C.

assemblies. The results revealed that Aun^+ -Cl⁻ (n = 12, 16, and 20) formed a hexagonal columnar (Col_h) structure in the mesophase; for example, $Au16^+$ -Cl⁻ showed a Col_h structure at 100°C (cooling) with a = 3.73, c = 0.36 nm, and Z = 1 ($\rho = 1.44$) (Figure 8B [i, ii]). The peak at 0.36 nm (001) indicated the ordered π - π stacking distance of porphyrin–Au^{III} cations, which formed a charge-segregated columnar structure. Furthermore, the peak at 0.53 nm was ascribable to the ordered arrangement of counter Cl⁻ or peripheral

Figure 7. POM Observations

(A–D) (A) 2H16, (B) Au16⁺-Cl⁻, (C) Au20⁺-BF₄⁻, and (D) Au16⁺-PCCp⁻ at 25°C, 100°C, 35°C, and 280°C, respectively, upon cooling.

aryl rings, although their exact positions could not be determined. The fairly high density of the mesophase for Au16⁺-Cl⁻ suggested an effective π - π stacking of porphyrin–Au^{III} cations as well as the tightly associated Cl⁻. The *a* values increased according to the alkyl chain lengths of the cations, as observed in Aun⁺-Cl⁻ (n = 12 and 20) showing 3.37 and 4.14 nm at 100°C and 62°C (cooling), respectively. The lattice parameters of these Col_h structures were consistent with the AM1-optimized structures of the alkyl-substituted porphyrins (Figure S54) (Frisch et al., 2013).

The XRD analysis of Au16⁺-BF₄⁻ at 45°C on heating revealed a Col_b structure, with peaks that were much broader than those of Au16⁺-Cl⁻, especially for the broad stacking height peak at 0.42 nm, suggesting the formation of a less ordered charge-segregated assembly. The formation of a charge-segregated assembly was also observed for the ion-pairing assembly of $Au20^+$ -BF₄⁻, which formed a Col_h structure at 52°C (cooling) with a = 3.98, c = 0.42 nm, and Z = 1 ($\rho = 1.30$) (Figure 8C [i, ii]). These charge-segregated assembling modes were also observed in the crystal structure of $Au0^+$ -BF₄⁻ (Figure 5A [ii]). The broad peak at 0.48 nm, which was observed in both Aun⁺-BF₄⁻ (n = 16 and 20), could be due to the arrangement of BF₄⁻ or aryl rings. Meanwhile, Au12⁺-PF₆⁻ formed an oblique columnar (Col_{ob}) structure at 50°C (cooling) with a =4.85, b = 4.11, c = 0.74 nm, $\gamma = 99.3^{\circ}$, and Z = 2 ($\rho = 0.73$). In contrast to the charge-segregated ion-pairing assemblies of the Cl⁻ and BF₄⁻ ion pairs, the broad XRD peak at 0.74 nm in the mesophase of $Au12^+$ -PF₆⁻ was observed for the stacking of Au12⁺, indicating the contribution of a less ordered charge-by-charge assembly. Therefore, Cl⁻, which is a smaller anion (hard anion), is suitable for the formation of a charge-segregated assembly in bulk materials excluding solvents because it can interact with the pyrrole β -H of Au12⁺ through hydrogen bonding and thus can be localized around the columnar structures of $Au12^+$. On the other hand, PF_6^- , which is a more bulky anion (soft anion), is less suitable for the formation of charge-segregated assemblies because bulky anions may interfere with the stacking of porphyrin–Au^{III} planes by preferentially interacting with the π -electronic porphyrin–Au^{III} cation (soft cation) plane. According to the hard and soft acids and bases theory, soft anions tend to interact with soft cations such as π -electronic cations. This tendency is also important for the formation of charge-by-charge assemblies with π -electronic anions.

Distinctive columnar assemblies were observed when a planar π -electronic anion was used as the counter species for the porphyrin–Au^{III} cations. In fact, mesophases of Aun⁺-PCCp⁻ (n = 16 and 20) exhibited

CellPress

Figure 8. Synchrotron XRD Patterns and Packing Model Structures

(A–D) (i) Synchrotron XRD patterns and (ii) packing model structures of (A) **2H16**, (B) **Au16⁺**-Cl⁻, (C) **Au20⁺**-BF₄⁻, and (D) **Au16⁺**-PCCp⁻ in the mesophases at 22°C, 100°C, 52°C, and 280°C, respectively, upon cooling. Arrangement of the anions in the model structures of (B) and (C) is not exactly determined.

well-defined Col_h structures with perfect charge-by-charge assemblies. For example, in the mesophase at 280°C (cooling), Au16⁺-PCCp⁻ exhibited a Col_h structure with a = 3.46, c = 0.71 nm, and Z = 1 ($\rho = 0.88$) (Figure 8D [i, ii]). The value of 0.71 nm is almost twice that of a π - π stacking distance, indicating the distance between identical π -electronic charged species due to the formation of a charge-by-charge columnar assembly, as observed in the crystal structure of Au0⁺-PCCp⁻ (Figure 5C [ii]). The diffraction at 0.36 nm is a (002) peak derived from the stacking height of 0.71 nm as a (001) peak. A highly ordered arrangement of charge-by-charge assembly was also suggested by the observation of (003) and (004) peaks in wide-angle XRD (Figure S116). The speculated density of 0.88 for Au16⁺-PCCp⁻, which is smaller than that of Au16⁺-Cl⁻ ($\rho = 1.44$), reflects the alternate stacking of porphyrin–Au^{III} and PCCp⁻ at the center of the columns and the resulting less dense packing of the peripheral aliphatic chains. The mesophase of Au20⁺-PCCp⁻ also showed a similar Col_h structure (a = 3.75, c = 0.71 nm, and Z = 1 [$\rho = 0.88$] at 250°C (cooling)) as

Figure 9. Assembling Behavior of Ion Pairs under Mechanically Sheared Conditions

(A–C) (i) Two-dimensional XRD patterns (lower left white arrows indicate the sheared direction) and (ii) XRD patterns extracted from 2D XRD patterns for the meridional (90 \pm 20°) (red line) and equatorial (0 \pm 20°) (blue line) regions for mechanically sheared ion pairs: (A) Au16⁺-PCCp⁻, sheared at 250°C and measured at RT; (B) Au20⁺-PCCp⁻, sheared at 230°C, cooled to RT, and measured at R0°C. (D) Orientations of domains (yellow cylinders) (top) and the packing mode inside of the domains (bottom) in Au20⁺-PCCp⁻ for (i) the original mesophase (Col_h), (ii) the sheared sample at 230°C (Col_h), (iii) after cooling to RT (Col_n), and (iv) after heating to 100°C (Col_n).

Au16⁺-PCCp⁻. The exceptionally wide-temperature-range Col_h mesophases, which were observed from approximately room temperature (RT) to 300°C, were maintained by the charge-by-charge stacking of genuine π -electronic ions through synergetic π - π and electrostatic interactions.

The XRD analysis of mechanically sheared Au16⁺-PCCp⁻ at 250°C revealed that the diffractions in the wider-angle region, including that at 0.68 nm (001), were enhanced in the meridional (sheared) direction, affording an anisotropic XRD pattern at RT (Figure 9A and S124). The enhancement of the peak at 0.68 nm clearly indicates the orientation of charge-by-charge columns with an ordered intercolumnar arrangement along the sheared direction. The enhanced peak for the halo, at an angle of approximately $\pm 20^{\circ}$ to meridional (sheared) direction, can be ascribed to the charge-by-charge columnar assembly, which has an arrangement of laterally rotating porphyrin–Au^{III} complexes with a rotating angle of approximately $\pm 20^{\circ}$ (Pisula et al., 2007). A similar anisotropic arrangement was observed for sheared Au20⁺-PCCp⁻ in the Col_r phase (a = 6.57, b = 3.26, c = 0.69 nm, and Z = 2 [ρ = 1.03]) at RT (Figures 9B and \$125). Surprisingly, the anisotropic orientation was maintained even in the (original) higher-temperature Col_h phase (Figures 9C and S126). In this case, the Col_h mesophase at 230°C (Figure 9D [i]) showed anisotropic orientation after shearing (Figure 9D [ii]). The ion pair exhibited the Col, assembly at RT as a crystalline state (Figure 9D [iii], the state of Figure 9B). Furthermore, the anisotropic orientation was maintained at 100°C in the Col_h mesophase after the phase transition from Col_r (Figure 9D [iv], the state of Figure 9C). The retention of the domain orientations during thermal processes can be correlated with the contribution of a robust packing state due to the charge-by-charge assemblies (Figure S123) (Grigoriadis et al., 2010; Haase et al., 2011).

The solid-state UV-vis absorption spectra of Au16⁺-X⁻ (X⁻ = Cl⁻ and PCCp⁻) and Au20⁺-BF₄⁻ at RT upon cooling showed a λ_{max} at 425 nm with characteristic small bands; the Cl⁻ and BF₄⁻ ion pairs showed similar peaks at 535/576 (shoulder) and 539/577 nm, respectively, whereas the PCCp⁻ ion pair showed a blue-shifted shoulder peak at 527 nm (Figure S63). The red-shifted shoulder peaks of the Cl⁻ and BF₄⁻ ion pairs are derived from the stacking of porphyrin–Au^{III} cations in the charge-segregated assembly. The large peak of Au20⁺-BF₄⁻ at 577 nm can be the result of a possible slipped stacking of the porphyrin core unit due to the less ordered arrangement. In contrast, the blue-shifted shoulder of Au16⁺-PCCp⁻ is more similar to the Q band of the solution-state monomeric ion pairs as observed at 521 nm. The blue-shifted absorption

CellPress

Figure 10. Preparation of Porphyrin Ion Pair Au0⁺-NiO⁻

compared with those for the Cl⁻ and BF_4^- ion pairs can be explained by the distinct alternate stacking of Au16⁺ and PCCp⁻, resulting in the monomer-state UV-vis absorption. These results showed that the ion pairs with Cl⁻ and BF_4^- form preferentially charge-segregated assemblies, whereas planar PCCp⁻ forms a charge-by-charge assembly.

Extended π -Electronic Ion Pair

The preparation protocol of ion pairs is also applicable to the formation of a variety of π -electronic ion pairs. Counteranions of π -electronic porphyrin–Au^{III} cations can be exchanged by the introduction of deprotonated species of extended π -electronic units with appropriate acid moieties such as hydroxy and carboxy units. The negative charge of the deprotonated species can be delocalized on the π -electronic unit for stabilization. Ni^{II} porphyrin NiOH, which has a hydroxy unit at one of the meso positions (Sasano et al., 2017; Stähler et al., 2017), was used as the precursor for the π -electronic anionic species NiO⁻ as the counteranion for the porphyrin–Au^{III} cation (Figure 10) (Stähler et al., 2017). The countercation of NiO⁻ was exchanged using the following stepwise preparation protocol: (1) NiOH in CH₂Cl₂ was treated with an excess amount of aqueous NaOH to yield Na⁺-NiO⁻ in a CH₂Cl₂ phase and (2) after washing with water to remove NaCl and subsequent recrystallization with EtOAc/*n*-hexane, 1 equiv. of Au0⁺-Cl⁻ was added to Na⁺-NiO⁻ to form Au0⁺-NiO⁻. The π -electronic ion pair Au0⁺-NiO⁻ was obtained as a brown solid with 48% yield. The characterization of the ion pair and the determination of the 1:1 molar ratio of Au0⁺ and NiO⁻ ware conducted by ¹H NMR and elemental analysis.

The ion-pairing formation of $Au0^+$ and NiO^- exhibited characteristic ¹H NMR signal shifts based on the effects of (1) aromatic ring current (π -electrons) and (2) proximally located charges. The ion pair $Au0^+$ - NiO^- showed sharp ¹H NMR signals at 8.78, 7.80, 7.76, and 7.59 ppm for $Au0^+$ and 7.92, 7.82, 6.85, and 5.54 ppm for NiO^- in CDCl₃ (1.0 × 10⁻³ M) at 20°C (Figure 11A [ii]); these values are shifted upfield compared with those of $Au0^+$ -Cl⁻ and TBA⁺- NiO^- (Sasano et al., 2017), with signals at 9.29, 8.23, 7.92, and 7.87 ppm and 8.78, 7.91, 7.73, and 7.70 ppm, respectively (Figure 11A [i and iii]). The upfield-shifted signals of $Au0^+$ - NiO^- suggested the interaction of these cations and anions in the solution state ([1] the effect of aromatic ring current (π -electrons)). On the other hand, the signals of $Au0^+$ - NiO^- were broadened and shifted downfield when the concentrations were lowered to 1.0 × 10⁻⁵ M due to the fast exchange between the ion pair and monomeric $Au0^+$ and NiO^- . In addition, the signals of $Au0^+$ and NiO^- were shifted upfield and downfield, respectively, upon cooling from 50°C to -50°C in CDCl₃ (1.0 × 10⁻³ M). The results are representative of the shielding effect of electron-rich anionic NiO^- on $Au0^+$ and the deshielding effect of electron-rich anionic NiO^- on $Au0^+$ and the deshielding effect of electron-poor cationic $Au0^+$ on NiO^- in the tightly bound ion pair ([2] the effect of proximally located charges).

The geometry-optimized structure of $Au0^+$ -NiO⁻, at B3LYP-GD3BJ level with the 6-31G(d,p) basis set for C, H, N, O, F, and Ni and LanL2DZ for Au (calculated starting from the crystal structure as described below), showed a stacking structure of oppositely charged porphyrin π -planes (Figures 11B and S59) (Frisch et al., 2013). The Ni–N distances in the optimized structure of $Au0^+$ -NiO⁻ were 1.964 (a), 1.963 (b), 1.962 (c), and 1.968 (d) Å (Figure 11B [ii]), and the mean-plane deviation of the 25-atom plane was 0.17 Å. According to this optimized stacking structure of $Au0^+$ -NiO⁻, the ¹H NMR signals of NiO⁻ at 7.92 and 7.82 ppm can be assigned to H^c and those at 6.85 and 5.54 ppm can be assigned to H^b and H^a, respectively, due to the shielding effect of current ring of $Au0^+$ (Figure 11A [ii]). These assignments were also supported by ¹H–¹H COSY (correlation spectroscopy) and ¹H–¹³C HMBC (heteronuclear multiple bond coherence).

Figure 11. Solution-State Ion-Pairing Behavior of NiO⁻-Based Ion Pairs

(A and B) (A) ¹H NMR spectra of (i) Au0⁺-Cl⁻, (ii) Au0⁺-NiO⁻, and (iii) TBA⁺-NiO⁻ (Sasano et al., 2017) in CDCl₃ (1.0 × 10⁻³ M) at 20°C and (B) (i) side perspective and side views of optimized structure of Au0⁺-NiO⁻ and (ii) top and side views of NiO⁻ in (i). The labels of hydrogens in (A) (ii) correspond to those in (B) (ii). Atom color code in (B): gray, white, blue, red, light green, green, and yellow refer to carbon, hydrogen, nitrogen, oxygen, fluorine, nickel, and gold, respectively.

 1 H 1 H COSY in CDCl₃ showed the correlation between signals at 6.85 and 5.54 ppm, suggesting that the corresponding protons were located at the vicinal positions. $^{1}H^{-13}C$ HMBC in C₆D₆ (1.0 × 10⁻² M at 20°C) showed the correlation between the 1 H NMR signals of 8.00 and 7.91 ppm (comparable to the 1 H NMR signals at 7.92 and 7.82 ppm in CDCl₃) and the ¹³C NMR signal at 147.20 ppm, which can be assigned to the C₆F₅-attached 15-position carbon of NiO⁻. The Ni–N distances in NiO⁻ of the optimized TBA⁺-NiO⁻ structure at the B3LYP-GD3BJ/6-31G(d,p) level, calculated starting from the crystal structure (Sasano et al., 2017), were 1.942, 1.941, 1.941, and 1.943 Å and the mean-plane deviation of the 25-atom plane was 0.41 Å. The longer Ni–N distance and planar structure of NiO⁻ in Au0⁺-NiO⁻ compared with those in TBA⁺-NiO⁻ may be attributed to the contribution of the coordination of Au0⁺ as a π -ligand to NiO⁻. These characteristic behaviors of π -electronic ion pairs in a solution state can be derived from the favorable interactions between π -electronic cations and anions. The ESP, calculated at B3LYP-GD3BJ/6-31+G(d,p) level with LanL2DZ for Au based on the optimized structure, revealed the delocalized negative and positive charges in NiO⁻ and AuO⁺, respectively, effective for stacking (Figure S60). In addition, the UV-vis absorption spectrum in CH₂Cl₂ (4.6 × 10^{-4} M) of Au0⁺-NiO⁻, mainly existed as an ion pair, corresponding to the sum of the independent absorption bands of each π -electronic ion, suggesting that the electronic interaction between the π -electronic cations and anions is weak under these conditions; this is also supported by the independent electron spin densities for each π -electronic ion in the MO of the ion pair (Figure S62).

The solid-state ion-pairing assembly of $Au0^+$ -Ni O^- was revealed by the X-ray analysis of a single crystal prepared by vapor diffusion of EtOAc/*n*-octane (Figure 12A, S46, and S47). In the crystal, $Au0^+$ and Ni O^- were alternately stacked in a charge-by-charge columnar assembly with (C–)O···Au distances of 3.03 and 3.55 Å, and the dihedral angles between the mean planes of $Au0^+$ and Ni O^- (core 25 atoms) were 14.0° and 14.6° (Figures 12B, 12C [i], and S53). Considering the distances, the anionic oxygen of Ni O^- had no coordination to the Au^{III} site with the proximal location by electrostatic interaction, as also supported by the O–Au–Au0⁺-plane angles of 71.5° and 55.9°. The parallel arrangement of Ni O^- units showed distances of 5.88 and 6.44 Å and Au–Ni–Au angles of 61.7° and 65.6°. The distances for the identical metal ions Au³⁺ and Ni²⁺, were arranged in a zigzag fashion with Au···Ni distances of 5.88 and 6.44 Å and Au–Ni–Au angles of 61.7° and 65.6°. The distances for the identical metal ions Au³⁺ and Ni²⁺ in the columnar direction are 6.02/6.98 and 12.84 Å, respectively; the value of 12.84 Å is consistent with the lattice parameter *a*. The spatial arrangement of heterometals (Figure 12C [ii]) was achieved by the formation of ion-pairing assemblies comprising extended π -electronic ions such as appropriately designed positively and negatively charged porphyrin–metal complexes.

Conclusions

Diverse ion pairs were prepared based on porphyrin–Au^{III} complexes as stable π -electronic cations. Porphyrin–Au^{III}-based ion pairs formed charge-by-charge and charge-segregated assemblies in single

Figure 12. Single-Crystal X-Ray Structure of Au0⁺-NiO⁻

(A–C) (A) Representative packing mode as a top view, (B) top and side views of enlarged ion pairs with independent NiO⁻ (i,ii), and (C) (i) space-filling packing model as a side view from the direction indicated by the arrow in (A) and (ii) that highlighting the arrangement of metal ions. Solvent molecules are omitted for clarity. Atom color code in (A) and (B): brown, pink, light blue, light green, gray, and light orange refer to carbon, hydrogen, nitrogen, fluorine, nickel, and gold, respectively. Color code in (C) (ii): cyan and magenta represent cations and anions, respectively. Color code in (C) (ii): green and yellow refer to nickel and gold, respectively.

crystals, according to the geometry of the anionic species. Porphyrin–Au^{III}-based ion pairs substituted with aliphatic chains afforded anion-dependent mesophases. In particular, the ion pairs with a π -electronic anion clearly afforded charge-by-charge-based mesophases, which existed at exceptionally wide temperature ranges, in contrast to the assemblies with relatively small anions. Furthermore, the ion pair with a negatively charged porphyrin–metal complex has the potential to be used in ion-pairing strategies for functional electronic materials. Ion-pairing assemblies comprising genuine π -electronic ions are stabilized by synergetic π - π stacking and electrostatic interactions, showing that this methodology has a great advantage for the fabrication of a variety of nanostructured materials with fine-tuned electronic states. Further modifications at the peripheries of π -electronic systems such as porphyrins will enable the preparation of various fascinating π -electronic ion pairs and their associated functional ion-pairing assemblies and materials, exhibiting ferroelectric or electric conductive properties.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

Limitation of the Study

In our study, a variety of π -electronic ion pairs comprising porphyrin–Au^{III} complexes and their assemblies were prepared as crystals, supramolecular gels, and liquid crystals. Ion-pairing assemblies based on π -electronic ions exhibited organized states with the contributions of charge-by-charge and charge-segregated assemblies, depending on the geometries and electronic states of the counteranions. However, at present, the complete control of the formation of charge-by-charge and charge-segregated assemblies have not been fully investigated particularly focusing on the appropriate combination of constituent ions. More systematic and detailed investigations on the relationships between the ion-pairing

combination and their assembling modes are required for the further development of fascinating ferroelectric materials and electric conductive materials.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.03.027.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI grant numbers JP23685032 for Young Scientists (A), JP26288042 and JP18H01968 for Scientific Research (B), JP15H06737 for Research Activity Start-up, and JP26107007 for Scientific Research on Innovative Areas "PhotoSynergetics" and Ritsumeikan Global Innovation Research Organization (R-GIRO) project (2017–22). Theoretical calculations were partially performed by using the Research Center for Computational Science, Japan (Okazaki). We thank Prof. Atsuhiro Osuka and Dr. Takanori Soya, Kyoto University, for single-crystal X-ray analysis; Prof. Hikaru Takaya, Kyoto University and Dr. Ryohei Yamakado, Yamagata University, for synchrotron radiation single-crystal analyses (SPring-8: 2015B1397, 2016A0123, and 2016A1121); Dr. Noboru Ohta, JASRI, for synchrotron radiation XRD analyses (SPring-8: 2016A1360, 2016B1311, 2016B1498, and 2017B1559); Dr. Ryosuke Miyake, Ochanomizu University, for NMR measurements; Prof. Tomonori Hanasaki, Ritsumeikan University, for POM observations; and Prof. Hitoshi Tamiaki, Ritsumeikan University, for various measurements.

AUTHOR CONTRIBUTIONS

H.M. initiated and designed the research. Y.H. and H.M. realized the project. Y.H., Y.B., Y.S., and H.T. conducted the experiments. I.H. and N.Y. supported the single-crystal X-ray analyses.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 7, 2019 Revised: March 15, 2019 Accepted: March 25, 2019 Published: April 26, 2019

REFERENCES

Adams, H., Albeniz, A.C., Bailey, N.A., Bruce, D.W., Cherodian, A.S., Dhillon, R., Dunmur, D.A., Espinet, P., Feijoo, J.L., Lalinde, E., et al. (1991). Synthesis and phase behaviour of mesomorphic transition-metal complexes of alkoxydithiobenzoates. J. Mater. Chem. 1, 843–855.

Andersson, M., Linke, M., Chambron, J.C., Davidsson, J., Heitz, V., Hammarström, L., and Sauvage, J.P. (2002). Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination. J. Am. Chem. Soc. 124, 4347–4362.

Bando, Y., Haketa, Y., Sakurai, T., Matsuda, W., Seki, S., Takaya, H., and Maeda, H. (2016). Ionpairing assemblies based on pentacyanosubstituted cyclopentadienide as a π -electronic anion. Chem. Eur. J. 22, 7843–7850.

Bruce, M.I., Humphrey, P.A., Skelton, B.W., and White, A.H. (1984). Pentakis(methoxycarbonyl) cyclopentadiene chemistry. VIII some onium salts: x-ray structure of [NMe₄][C₅(CO₂Me)₅]. Aust. J. Chem. *37*, 2441–2446.

Bruce, M.I., Humphrey, P.A., Skelton, B.W., and White, A.H. (1986). Pentakis(methoxycarbonyl) cyclopentadiene chemistry. X crystal structure of the charge-transfer complex tropylium pentakis(methoxycarbonyl)cyclopentadienide. Aust. J. Chem. 39, 165–169.

Brun, A.M., Harriman, A., Heitz, V., and Sauvage, J.P. (1991). Charge transfer across oblique bisporphyrins: two-center photoactive molecules. J. Am. Chem. Soc. 113, 8657–8663.

Che, C.M., Sun, R.W.Y., Yu, W.Y., Ko, C.B., Zhu, N., and Sun, H. (2003). Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem. Commun. (Camb.) *21*, 1718–1719.

Diels, O. (1942). Zur kenntnis des mechanismus der dien-synthese, I. Mitteil.: über den reaktionsverlauf zwischen malonestern sowie cyanessigester und acetylen-dicarbonsäureester bei gegenwart von pyridinacetat. Ber. Dtsch. Chem. Ges. 75, 1452–1467.

Dong, B., Terashima, Y., Haketa, Y., and Maeda, H. (2012). Charge-based assemblies comprising planar receptor–anion complexes with bulky alkylammonium cations. Chem. Eur. J. *18*, 3460– 3463.

Dong, B., Sakurai, T., Honsho, Y., Seki, S., and Maeda, H. (2013a). Cation modules as building blocks forming supramolecular assemblies with planar receptor-anion complexes. J. Am. Chem. Soc. 135, 1284-1287.

CelPress

Dong, B., Sakurai, T., Bando, Y., Seki, S., Takaishi, K., Uchiyama, M., Muranaka, A., and Maeda, H. (2013b). Ion-based materials derived from positively and negatively charged chloride complexes of π -conjugated molecules. J. Am. Chem. Soc. 135, 14797–14805.

Eng, M.P., Ljungdahl, T., Andréasson, J., Mårtensson, J., and Albinsson, B. (2005). Triplet photophysics of gold(III) porphyrins. J. Phys. Chem. A. 109, 1776–1784.

Faul, C.F.J. (2014). Ionic self-assembly for functional hierarchical nanostructured materials. Acc. Chem. Res. 47, 3428–3438.

Fleischer, E.B., and Laszlo, A. (1969). Synthesis of a gold porphyrin. Inorg. Nucl. Chem. Lett. 5, 373–376.

Fortage, J., Boixel, J., Blart, E., Hammarstöm, L., Becker, H.C., and Odobel, F. (2008). Single-step electron transfer on the nanometer scale: ultrafast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads. Chem. Eur. J. 14, 3467–3480.

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., et al. (2013). Gaussian 09, Revision D.01 (Gaussian, Inc.).

Goossens, K., Lava, K., Bielawski, C.W., and Binnemans, K. (2016). Ionic liquid crystals: versatile materials. Chem. Rev. 116, 4643–4807.

Grigoriadis, C., Haase, N., Butt, H.J., Müllen, K., and Floudas, G. (2010). Negative thermal expansion in discotic liquid crystals of nanographenes. Adv. Mater. *22*, 1403–1406.

Haase, N., Grigoriadis, C., Butt, H.J., Müllen, K., and Floudas, G. (2011). Effect of dipole functionalization on the thermodynamics and dynamics of discotic liquid crystals. J. Phys. Chem. B 115, 5807–5814.

Haketa, Y., and Maeda, H. (2017). Dimensioncontrolled ion-pairing assemblies based on π electronic charged species. Chem. Commun. (Camb.) 53, 2894–2909.

Haketa, Y., and Maeda, H. (2018). Dimensioncontrolled π -electronic ion-pairing assemblies. Bull. Chem. Soc. Jpn. *91*, 420–436.

Haketa, Y., Sasaki, S., Ohta, N., Masunaga, H., Ogawa, H., Mizuno, N., Araoka, F., Takezoe, H., and Maeda, H. (2010). Oriented salts: dimensioncontrolled charge-by-charge assemblies from planar receptor-anion complexes. Angew. Chem. Int. Ed. 49, 10079–10083.

Haketa, Y., Honsho, Y., Seki, S., and Maeda, H. (2012). Ion materials comprising planar charged species. Chem. Eur. J. 18, 7016–7020.

He, L., Chen, T., You, Y., Hu, H., Zheng, W., Kwong, W.L., Zou, T., and Che, C.M. (2014). A cancer-targeted nanosystem for delivery of gold(III) complexes: enhanced selectivity and apoptosis-inducing efficacy of a gold(III) porphyrin complex. Angew. Chem. Int. Ed. 53, 12532–12536.

Jayanty, S., and Radhakrishnan, T.P. (1999). 'Core and sheath' structure of a TTF complex forming a square grid. J. Mater. Chem. 9, 1707–1711.

Kato, T., Mizoshita, N., and Kishimoto, K. (2006). Functional liquid-crystalline assemblies: selforganized soft materials. Angew. Chem. Int. Ed. 45, 38–68.

Kilså, K., Kajanus, J., Macpherson, A.N., Mårtensson, J., and Albinsson, B. (2001). Bridgedependent electron transfer in porphyrin-based donor-bridge-acceptor systems. J. Am. Chem. Soc. 123, 3069–3080.

N. Koch, ed. (2015). Supramolecular Materials for Opto-Electronics (RSC).

Kuhn, R., and Rewicki, D. (1967). Tris-(7*H*-dibenzo [*c*,*g*]fluorenylidenemethyl)methane a new highly acidic hydrocarbon. Angew. Chem. Int. Ed. *6*, 635–636.

Kumar, R., and Nevado, C. (2017). Cyclometalated gold(III) complexes: synthesis, reactivity, and physicochemical properties. Angew. Chem. Int. Ed. 56, 1994–2015.

Less, R.J., McPartlin, M., Rawson, J.M., Wood, P.T., and Wright, D.S. (2010). A simple approach to coordination compounds of the pentacyanocyclopentadienide anion. Chem. Eur. J. 16, 13723–13728.

Maruyama, S., Sato, K., and Iwahashi, H. (2010). Room temperature liquid porphyrins. Chem. Lett. 39, 714–716.

T. Nakanishi, ed. (2011). Supramolecular Soft Matter (Wiley).

Nowak-Król, A., Gryko, D., and Gryko, D.T. (2010). Meso-substituted liquid porphyrins. Chem. Asian J. 5, 904–909.

Ogawa, T., Sakamoto, M., Honda, H., Matsumoto, T., Kobayashi, A., Kato, M., and Chang, H.C. (2013). Self-association and columnar liquid crystalline phase of cationic alkylsubstituted-bipyridine benzenedithiolato gold(III) complexes. Dalton Trans. 42, 15995– 16005.

Ou, Z., Zhu, W., Fang, Y., Sintic, P.J., Khoury, T., Crossley, M.J., and Kadish, K.M. (2011). Unusual multi-step sequential Au^{III}/Au^{II} processes of gold(III) quinoxalinoporphyrins in acidic nonaqueous media. Inorg. Chem. *50*, 12802–12809.

Ou, Z., Khoury, T., Fang, Y., Zhu, W., Sintic, P.J., Crossley, M.J., and Kadish, K.M. (2013). Gold(III) porphyrins containing two, three, or four $\beta_i\beta'$ fused quinoxalines. synthesis, electrochemistry, and effect of structure and acidity on electroreduction mechanism. Inorg. Chem. *52*, 2474–2483.

Pisula, W., Tomović, Ž., Watson, M.D., Müllen, K., Kussmann, J., Ochsenfeld, C., Metzroth, T., and Gauss, J. (2007). Helical packing of discotic hexaphenyl hexa-*peri*-hexabenzocoronenes: theory and experiment. J. Phys. Chem. B 111, 7481–7487.

Preiß, S., Melomedov, J., Wünsche von Leupoldt, A., and Heinze, K. (2016). Gold(III) tetraarylporphyrin amino acid derivatives: ligand or metal centred redox chemistry. Chem. Sci. 7, 596–610.

Preiß, S., Förster, C., Otto, S., Bauer, M., Müller, P., Hinderberger, D., Haeri, H.H., Carella, L., and Heinze, K. (2017). Structure and reactivity of a mononuclear gold(II) complex. Nat. Chem. 9, 1249–1255.

Radhakrishnan, T.P., Soos, Z.G., Endres, H., and Azevedo, L.J. (1986). Structure and magnetism of *NNN'IV*-tetramethyl-*p*phenylenediaminepentacy anocyclopentadienide (TMPD-PCCp). J. Chem. Phys. *85*, 1126–1130.

Richardson, C., and Reed, C.A. (2004). Exploration of the pentacyano-cyclopentadienide ion, $C_5(CN)_5^-$, as a weakly coordinating anion and potential superacid conjugate base. Silylation and protonation. Chem. Commun. (Camb.), 706–707. Sakai, T., Seo, S., Matsuoka, J., and Mori, Y. (2013). Synthesis of functionalized tetracyanocyclopentadienides from tetracyanothiophene and sulfones. J. Org. Chem. 78, 10978–10985.

CellPress

Sasano, Y., Yasuda, N., and Maeda, H. (2017). Deprotonated meso-hydroxyporphyrin as a stable π -electronic anion: the building unit of an ion-pairing assembly. Dalton Trans. 46, 8924–8928.

Shachter, A.M., Fleischer, E.B., and Haltiwanger, R.C. (1987). The structure of (5,10,15,20tetraphenylporphinate)gold(III) tetrachloroaurate(III). Acta Crystallogr. *C*43, 1876–1878.

So, M.H., Roy, V.A.L., Xu, Z.X., Chui, S.S.Y., Yuen, M.Y., Ho, C.M., and Che, C.M. (2008). Controlled self-assembly of functional metal octaethylporphyrin 1D nanowires by solutionphase precipitative method. Chem. Asian J. 3, 1968–1978.

Stähler, C., Shimizu, D., Yoshida, K., Furukawa, K., Herges, R., and Osuka, A. (2017). Stable Ni^{II} porphyrin *meso*-oxy radical with a Quartet Ground state. Chem. Eur. J. *23*, 7217–7220.

Sun, R.W.Y., Li, C.K.L., Ma, D.L., Yan, J.J., Lok, C.N., Leung, C.H., Zhu, N., and Che, C.M. (2010). Stable anticancer gold(III)–porphyrin complexes: effects of porphyrin structure. Chem. Eur. J. *16*, 3097–3113.

Timkovich, R., and Tulinsky, A. (1977). Coordination and geometry of gold in chloro(α , β , γ , δ -tetraphenylporphinate)gold(III). Inorg. Chem. 16, 962–963.

Wang, Y., He, Q.Y., Sun, R.W.Y., Che, C.M., and Chiu, J.F. (2007). Cellular pharmacological properties of gold(III) porphyrin 1a, a potential anticancer drug lead. Eur. J. Pharmacol. 554, 113–122.

Watson, W.H., Kini, A.M., Beno, M.A., Montgomery, L.K., Wang, H.H., Carlson, K.D., Gates, B.D., Tytko, S.F., Derose, J., Cariss, C., et al. (1989). Crystal structure and electrical properties of (BEDT-TTF)₂Cp(CN)₅•(Solvent)_x. Synth. Met. 33, 1–9.

Webster, O.W. (1965).

Diazotetracyanocyclopentadiene and its conversion to tetracyanocyclopentadienide and pentacyanocyclopentadienide. J. Am. Chem. Soc. 87, 1820–1821.

F. Würthner, ed. (2005). Supramolecular Dye Chemistry, Topics in Current Chemistry (Springer).

Yam, V.W.W., Au, V.K.M., and Leung, Y.L. (2015). Light-emitting self-assembled materials based on d^8 and d^{10} transition metal complexes. Chem. Rev. 115, 7589–7728.

Zhang, J.J., Lu, W., Sun, R.W.Y., and Che, C.M. (2012). Organogold(III) supramolecular polymers for anticancer treatment. Angew. Chem. Int. Ed. 51, 4882–4886. ISCI, Volume 14

Supplemental Information

Liquid Crystals Comprising π -Electronic lons

from Porphyrin–Au^{III} Complexes

Yohei Haketa, Yuya Bando, Yoshifumi Sasano, Hiroki Tanaka, Nobuhiro Yasuda, Ichiro Hisaki, and Hiromitsu Maeda

Table of Contents	
1. Transparent Methods	S2
1-1. Synthetic procedures and spectroscopic data	
Figure S1 Synthesis and preparations of ion pairs comprising Au ^{III} complexes.	S2
Figure S2,3 TLC analysis.	S13
Figure S4–39 ¹ H, ¹³ C, and ¹⁹ F NMR spectra.	S14
Figure S40 UV/vis absorption spectra.	S49
1-2. X-ray crystallographic data	
Figure S41–47 Ortep drawings of single-crystal X-ray structures.	S52
Figure S48–53 Packing diagrams.	S57
1-3. Theoretical studies	S63
Figure S54–60 Optimized structures and electron density diagrams.	S63
Figure S61,62 Molecular orbitals of stacking ion pairs.	S67
Cartesian coordination of optimized structures.	S70
1-4. Examination of organized structures	
Figure S63 Solid-state UV/vis absorption spectra.	S116
Figure S64 Photograph of gel.	S116
Figure S65 OM and AFM of fibrous morphologies.	S117
Figure S66 VT UV/vis absorption spectra of ion pairs.	S117
Figure S67,68 DSC thermographs.	S118
Figure S69 POM images.	S120
Figure S70 Summary for phase transitions.	S122
Figure S71–120 XRD and packing diagrams.	S122
Figure S123 Summary for the XRD of sheared samples.	S180
Figure S124–126 XRD of sheared samples.	S181
2. Supplemental references	S184

1. Transparent Methods

1-1. Synthetic procedures and spectroscopic data

Figure S1 Synthesis and preparations of ion pairs comprising Au^{III} complexes of *meso*-aryl-substituted porphyrins with various anions, Related to Figure 2.

General Procedures. Starting materials were purchased from FUJIFILM Wako Pure Chemical Corp., Nacalai Tesque Inc., and Sigma-Aldrich Co. and used without further purification unless otherwise stated. **2H8** (Maruyama et al., 2010), **2H12** (Maruyama et al., 2010; Nowak-Król et al., 2010), and **Au0**⁺-Cl⁻ (Che et al., 2003) were prepared according to the published procedures. NMR spectra used in the characterization of products were recorded on a JEOL ECA-600 600 MHz spectrometer and a Bruker AVANCE III 600 MHz spectrometer, with the help of Dr. Ryohei Yamakado, Yamagata University, and Dr. Ryosuke Miyake, Ochanomizu University. ¹H and ¹³C NMR spectra were referenced to solvent and ¹⁹F NMR spectra were referenced to C₆F₆. UV-visible absorption spectra were recorded on a Hitachi U-3500 spectrometer. Matrix-assisted laser desorption ionization time-of-flight mass spectrometries (MALDI-TOF-MS) were recorded on a Shimadzu Axima-CFRplus with TCNQ matrix. Elemental analyses were performed on a Yanaco CHN Corders (MT-3, MT-5, and MT-6) and JSL JM-10 for carbon, hydrogen, and nitrogen and on Mitsubishi Chemical Analytech AQF-100 and Dionex ICS-1500 instruments for fluorine and chlorine, at the Laboratory for Organic Elemental Microanalysis, Kyoto University. TLC analyses were carried out on aluminum sheets coated with silica gel 60 (Merck 5554). Column chromatography was performed on Sumitomo alumina KCG-1525 and Wakogel C-300.

5,10,15,20-Tetrakis(3,4,5-trihexadecyloxyphenyl)porphyrin, According to the literature 2H16. procedures (Nowak-Król et al., 2010), a solution of pyrrole (260 mg, 3.88 mmol) and 3,4,5trihexadecyloxybenzaldehyde (Nowak-Król et al., 2010) (2.50 g, 3.02 mmol) in CH₂Cl₂ (300 mL) was stirred under N₂ with shielding from light. Trifluoroacetic acid (TFA) (0.37 mL, 4.80 mmol) and BF₃·OEt₂ (11.4 μ L, 90.6 µmol) was added, and the solution was stirred for 2.5 h at r.t. 2,3-Dichloro-5,6-dicyano-1,4benzoquinone (DDQ) (530 mg, 2.33 mmol) was added to the solution, and the resulting solution was stirred for an additional 2 h. After the reaction mixture was neutralized by triethylamine, concentrated under reduced pressure, and passed over an alumina column, the solvent was removed. The residue was then chromatographed over a silica gel column (Wakogel C-300, eluent: 50% CH₂Cl₂/n-hexane) and recrystallized from CH₂Cl₂/MeOH to give **2H16** (790 mg, 0.23 mmol, 30%) as a purple solid. $R_f = 0.45$ (50% CH₂Cl₂/nhexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 8.94 (s, 8H, β-H), 7.41 (s, 8H, Ar-H), 4.29 (t, J = 6.6 Hz, 8H, OCH₂), 4.07 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.2 Hz, 8H, OCH₂<u>CH₂</u>), 1.86 (quin, J = 7.2 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, O(CH₂)₂CH₂), 1.51–1.21 (m, 304H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₁₂), 0.88 (t, J = 7.2 Hz, 12H, O(CH₂)₁₅<u>CH₃</u>), 0.86 (t, J = 7.2 Hz, 24H, O(CH₂)₁₅<u>CH₃</u>), -2.81 (s, 2H, NH). ¹³C NMR (151) MHz, CDCl₃, 20 °C): δ (ppm) 151.36, 138.11, 137.25, 120.34, 114.44, 73.92, 69.52, 32.10, 32.06, 30.79, 30.05, 30.01, 29.94, 29.85, 29.80, 29.70, 29.64, 29.55, 29.50, 26.50, 26.33, 22.86, 22.83, 14.28, 14.25 (some of the signals for aryl units and hexadecyl chains were overlapped). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 426 (5.2), 519 (2.3), 555 (1.1), 594 (0.70), 649 (0.55). MALDI-TOF-MS: m/z (% intensity): 3499.2 (100). Calcd for C₂₃₆H₄₁₄N₄O₁₂ ([M]⁺): 3499.20.

5,10,15,20-Tetrakis(3,4,5-triicosyloxypheny)porphyrin, 2H20. According to the literature procedures (Nowak-Król et al., 2010), a solution of pyrrole (270 mg, 4.02 mmol) and 3,4,5-triicosyloxybenzaldehyde (Nowak-Król et al., 2010) (3.15 g, 3.16 mmol) in CH_2Cl_2 (320 mL) was stirred under N₂ with shielding from light. TFA (0.39 mL, 5.0 mmol) and BF3 OEt2 (12.0 µL, 94.9 µmol) was added, and the solution was stirred for 2.5 h at r.t. DDQ (550 mg, 2.42 mmol) was added to the solution, and the resulting solution was stirred for an additional 2 h. After the reaction mixture was neutralized by triethylamine, concentrated under reduced pressure, and passed over an alumina column, the solvent was removed. The residue was then chromatographed over a silica gel column (Wakogel C-300, eluent: 50% CHCl₃/n-hexane) and recrystallized from CH₂Cl₂/MeOH to give **2H20** (820 mg, 0.20 mmol, 25%) as a purple solid. $R_f = 0.73$ (50% CH₂Cl₂/nhexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 8.94 (s, 8H, β-H), 7.41 (s, 8H, Ar-H), 4.29 (t, J = 6.6 Hz, 8H, OCH₂), 4.07 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.2 Hz, 8H, OCH₂<u>CH₂</u>), 1.86 (quin, J = 7.2 Hz, 16H, OCH_2CH_2 , 1.67 (quin, J = 7.8 Hz, 8H, $O(CH_2)_2CH_2$), 1.51–1.21 (m, 400H, $O(CH_2)_2CH_2 + O(CH_2)_3(CH_2)_{16}$), 0.88 (t, J = 7.2 Hz, 12H, O(CH₂)₁₉CH₃), 0.87 (t, J = 7.2 Hz, 24H, O(CH₂)₁₉CH₃), -2.81 (s, 2H, NH). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 151.36, 138.09, 137.25, 120.33, 114.43, 73.91, 69.51, 32.09, 30.79, 30.05, 30.02, 29.98, 29.93, 29.88, 29.86, 29.81, 29.70, 29.64, 29.51, 26.50, 26.34, 22.84, 14.25 (some of the signals for aryl units and icosyl chains were overlapped). UV/vis (CH₂Cl₂, λ_{max}[nm] (ε, 10⁵ M⁻¹cm⁻¹)): 426 (4.6), 519 (2.0), 556 (0.93), 593 (0.60), 648 (0.45). MALDI-TOF-MS: m/z (% intensity): 4172.9 (100). Calcd for C₂₈₄H₅₁₀N₄O₁₂ ([M]⁺): 4172.95.

Au^{III} complex of 2H8 as a Cl⁻ salt, Au8⁺-Cl⁻. A solution of KAuCl₄ (190 mg, 0.50 mmol) and NaOAc (206 mg, 2.52 mmol) in acetic acid (19 mL) were heated at 80 °C for 15 min. A solution of **2H8** (867 mg, 0.40 mmol) in (CH₂Cl)₂ (9.9 mL) was added dropwise. The mixture was heated under reflux for 2 h. Upon removal of solvent by vacuum, the residue was dissolved in CH₂Cl₂. The CH₂Cl₂ solution was washed with water and brine and evaporated to dryness. The residue was then chromatographed over ion-exchanged resin (Amberlite IRA402BL, eluent: CH₂Cl₂) and a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au8**⁺-Cl⁻ (100 mg, 0.042 mmol, 10.5%) as a red solid. $R_f = 0.27$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.34 (s, 8H, β-H), 7.44 (s, 8H, Ar-H), 4.31 (t, J = 6.6 Hz, 8H, OCH₂), 4.07 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.8 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 7.2 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, O(CH₂)₂CH₂), 1.51–1.21 (m, 112H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₄), 0.90 (t, J = 7.2 Hz, 12H, O(CH₂)₇CH₃), 0.84 (t, J = 7.2 Hz, 24H, O(CH₂)₇CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.07, 139.04, 137.15, 133.66, 132.22, 123.72, 114.05, 74.00, 69.72, 32.13, 31.92, 30.73, 29.81, 29.63, 29.58, 29.52, 29.39, 26.42, 26.26, 22.91, 22.78, 14.31, 14.21 (some of the signals for octyl chains were overlapped). UV/vis (CH₂Cl₂, λ_{max}[nm] (ε, 10⁵ M⁻¹cm⁻¹)): 429 (1.3), 530

(0.25). MALDI-TOF-MS: m/z (% intensity): 2347.5 (100). Calcd for $C_{140}H_{220}AuN_4O_{12}$ ([M - Cl]⁺): 2347.64. Elemental analysis: C 69.20, H 9.39, Cl 1.45, N 2.05. Calcd (%) for $C_{140}H_{220}AuCIN_4O_{12}$ ·2H₂O: C 69.49, H 9.33, Au 8.14, Cl 1.47, N 2.32, O 9.26.

Au^{III} complex of 2H12 as a Cl⁻ salt, Au12⁺-Cl⁻. A solution of KAuCl₄ (150 mg, 0.41 mmol) and NaOAc (170 mg, 2.04 mmol) in acetic acid (16 mL) were heated at 80 °C for 15 min. A solution of 2H12 (920 mg, 0.33 mmol) in (CH₂Cl)₂ (16 mL) was added dropwise. The mixture was heated under reflux for 2 h. Upon removal of solvent by vacuum, the residue was dissolved in CH₂Cl₂. The CH₂Cl₂ solution was washed with water and brine and evaporated to dryness. The residue was then chromatographed over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give Au12⁺-Cl⁻ (320 mg, 0.10 mmol, 32%) as a red solid. $R_f = 0.16$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.33 (s, 8H, β-H), 7.43 (s, 8H, Ar-H), 4.31 (t, J = 6.6 Hz, 8H, OCH₂), 4.07 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.8 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 7.8 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, $O(CH_2)_2CH_2$, 1.51–1.22 (m, 208H, $O(CH_2)_2CH_2 + O(CH_2)_3(CH_2)_8$), 0.90 (t, J = 7.2 Hz, 12H, $O(CH_2)_{11}CH_3$), 0.84 $(t, J = 7.2 \text{ Hz}, 24\text{H}, O(CH_2)_{11}CH_3)$. ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.13, 139.11, 137.21, 133.74, 132.25, 123.76, 114.11, 74.05, 69.78, 32.16, 32.08, 30.80, 30.06, 29.94, 29.87, 29.81, 29.64, 29.62, 29.52, 26.50, 26.35, 22.91, 22.84, 14.32, 14.27 (some of the signals for dodecyl chains were overlapped). UV/vis $(CH_2Cl_2, \lambda_{max}[nm] (\epsilon, 10^5 M^{-1}cm^{-1})): 429 (1.2), 530 (0.22).$ MALDI-TOF-MS: m/z (% intensity): 3021.4 (100). Calcd for C188H316AuN4O12 ([M – Cl]⁺): 3021.40. Elemental analysis: C 73.85, H 10.66, Cl 1.15, N 1.76. Calcd (%) for C₁₈₈H₃₁₆AuClN₄O₁₂: C 73.86, H 10.42, Au 6.44, Cl 1.16, N 1.83, O 6.28.

Au^{III} complex of 2H16 as a Cl⁻ salt, Au16⁺-Cl⁻. A solution of KAuCl₄ (54.0 mg, 0.14 mmol) and NaOAc (58.6 mg, 0.71 mmol) in acetic acid (5.6 mL) were heated at 80 °C for 15 min. A solution of 2H16 (400 mg, 0.11 mmol) in (CH₂Cl)₂ (5.6 mL) was added dropwise. The mixture was heated under reflux for 2 h. Upon removal of solvent by vacuum, the residue was dissolved in CH₂Cl₂. The CH₂Cl₂ solution was washed with water and brine and evaporated to dryness. The residue was then chromatographed over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give Au16⁺-Cl⁻ (120 mg, 0.031 mmol, 27%) as a red solid. R_f = 0.18 (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.33 (s, 8H, β-H), 7.43 (s, 8H, Ar-H), 4.30 (t, *J* = 6.6 Hz, 8H, OCH₂), 4.07 (t, *J* = 6.6 Hz, 16H, OCH₂), 1.97 (quin, *J* = 6.6 Hz, 8H, OCH₂CH₂), 1.86 (quin, *J* = 7.2 Hz, 16H, OCH₂CH₂), 1.67 (quin, *J* = 7.8 Hz, 8H, O(CH₂)₁₅CH₂), 1.51–1.21 (m, 304H, O(CH₂)₃(CH₂)₁₂), 0.88 (t, *J* = 6.6 Hz, 12H, O(CH₂)₁₅CH₃), 0.86 (t, *J* = 7.2 Hz, 24H, O(CH₂)₁₅CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.10, 139.10, 137.18, 133.74, 132.21, 114.12, 74.02, 69.78, 32.10, 32.06, 30.79, 30.04, 30.01, 29.97, 29.95, 29.81, 29.86, 29.80, 29.64, 29.55, 29.50, 26.48, 26.33, 22.86, 22.83, 14.28, 14.25 (some of the signals for hexadecyl chains were overlapped). UV/vis

 $(CH_2Cl_2, \lambda_{max}[nm] (\epsilon, 10^5 M^{-1}cm^{-1})): 429 (1.2), 530 (0.22).$ MALDI-TOF-MS: m/z (% intensity): 3694.3 (100). Calcd for $C_{236}H_{412}AuN_4O_{12}$ ($[M-Cl]^+$): 3694.15. Elemental analysis: C 75.73, H 11.37, Cl 0.96, N 1.41. Calcd (%) for $C_{236}H_{412}AuClN_4O_{12}$: C 75.99, H 11.13, Au 5.28, Cl 0.95, N 1.50, O 5.15.

Au^{III} complex of 2H20 as a Cl⁻ salt, Au20⁺-Cl⁻. A solution of KAuCl₄ (56.7 mg, 0.15 mmol) and NaOAc (61.4 mg, 0.75 mmol) in acetic acid (5.8 mL) were heated at 80 °C for 15 min. A solution of 2H20 (500 mg, 0.12 mmol) in (CH₂Cl)₂ (6 mL) was added dropwise. The mixture was heated under reflux for 2 h. Upon removal of solvent by vacuum, the residue was dissolved in CH₂Cl₂. The CH₂Cl₂ solution was washed with water and brine and evaporated to dryness. The residue was then chromatographed over ion-exchanged resin (Amberlite IRA402BL, eluent: CH_2Cl_2) and a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give Au20⁺-Cl⁻ (150 mg, 0.034 mmol, 29%) as a red solid. R_f = 0.21 (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.33 (s, 8H, β-H), 7.43 (s, 8H, Ar-H), 4.30 (t, J = 6.6 Hz, 8H, OCH₂), 4.07 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.8 Hz, 8H, OCH₂<u>CH₂</u>), 1.86 (quin, J = 7.8 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, O(CH₂)₂CH₂), 1.51–1.21 (m, 400H, $O(CH_2)_2CH_2 + O(CH_2)_3(CH_2)_{16}$, 0.88 (t, J = 6.6 Hz, 12H, $O(CH_2)_{19}CH_3$), 0.86 (t, J = 7.2 Hz, 24H, $O(CH_2)_{19}CH_3$). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.06, 139.04, 137.16, 133.73, 132.18, 123.67, 114.06, 73.99, 69.73, 32.07, 32.05, 30.76, 30.03, 30.00, 29.97, 29.95, 29.93, 29.91, 29.88, 29.84, 29.81, 29.79, 29.62, 29.52, 29.50, 26.46, 26.32, 22.83, 22.81, 14.24 (some of the signals for icosyl chains were overlapped). UV/vis (CH₂Cl₂, λ_{max}[nm] (ε, 10⁵ M⁻¹cm⁻¹)): 429 (0.85), 530 (0.16). MALDI-TOF-MS: *m/z* (% intensity): 4367.8 (100). Calcd for C₂₈₄H₅₀₈AuN₄O₁₂ ([M – Cl]⁺): 4367.90. Elemental analysis: C 76.69, H 11.86, Cl 0.79, N 1.13. Calcd (%) for C₂₈₄H₅₀₈AuClN₄O₁₂·1.5H₂O: C 76.99, H 11.63, Au 4.45, Cl 0.80, N 1.26, O 4.87.

General preparation protocol for anion exchanges from Cl⁻ to other anions. A solution of Ag⁺ or Na⁺ salt of anions (3 equiv) in CH₃CN was added to a solution of Cl⁻ salts of porphyrin–Au^{III} complexes in CH₃CN or CH₃CN/CH₂Cl₂ and stirred for a few minutes. The resulting precipitates were collected and washed with CH₃CN and water. After confirming that no precipitate formed, the products were filtered and the solvent was evaporated. The residue was then chromatographed over a silica gel column and recrystallized from suitable solvents afforded ion pairs as solid materials. The obtained ion pairs were characterized by ¹H, ¹³C, and ¹⁹F NMR and elemental analysis. The details for each ion pair are described as below.

Au^{III} complex of 2H0 as a BF₄⁻ **salt, Au0**⁺-**BF**₄⁻. AgBF₄ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/*n*-hexane to give **Au0**⁺-BF₄⁻ (22.3 mg, 0.025 mmol, 70%) as a red solid. $R_f = 0.29$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.28 (s, 8H, β-H), 8.26–

8.25 (m, 8H, Ph), 7.92–7.84 (m, 12H, Ph). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 138.81, 137.14, 134.39, 132.39, 129.57, 127.85, 123.75. ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –159.21 (s, ¹⁰BF₄⁻), –159.26 (s, ¹¹BF₄⁻). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 409 (3.9), 521 (1.8). Elemental analysis: C 57.24, H 3.22, N 6.04. Calcd (%) for C₄₄H₂₈AuBF₄N₄·0.4CH₂Cl₂: C 57.31, H 3.12, Au 21.17, B 1.16, Cl 3.05, F 8.17, N 6.02. This compound was further characterized by single-crystal X-ray diffraction analysis.

Au^{III} complex of 2H8 as a BF₄⁻ **salt, Au8⁺-BF**₄⁻. AgBF₄ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au8**⁺-BF₄⁻ (68.0 mg, 0.028 mmol, 67%) as a red solid. $R_f = 0.23$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.33 (s, 8H, β-H), 7.44 (s, 8H, Ar-H), 4.31 (t, J = 6.6 Hz, 8H, OCH₂), 4.08 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.8 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 7.2 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, O(CH₂)₂CH₂), 1.49–1.22 (m, 112H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₄), 0.94 (t, J = 7.2 Hz, 12H, O(CH₂)₇CH₃), 0.84 (t, J = 7.2 Hz, 24H, O(CH₂)₇CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.04, 139.00, 137.19, 133.80, 132.13, 123.59, 114.07, 73.98, 69.69, 32.14, 31.94, 30.73, 29.82, 29.64, 29.60, 29.54, 29.41, 26.43, 26.27, 22.92, 22.79, 14.31, 14.21 (some of the signals for octyl chains were overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –159.65 (s, ¹⁰BF₄⁻), –159.70 (s, ¹¹BF₄⁻). UV/vis (CH₂Cl₂, λ_{max} nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 429 (1.2), 529 (0.22). Elemental analysis: C 68.92, H 9.29, N 2.28. Calcd (%) for C₁₄₀H₂₂₀AuBF₄N₄O₁₂: C 69.05, H 9.11, Au 8.09, B 0.44, F 3.12, N 2.30, O 7.89.

Au^{III} complex of 2H12 as a BF₄⁻ salt, Au12⁺-BF₄⁻. AgBF₄ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au12**⁺-BF₄⁻ (37.9 mg, 0.012 mmol, 75%) as a red solid. $R_f = 0.32$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.32 (s, 8H, β-H), 7.44 (s, 8H, Ar-H), 4.30 (t, J = 6.6 Hz, 8H, OCH₂), 4.08 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.2 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 6.6 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.2 Hz, 8H, OC(H₂)₂CH₂ + O(CH₂)₃(CH₂)₈), 0.90 (t, J = 6.6 Hz, 12H, O(CH₂)₁₁CH₃), 0.84 (t, J = 7.2 Hz, 24H, O(CH₂)₁₁CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.06, 139.03, 137.21, 133.82, 132.14, 123.60, 114.09, 74.00, 69.73, 32.13, 32.04, 30.77, 30.03, 29.98, 29.90, 29.83, 29.77, 29.64, 29.62, 29.59, 29.49, 26.47, 26.32, 22.88, 22.81, 14.29, 14.24 (some of the signals for dodecyl chains were overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –159.56 (s, ¹⁰BF₄-), –159.62 (s, ¹¹BF₄-). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻)): 428 (1.4), 529 (0.27). Elemental analysis: C 72.72, H 10.48, N 1.86. Calcd (%) for C₁₈₈H₃₁₆AuBF₄N₄O₁₂: C 72.64, H 10.25, Au 6.34, B 0.35, F 2.44, N 1.80, O 6.18.

Au^{III} complex of 2H16 as a BF₄⁻ salt, Au16⁺-BF₄⁻. AgBF₄ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au16**⁺-BF₄⁻ (43.0 mg, 0.012 mmol, 87%) as a red solid. $R_f = 0.33$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.32 (s, 8H, β-H), 7.44 (s, 8H, Ar-H), 4.30 (t, J = 6.6 Hz, 8H, OCH₂), 4.08 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.2 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 6.6 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.2 Hz, 8H, OCH₂)₂CH₂, 1.51–1.21 (m, 304H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₁₂), 0.88 (t, J = 7.2 Hz, 12H, O(CH₂)₁₅CH₃), 0.86 (t, J = 7.2 Hz, 24H, O(CH₂)₁₅CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.06, 139.03, 137.21, 133.83, 132.13, 123.60, 114.10, 74.00, 69.73, 32.10, 32.06, 30.78, 30.05, 30.01, 29.96, 29.91, 29.86, 29.80, 29.65, 29.55, 29.50, 26.48, 26.33, 22.86, 22.83, 14.28, 14.25 (some of the signals for hexadecyl chains were overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –159.55 (s, ¹⁰BF₄⁻), –159.61 (s, ¹¹BF₄⁻). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻)): 429 (1.1), 529 (0.20). Elemental analysis: C 74.96, H 11.16, N 1.41. Calcd (%) for C₂₃₆H₄₁₂AuBF₄N₄O₁₂: C 74.96, H 10.98, Au 5.21, B 0.29, F 2.01, N 1.48, O 5.08.

Au^{III} complex of 2H20 as a BF₄⁻ salt, Au20⁺-BF₄⁻. AgBF₄ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au20**⁺-BF₄⁻ (24.5 mg, 0.0055 mmol, 61%) as a red solid. $R_f = 0.30$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.33 (s, 8H, β-H), 7.44 (s, 8H, Ar-H), 4.30 (t, J = 6.6 Hz, 8H, OCH₂), 4.08 (t, J = 6.0 Hz, 16H, OCH₂), 1.97 (quin, J = 7.2 Hz, 8H, OCH₂CH₂), 1.85 (quin, J = 7.2 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.2 Hz, 8H, OCH₂)₂CH₂, 1.51–1.21 (m, 400H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₁₆), 0.87 (t, J = 7.2 Hz, 12H, O(CH₂)₁₉CH₃), 0.86 (t, J = 7.2 Hz, 24H, O(CH₂)₁₉CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.04, 138.99, 137.20, 133.82, 132.11, 123.59, 14.06, 73.98, 69.71, 32.08, 30.79, 30.06, 30.03, 29.98, 29.93, 29.87, 29.82, 29.66, 29.52, 26.48, 26.34, 22.85, 14.27 (some of the signals for icosyl chains were overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) – 159.58 (s, ¹⁰BF₄⁻), -159.63 (s, ¹¹BF₄⁻). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 429 (1.3), 530 (0.25). Elemental analysis: C 76.78, H 11.30, N 1.31. Calcd (%) for C₂₈₄H₅₀₈AuBF₄N₄O₁₂: C 76.57, H 11.49, Au 4.42, B 0.24, F 1.71, N 1.26, O 4.31.

Au^{III} complex of 2H0 as a PF₆⁻ **salt, Au0⁺-PF**₆⁻. AgPF₆ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/*n*-hexane to give **Au0**⁺-PF₆⁻ (17.4 mg, 0.020 mmol, 55%) as a red solid. $R_f = 0.42$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.27 (s, 8H, β-H), 8.26–8.24 (m, 8H, Ph), 7.92–7.84 (m, 12H, Ph). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 138.70, 137.10, 134.33, 132.43, 129.58, 127.87, 123.72. ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –79.17 (d, *J* = 712 Hz, 6F, PF₆⁻). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 409 (4.0), 521 (0.19). Elemental analysis: C 54.61, H 2.83, F 11.72, N 5.79. Calcd (%) for C₄₄H₂₈AuF₆N₄P·0.2CH₂Cl₂: C 54.64, H 2.95, Au 20.27, Cl 1.46, F 11.73, N 5.77, P 3.19. This compound was further characterized by single-crystal X-ray diffraction analysis.

Au^{III} complex of 2H8 as a PF₆⁻ salt, Au8⁺-PF₆⁻. AgPF₆ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au8**⁺-PF₆⁻ (81.0 mg, 0.033 mmol, 78%) as a red solid. $R_f = 0.33$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.33 (s, 8H, β-H), 7.44 (s, 8H, Ar-H), 4.31 (t, J = 6.6 Hz, 8H, OCH₂), 4.09 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.8 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 7.8 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, O(CH₂)₂CH₂), 1.49–1.20 (m, 112H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₄), 0.94 (t, J = 7.2 Hz, 12H, O(CH₂)₇CH₃), 0.84 (t, J = 7.2 Hz, 24H, O(CH₂)₇CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.05, 139.01, 137.21, 133.74, 132.18, 123.62, 114.05, 73.98, 69.69, 32.14, 31.94, 30.73, 29.82, 29.65, 29.60, 29.54, 29.41, 26.43, 26.27, 22.92, 22.79, 14.32, 14.22 (some of the signals for octyl chains were overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –79.17 (d, J = 715 Hz, 6F, PF₆⁻). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 429 (1.1), 529 (0.22). Elemental analysis: C 67.52, H 9.11, F 4.53, N 2.15. Calcd (%) for C₁₄₀H₂₂₀AuF₆N₄O₁₂P: C 67.44, H 8.89, Au 7.90, F 4.57, N 2.25, O 7.70, P 1.24.

Au^{III} complex of 2H12 as a PF₆⁻ salt, Au12⁺-PF₆⁻. AgPF₆ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5%

MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au12**⁺-PF₆⁻ (34.0 mg, 0.011 mmol, 66%) as a red solid. $R_f = 0.49$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.33 (s, 8H, β-H), 7.44 (s, 8H, Ar-H), 4.30 (t, J = 6.6 Hz, 8H, OCH₂), 4.09 (t, J = 6.6 Hz, 16H, OCH₂), 1.96 (quin, J = 7.8 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 7.2 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, O(CH₂)₂CH₂), 1.52–1.21 (m, 208H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₈), 0.90 (t, J = 6.6 Hz, 12H, O(CH₂)₁₁CH₃), 0.84 (t, J = 7.2 Hz, 24H, O(CH₂)₁₁CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.06, 139.01, 137.21, 133.75, 132.18, 123.62, 114.04, 73.99, 69.71, 32.13, 32.05, 30.77, 30.04, 29.99, 29.92, 29.85, 29.79, 29.63, 29.60, 29.50, 26.47, 26.31, 22.89, 22.82, 14.30, 14.25 (some of the signals for dodecyl chains were overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –79.17 (d, J = 712 Hz, 6F, PF₆⁻). UV/vis (CH₂Cl₂, λ_{max} [nm] (ε, 10⁵ M⁻¹cm⁻¹)): 429 (1.3), 530 (0.24). Elemental analysis: C 71.48, H 10.23, F 3.54, N 1.72. Calcd (%) for C₁₈₈H₃₁₆AuF₆N₄O₁₂P: C 71.31, H 10.06, Au 6.22, F 3.60, N 1.77, O 6.06, P 0.98.

Au^{III} complex of 2H16 as a PF₆⁻ salt, Au16⁺-PF₆⁻. AgPF₆ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au16**⁺-PF₆⁻ (42.4 mg, 0.011 mmol, 82%) as a red solid. $R_f = 0.49$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.33 (s, 8H, β-H), 7.44 (s, 8H, Ar-H), 4.30 (t, J = 6.6 Hz, 8H, OCH₂), 4.09 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.2 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 6.6 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, O(CH₂)₂CH₂), 1.53–1.21 (m, 304H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₁₂), 0.88 (t, J = 7.2 Hz, 12H, O(CH₂)₁₅CH₃), 0.86 (t, J = 7.2 Hz, 24H, O(CH₂)₁₅CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.05, 139.00, 137.21, 133.75, 132.18, 123.62, 114.03, 73.98, 69.70, 32.10, 32.07, 30.78, 30.05, 30.01, 29.98, 29.95, 29.93, 29.85, 29.80, 29.65, 29.55, 29.50, 26.48, 26.32, 22.86, 22.83, 14.28, 14.26 (some of the signals for hexadecyl chains were overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –79.20 (d, J = 714 Hz, 6F, PF₆⁻). UV/vis (CH₂Cl₂, λ_{max} [nm] (ε , 10⁵ M⁻ 1cm⁻¹)): 429 (1.3), 530 (0.24). Elemental analysis: C 73.71, H 10.60, F 3.10, N 1.41. Calcd (%) for C₂₃₆H₄₁₂AuF₆N₄O₁₂P: C 73.82, H 10.82, Au 5.13, F 2.97, N 1.46, O 5.00, P 0.81.

Au^{III} complex of 2H20 as a PF₆⁻ salt, Au20⁺-PF₆⁻. AgPF₆ was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give Au20⁺-PF₆⁻ (27.9 mg, 0.0062 mmol, 68%) as a red solid. $R_f = 0.44$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.33 (s, 8H, β-H), 7.44 (s, 8H, Ar-H), 4.30 (t, J = 6.6 Hz, 8H, OCH₂), 4.08 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.2 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 7.2 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.2 Hz, 8H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₁₆), 0.87 (t, J = 7.2 Hz, 12H, O(CH₂)₁₉CH₃), 0.86 (t, J = 7.8 Hz, 24H, O(CH₂)₁₉CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.06, 139.02, 137.21, 133.75, 132.18, 123.62,

114.04, 73.99, 69.71, 32.08, 30.79, 30.06, 30.03, 30.00, 29.98, 29.94, 29.87, 29.82, 29.66, 29.52, 26.49, 26.33, 22.85, 14.27 (some of the signals for icosyl chains were overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –79.00 (d, J = 713 Hz, 6F, PF₆⁻). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 429 (0.90), 530 (0.17). Elemental analysis: C 75.64, H 11.56, F 2.43, N 1.20. Calcd (%) for C₂₈₄H₅₁₂AuF₆N₄O₁₂P: C 75.58, H 11.35, Au 4.36, F 2.53, N 1.24, O 4.25, P 0.69.

Au^{III} complex of 2H0 as a PCCp⁻ salt, Au0⁺-PCCp⁻. Sodium pentacyanocyclopentadienide (NaPCCp) (Sakai et al., 2013) was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/*n*-hexane to give **Au0**⁺-PCCp⁻ (29.2 mg, 0.029 mmol, 82%) as a red solid. $R_f = 0.52$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.38 (s, 8H, β-H), 8.38–8.36 (m, 8H, Ph), 7.93–7.87 (m, 12H, Ph). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 138.66, 137.23, 134.76, 132.71, 129.65, 127.90, 124.15, 110.62, 99.16. UV/vis (CH₂Cl₂, λ_{max} [nm] (ε , 10⁵ M⁻¹cm⁻¹)): 409 (3.9), 521 (0.18). Elemental analysis: C 64.66, H 3.05, N 12.58. Calcd (%) for C₅₄H₂₈AuN₉: C 64.87, H 2.82, Au 19.70, N 12.61. This compound was further characterized by single-crystal X-ray diffraction analysis.

Au^{III} complex of 2H8 as a PCCp⁻ salt, Au8⁺-PCCp⁻. NaPCCp (Sakai et al., 2013) was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give Au8⁺-PCCp⁻ (55 mg, 0.022 mmol, 51%) as a red solid. $R_f = 0.51$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.46 (s, 8H, β-H), 7.63 (s, 8H, Ar-H), 4.32 (t, J = 6.6 Hz, 8H, OCH₂), 4.11 (t, J = 6.6 Hz, 16H, OCH₂), 1.98 (quin, J = 7.8 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 7.8 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, O(CH₂)₂CH₂), 1.49– 1.20 (m, 112H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₄), 0.94 (t, J = 7.2 Hz, 12H, O(CH₂)₇CH₃), 0.83 (t, J = 7.2 Hz, 24H, O(CH₂)₇CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.08, 139.04, 137.21, 133.52, 132.53, 124.07, 114.50, 110.16, 98.44, 73.98, 69.72, 32.16, 31.93, 30.74, 29.83, 29.65, 29.62, 29.54, 29.41, 26.43, 26.28, 22.93 22.78, 14.32, 14.21. UV/vis (CH₂Cl₂, λ_{max} nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 428 (1.2), 530 (0.23). Elemental analysis: C 70.88, H 8.55, N 4.81. Calcd (%) for C₁₅₀H₂₂₀AuN₉O₁₂: C 70.98, H 8.74, Au 7.76, N 4.97, O 7.56.

Au^{III} complex of 2H12 as a PCCp⁻ salt, Au12⁺-PCCp⁻. NaPCCp (Sakai et al., 2013) was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give Au12⁺-PCCp⁻ (75.3 mg, 0.023 mmol, 72%) as a red solid. $R_f = 0.76$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.46 (s, 8H, β-H), 7.62 (s, 8H, Ar-H), 4.31 (t, J = 6.6 Hz, 8H, OCH₂), 4.10 (t, J = 6.6 Hz, 16H, OCH₂), 1.98 (quin, J = 7.2 Hz, 8H, OCH₂CH₂), 1.86 (quin, J = 7.2 Hz, 16H, OCH₂CH₂), 1.67 (quin, J = 7.8 Hz, 8H, O(CH₂)₂CH₂), 1.53–1.20 (m, 208H, O(CH₂)₂CH₂ + O(CH₂)₃(CH₂)₈), 0.90 (t, J = 7.2 Hz, 12H, O(CH₂)₁₁CH₃), 0.83 (t, J = 7.2 Hz, 24H, O(CH₂)₁₁CH₃). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.08, 139.04, 137.22, 133.52, 132.54, 124.08, 114.49, 110.14, 98.43, 73.99, 69.73, 32.13, 32.03, 30.77, 30.03, 29.98, 29.91, 29.82, 29.79, 29.75, 29.64, 29.59, 29.48, 29.47, 26.47, 26.32, 22.80, 14.29, 14.23 (some of the signals for dodecyl chains were overlapped). UV/vis (CH₂Cl₂, λ_{max} [nm] (ε , 10⁵ M⁻¹cm⁻¹): 429 (1.2), 530 (0.23). Elemental analysis: C 73.91, H 9.92, N 3.93. Calcd (%) for C₁₉₈H₃₁₆AuN₉O₁₂: C 74.05, H 9.92, Au 6.13, N 3.93, O: 5.98.

Au^{III} complex of 2H16 as a PCCp⁻ salt, Au16⁺-PCCp⁻. NaPCCp (Sakai et al., 2013) was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au16**⁺-PCCp⁻ (70.0 mg, 0.018 mmol, 67%) as a red solid. $R_f = 0.80$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): *δ* (ppm): 9.46 (s, 8H, β-H), 7.62 (s, 8H, Ar-H), 4.31 (t, *J* = 6.6 Hz, 8H, OCH₂), 4.10 (t, *J* = 6.6 Hz, 16H, OCH₂), 1.98 (quin, *J* = 7.2 Hz, 8H, OCH₂<u>CH₂</u>), 1.86 (quin, *J* = 7.2 Hz, 16H, OCH₂<u>CH₂</u>), 1.67 (quin, *J* = 7.2 Hz, 8H, O(CH₂)₂<u>CH₂</u>, + O(CH₂)₃(<u>CH₂)₁₂</u>), 0.88 (t, *J* = 7.2 Hz, 12H, O(CH₂)₁₅<u>CH₃</u>), 0.85 (t, *J* = 7.2 Hz, 24H, O(CH₂)₁₅<u>CH₃</u>). ¹³C NMR (151 MHz, CDCl₃, 20 °C): *δ* (ppm) 152.11, 139.07, 137.23, 133.53, 132.55, 124.10, 114.51, 110.17, 98.46, 73.99, 69.75, 32.11, 32.06, 30.79, 30.05, 30.02, 29.98, 29.96, 29.94, 29.85, 29.80, 29.64, 29.55, 29.50, 26.49, 26.34, 22.86, 22.83, 14.28, 14.25 (some of the signals for hexadecyl chains were overlapped). UV/vis (CH₂Cl₂, λ_{max}[nm] (ε, 10⁵ M⁻¹cm⁻¹)): 429 (1.9), 530 (0.34). Elemental analysis: C 76.09, H 10.81, N 3.27. Calcd (%) for C₂₄₆H₄₁₂AuN₉O₁₂: C 76.05, H 10.69, Au 5.07, N 3.24, O: 4.94.

Au^{III} complex of 2H20 as a PCCp⁻ salt, Au20⁺-PCCp⁻. NaPCCp (Sakai et al., 2013) was used for anion exchange. After the workup, the residue was purified by chromatography over a silica gel column (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and recrystallized from CH₂Cl₂/MeOH to give **Au20⁺**-PCCp⁻ (51.2 mg, 0.011 mmol, 82%) as a red solid. $R_f = 0.71$ (5% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm): 9.46 (s, 8H, β-H), 7.62 (s, 8H, Ar-H), 4.31 (t, J = 6.6 Hz, 8H, OCH₂), 4.10 (t, J = 6.6 Hz, 16H, OCH₂), 1.97 (quin, J = 7.2 Hz, 8H, OCH₂<u>CH₂</u>), 1.86 (quin, J = 7.2 Hz, 16H, OCH₂<u>CH₂</u>), 1.67 (quin, J = 7.8 Hz, 8H, O(CH)₂<u>CH₂</u>), 1.52–1.20 (m, 400H, O(CH₂)₂<u>CH₂</u> + O(CH₂)₃(<u>CH₂</u>)₁₆), 0.87 (t, J = 7.2 Hz, 12H, O(CH₂)₁₉<u>CH₃</u>), 0.86 (t, J = 6.6 Hz,

24H, O(CH₂)₁₉<u>CH₃</u>). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.11, 139.07, 137.22, 133.53, 132.54, 124.10, 114.51. 110.16, 98.45, 73.99, 69.74, 32.10, 32.07, 30.79, 30.06, 30.03, 29.98, 29.94, 29.89, 29.86, 29.81, 29.65, 29.54, 29.51, 26.49, 26.35, 22.84, 14.27 (some of the signals for icosyl chains were overlapped). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 429 (1.2), 530 (0.22). Elemental analysis: C 77.40, H 11.42, N 2.67. Calcd (%) for C₂₉₄H₅₀₈AuN₉O₁₂: C 77.47, H 11.23, Au 4.23, N 2.77, O 4.21.

Au^{III} complex of 2H0 as a NiO⁻ salt, Au0⁺-NiO⁻. Ni^{II} complex of 5-hydroxy-10,15,20tris(pentafluorophenyl)porphyrin (Sasano et al., 2017; Stähler et al., 2017) (NiOH) (22.9 mg, 0.026 mmol) in CH_2CI_2 was treated with an excess amount of aqueous NaOH to yield Na⁺-NiO⁻ in a CH_2CI_2 phase. Then, Au0⁺-Cl⁻ (23.1 mg, 0.0260 mmol) was added to Na⁺-NiO⁻ to form Au0⁺-NiO⁻ after washing with water to remove NaCl. The CH₂Cl₂ solution was filtered and evaporated to dryness. The residue was then recrystallized from EtOAc/n-hexane to give Au0⁺-NiO⁻ (21.3 mg, 0.0126 mmol, 48%) as a brown solid. ¹H NMR (600 MHz, CDCl₃, 20 °C; Figure S35b for the assignment): δ (ppm): 8.78 (s, 8H, β -H (**Au0**⁺)), 7.92 (d, J = 4.2 Hz, 2H, β-H (**NiO**⁻)), 7.82 (d, J = 5.4 Hz, 2H, β-H (**NiO**⁻)), 7.80 (d, J = 8.4 Hz, 8H, Ph (**Au0**⁺)), 7.76 (t, J = 7.8 Hz, 4H, Ph (**Au0**⁺)), 7.59 (t, *J* = 8.4 Hz, 8H, Ph (**Au0**⁺)), 6.85 (d, *J* = 3.6 Hz, 2H, β-H (**NiO**⁻)), 5.54 (br, 2H, β-H (**NiO**⁻)). ¹³C NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 146.67 (d, $J_{13C-19F} = 251$ Hz), 146.46, 146.08 (d, $J_{13C-19F} = 251$ _{19F} = 249 Hz), 141.94, 141.53 (d, J_{13C-19F} = 244 Hz), 138.92, 138.77, 137.53 (d, J_{13C-19F} = 233 Hz), 136.96, 135.59, 134.64, 131.85, 131.37, 129.32, 127.59, 123.28, 122.32, 122.04, 116.05, 103.27, 93.01 (some signals were overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –139.84 (d, J = 25.9 Hz, 2F, C₆F₅), –140.72 (d, J = 25.9 Hz, 4F, C₆F₅), −157.75 (m, 1F, C₆F₅), −157.87 (m, 2F, C₆F₅), −165.60 (m, 4F, C₆F₅), −165.93 (m, 2F, C₆F₅). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ M⁻¹cm⁻¹)): 410 (4.8), 435 (1.3), 524 (0.24), 674 (0.21). Elemental analysis: C 57.87, H 2.75, F 15.99, N 6.38. Calcd (%) for C82H36AuF15N8NiO ·0.4C4H8O2·0.4C6H14·1.5H2O: C 57.82, H 2.70, Au 11.02, F 15.95, N 6.27, Ni 3.29, O: 2.96.

Figure S2 TLC analysis of ion pairs, Related to Figure 3.

TLC analysis for (a) **2H0**, (b) $Au0^+-Cl^-$, (c) $Au0^+-BF_4^-$, (d) $Au0^+-PF_6^-$, and (e) $Au0^+-PCCp^-$ using 5% MeOH/CH₂Cl₂ as an eluent.

Figure S3 TLC analysis for ion pairs with mixing conditions, Related to Figure 3.

TLC analysis for (a)(i) Au0⁺-Cl⁻, (ii) Au0⁺-PCCp⁻, and (iii) the mixture of Au0⁺-Cl⁻ and Au0⁺-PCCp⁻, (b)(i) Au0⁺-Cl-, (ii) Au0+-PCCp-, and (iii) the mixture of Au0+-PCCp- and tetrabutylammonium chloride (TBACl), (c)(i) Au0⁺-Cl⁻, (ii) Au0⁺-PCCp⁻, and (iii) the mixture of Au0⁺-Cl⁻ and TBAPCCp using 5% MeOH/CH₂Cl₂ as an eluent. Dotted circles in (b) and (c) indicate the spots of TBAPCCp, which were observed under UV_{254} light. As for the preparation process, stock CH_2Cl_2 solutions (1 × 10⁻³ M) of Au0⁺-Cl⁻, Au0⁺-PCCp⁻, TBACl, and TBAPCCp were prepared. The 1:1 mixed ion pair solutions for (iii) in (a-c) were prepared by mixing two ion pair stock solutions by sonication for 30 sec before spotting onto the TLC. On each TLC starting line, Au0⁺-Cl⁻ (2 μ L), Au0⁺-PCCp⁻ (2 μ L), the mixed solution of Au0⁺-Cl⁻ (2 μ L) and Au0⁺-PCCp⁻ (2 μ L), the mixed solution of Au0⁺-PCCp⁻ (4 μ L) and TBACI (4 μ L), and the mixed solution of Au0⁺-Cl⁻ (4 μ L) and TBAPCCp (4 μ L) were spotted. In (a)(iii), although two ion pairs $Au0^+$ -Cl⁻ and $Au0^+$ -PCCp⁻ were mixed in the starting spot, they were completely separated on the TLC. In (b)(iii), the TLC analysis of the mixture of Au0+-PCCp⁻ and TBACI showed a distinct spot of Au0⁺-PCCp⁻ and small amounts of Au0⁺-Cl⁻ and TBAPCCp, suggesting the unfavorable ion exchange between Au0⁺-PCCp⁻ and TBACI. Furthermore, in (c)(iii), the TLC analysis of the mixture of Au0+-Cl⁻ and TBAPCCp also showed a distinct spot of Au0+-PCCp⁻, which was formed by the ion exchange, and small amounts of Au0⁺-Cl⁻ and TBAPCCp. The sizes of the spots of Au0⁺-PCCp⁻ in (b)(iii) and (c)(iii) are approximately twice of those in (ii) as Au0⁺-PCCp⁻. These results clearly suggested the stability and the preferential formation of Au0+-PCCp- along with undetectable TBACI during the ionexchange process.

(a) ¹H NMR and (b) ¹³C NMR spectra of **2H16** in CDCl₃ at 20 °C.

(a) ¹H NMR and (b) ¹³C NMR spectra of **2H20** in CDCl₃ at 20 °C.

(a) ¹H NMR and (b) ¹³C NMR spectra of $Au20^+$ -Cl⁻ in CDCl₃ at 20 °C.

 ^{19}F NMR spectrum of $\textbf{Au0}^{+}\text{-}\text{BF}_4^{-}$ in CDCl3 at 20 °C.

(a) ¹H NMR and (b) ¹³C NMR spectra of $Au12^+-BF_4^-$ in CDCl₃ at 20 °C.

 $^{19}\mathsf{F}$ NMR spectrum of $\textbf{Au12}^+\text{-}\mathsf{BF}_4^-$ in CDCl₃ at 20 °C.

¹⁹F NMR spectrum of $Au16^+$ -BF₄⁻ in CDCl₃ at 20 °C.

 ^{19}F NMR spectrum of $\textbf{Au16}^{+}\text{-}\text{PF}_6^{-}$ in CDCl3 at 20 °C.

¹⁹F NMR spectra of $Au20^+$ -PF₆⁻ in CDCl₃ at 20 °C.

 ^{19}F NMR spectrum of $\text{Au20}^{+}\text{-}\text{PF}_{6}^{-}$ in CDCl₃ at 20 °C.

(a) ¹H NMR and (b) ¹³C NMR spectra of $Au16^+$ -PCCp⁻ in CDCl₃ at 20 °C.

Figure S35 NMR spectra of Au0⁺-Cl⁻, TBA⁺-NiO⁻, and Au0⁺-NiO⁻, Related to Figure 10. (a) ¹H NMR spectra of (i) **Au0**⁺-Cl⁻ and (ii) TBA⁺-**NiO**⁻ (Sasano et al., 2017), (b) ¹H NMR spectra of **Au0**⁺-**NiO**⁻

(i) 0–11 ppm and (ii) 5–9.5 ppm) in CDCl₃ (1.0 × 10⁻³ M) at 20 °C. Upfield shifts of the signals of Au0⁺-NiO⁻ compared to those of Au0⁺-Cl⁻ and TBA⁺-NiO⁻ suggested the interaction between the π -electronic cation and anion.

Figure S36 ¹**H**–¹**H COSY**, ¹³**C NMR**, ¹⁹**F NMR spectra of Au0**⁺-**NiO**⁻, **Related to Figure 10**. (a) ¹**H**–¹**H COSY spectrum of Au0**⁺-**NiO**⁻ in CDCl₃ at 20 °C, (b) ¹³C NMR, and (c) ¹⁹F NMR spectra of **Au0**⁺-**NiO**⁻ in CDCl₃ at 20 °C. Assignments for H^a, H^b, and H^c were supported by ¹**H**–¹**H COSY and ¹H–¹³C HMBC** spectra (Figure S37), as well as by the optimized stacking structure based on DFT calculations (Figure S59).

Figure S37 ¹H NMR, ¹³C NMR, and ¹H–¹³C HMBC spectra of Au0⁺-NiO⁻, Related to Figure 10. (a) ¹H NMR, (b) ¹³C NMR, and (c) ¹H–¹³C HMBC spectra of Au0⁺-NiO⁻ in C₆D₆ (1.0×10^{-2} M), used for clearly separated signals, at 20 °C. Assignments for H^a, H^b, and H^c were supported by ¹H–¹H COSY (Figure S36) and ¹H–¹³C HMBC spectra, as well as by the optimized stacking structure based on DFT calculations (Figure S59).

¹H NMR spectra of Au0⁺-NiO⁻ at various concentrations in CDCl₃ at 20 °C. The labels Au and Ni refer to the signals of Au0⁺ and NiO⁻, respectively. The signals of β -H in Au0⁺-NiO⁻ were shifted downfield with broadening when the concentrations were lowered to 1.0×10^{-5} M in CDCl₃ at 20 °C, exhibiting the fast exchange between the ion pair and monomeric Au0⁺ and NiO⁻. In addition, the downfield shifts of NiO⁻ at 1.0×10^{-2} M may be attributed to the partial formation of oligomeric assemblies.

Figure S39 VT-¹H NMR spectra of Au0⁺-NiO⁻, Related to Figure 11.

(Figure S62).

VT-¹H NMR spectra of $Au0^+$ -NiO⁻ from 50 °C to -50 °C in CDCl₃ (1.0 × 10⁻³ M). The labels Au and Ni refer to the signals of $Au0^+$ and NiO⁻, respectively. The signals of $Au0^+$ were shifted upfield and those of NiO⁻ were shifted downfield upon cooling. The results suggested the shielding effect of electron-rich anionic NiO⁻ on $Au0^+$ and the deshielding effect of electron-poor cationic $Au0^+$ on NiO⁻ in tightly paired states.

1-2. X-ray crystallographic data

Single-crystal X-ray analysis. Crystallographic data for ion pairs are summarized in Table S1. A single crystal of $Au0^+$ -Cl⁻ showed two crystal pseudo polymorphs (type A and B). A single crystal of $Au0^+$ -Cl⁻ (type A) was obtained by vapor diffusion of *n*-hexane into a CHCl₃ solution of **Au0**⁺-Cl⁻. The data crystal was a red prism of approximate dimensions 0.050 mm × 0.020 mm × 0.020 mm. Data was collected at 90 K on a Rigaku Saturn 724 diffractometer with Si (111) monochromated synchrotron radiation (λ = 0.78255 Å) at BL40XU (SPring-8) (Yasuda et al., 2009; Yasuda et al., 2010). A single crystal of Au0+-Cl⁻ (type B) was obtained by vapor diffusion of *n*-hexane into a CHCl₃ solution of **Au0**⁺-Cl⁻. The data crystal was a red prism of approximate dimensions 0.22 mm × 0.15 mm × 0.05 mm. Data was collected at 93 K on a Rigaku XtaLAB P200 diffractometer with graphite monochromated Cu-Ka radiation ($\lambda = 1.54187$ Å). A single crystal of Au0⁺-BF₄⁻ was obtained by vapor diffusion of *n*-hexane into a CH_2Cl_2 solution of Au0⁺-BF₄⁻. The data crystal was a red prism of approximate dimensions 0.120 mm × 0.002 mm × 0.002 mm. Data was collected at 90 K on a Rigaku Saturn 724 diffractometer with Si (111) monochromated synchrotron radiation ($\lambda = 0.78203$ Å) at BL40XU (SPring-8) (Yasuda et al., 2009; Yasuda et al., 2010). A single crystal of Au0+-PF₆- was obtained by vapor diffusion of *n*-hexane into a (CH₂Cl)₂ solution of Au0⁺-PF₆⁻. The data crystal was a red prism of approximate dimensions 0.020 mm \times 0.010 mm \times 0.010 mm. The data was collected at 100 K on a CCD diffractometer (Rayonix/MX225HE), with Si (111) monochromated synchrotron radiation (λ = 0.80000 Å) at BL38B1 (SPring-8). A single crystal of Au0⁺-PCCp⁻ was obtained by vapor diffusion of CH₃CN into a (CH₂Cl)₂ solution of Au0⁺-PCCp⁻. The data crystal was a red prism of approximate dimensions 0.080 mm \times 0.040 mm × 0.040 mm. The data was collected at 93 K on a CCD diffractometer (Rayonix/MX225HE), with Si (111) monochromated synchrotron radiation ($\lambda = 0.80000$ Å) at BL38B1 (SPring-8). A single crystal of Au0⁺-NiO⁻ was obtained by vapor diffusion of *n*-hexane into an EtOAc solution of the 1:1 mixture of **NiO**⁻ as a Na⁺ salt, which was prepared by washing an CH_2Cl_2 solution of **NiOH** with NaOH ag., and **Au0**⁺-Cl⁻ upon washing with ion-exchanged water several times to remove NaCl. The data crystal was a red prism of approximate dimensions 0.010 mm × 0.002 mm × 0.002 mm. Data was collected at 90 K on a Rigaku Saturn 724 diffractometer with Si (111) monochromated synchrotron radiation ($\lambda = 0.78229$ Å) at BL40XU (SPring-8) (Yasuda et al., 2009; Yasuda et al., 2010). In each case, the structure was solved by dual-space method, and the non-hydrogen atoms were refined anisotropically. The calculations were performed using Yadokari-XG (Kabuto et al., 2009). CIF files (CCDC-1877986-1877991) can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_reguest/cif.

	Au0+-Cl-	Au0+-Cl-	Au0 ⁺ -BF ₄ ⁻	Au0 ⁺ -PF ₆ ⁻	Au0 ⁺-PCCp⁻	Au0⁺-NiO⁻
	(type A)ª	(type B) ^a				
formula	C₄₄H₂ଃAuN₄·Cl·	C₄₄H₂ଃAuN₄·Cl·	C₄₄H₂8AuN₄⋅BF₄⋅	C₄₄H₂8AuN₄·PF6·	C₄₄H₂8AuN₄∙	C₄₄H₂8AuN₄∙
	CHCl ₃	4CHCl ₃	CH_2CI_2	$C_2H_4Cl_2$	C ₁₀ N ₅ .	$C_{38}H_8F_{15}N_4NiO\cdot$
					0.416C₂H₄Cl₂·	0.70C ₈ H ₁₈
					$C_2H_3N\cdot 0.5H_2O$	
fw	964.52	1322.59	981.40	1053.59	1091.04	1767.96
crystal size,	0.050 \times 0.020 \times	0.22 \times 0.15 \times	0.120 \times 0.002 \times	0.020 \times 0.010 \times	0.080 \times 0.040 \times	0.010 \times 0.002 \times
mm	0.020	0.05	0.002	0.010	0.040	0.002
crystal system	monoclinic	triclinic	monoclinic	triclinic	orthorhombic	monoclinic
space group	P21/n (no. 14)	P-1 (no. 2)	P21/n (no. 14)	<i>P</i> -1 (no. 2)	Fdd2 (no. 43)	P2/n (no. 13)
a, Å	11.8931(3)	9.4537(17)	13.9228(5)	9.42100(10)	28.4997(8)	12.8429(6)
b, Å	22.2174(4)	12.527(3)	9.2425(4)	14.51380(10)	48.3324(14)	20.8194(8)
c, Å	14.4087(3)	23.480(4)	28.2662(10)	15.4764(2)	13.4721(3)	27.9708(12)
<i>α</i> , °	90	88.072(19)	90	65.8757(4)	90	90
<i>β</i> , °	103.2750(10)	78.581(15)	94.994(3)	87.6449(5)	90	101.923(3)
γ, °	90	69.026(18)	90	86.7701(6)	90	90
V, Å ³	3705.53(14)	2542.9(9)	3623.5(2)	1927.89(4)	18557.3(9)	7317.5(5)
$ ho_{ m calcd}$, gcm $^{-3}$	1.729	1.727	1.799	1.815	1.562	1.605
Ζ	4	2	4	2	16	4
Т, К	90(2)	93(2)	100(2)	100(2)	93(2)	100(2)
μ , mm ⁻¹	5.464 ^b	12.037 ^c	5.413 ^b	5.464 ^b	4.390 ^b	2.991 ^b
no. of reflns	20050	29975	19364	11796	25279	40182
no. of unique	6615	8546	6472	5978	4093	13043
reflns						
variables	497	622	507	541	618	927
λ, Å	0.78255 ^b	1.54187 ^c	0.78201 ^b	0.80000 ^b	0.80000 ^b	0.78229 ^b
$R_1 (l > 2\sigma(l))$	0.0245	0.0346	0.0377	0.0394	0.0563	0.0790
$wR_2 (l > 2\sigma(l))$	0.0538	0.0877	0.0868	0.1061	0.1526	0.1885
GOF	1.043	1.076	1.084	1.041	1.026	0.994

Table S1 Crystallographic details, Related to Figure 4, 5, and 12.

^{*a*} In 1977, Tulinsky, et al. reported the crystal structure of $Au0^+$ -Cl⁻ with 0.7 equiv of CHCl₃ (Timkovich and Tulinsky, 1977), whose structure was different from our cases ($Au0^+$ -Cl⁻ (type A and B)) although the crystallization conditions are similar. ^{*b*} The values under the synchrotron radiation. ^{*c*} The values under the Cu-K α radiation.

Figure S41 Single-crystal X-ray structure of Au0⁺-Cl⁻, Related to Figure 4.

Single-crystal X-ray structure of $Au0^+$ -Cl⁻ (type A) as Ortep drawings (top and side views) with two disordered CHCl₃ (a,b) in the ratio of 0.96:0.04 for top and bottom structures, wherein thermal ellipsoids are scaled to the 50% probability level.

Figure S42 Single-crystal X-ray structure of Au0⁺-Cl⁻, Related to Figure 4.

Single-crystal X-ray structure of $Au0^+$ -Cl⁻ (type B) as Ortep drawings (top and side views) with two disordered CHCl₃ (a,b) in the ratio of 0.54:0.46 for top and bottom structures, wherein thermal ellipsoids are scaled to the 50% probability level.

Figure S43 Single-crystal X-ray structure of Au0⁺-BF₄⁻, Related to Figure 5.

Single-crystal X-ray structure of $Au0^+$ -BF₄⁻ as Ortep drawings (top and side views) with two disordered BF₄⁻ (a,b) in the ratio of 0.53:0.47 for top and bottom structures, wherein thermal ellipsoids are scaled to the 50% probability level.

Figure S44 Single-crystal X-ray structure of Au0⁺-PF₆⁻, Related to Figure 5.

Single-crystal X-ray structure of $Au0^+$ -PF₆⁻ as Ortep drawings (top and side views) for top and bottom structures, wherein thermal ellipsoids are scaled to the 50% probability level.

Figure S45 Single-crystal X-ray structure of Au0⁺-PCCp⁻, Related to Figure 5.

Single-crystal X-ray structure of **Au0**⁺-PCCp[−] as Ortep drawings (top and side views) for top and bottom structures, wherein thermal ellipsoids are scaled to the 50% probability level.

Single-crystal X-ray structure of $Au0^+$ -NiO⁻ as Ortep drawings (top and side views) for top and side views containing an $Au0^+$ unit and two NiO⁻ units. Thermal ellipsoids are scaled to the 50% probability level. One $Au0^+$ and two independent half anionic species NiO⁻, in which structures were expanded for clarity, exist in the crystal. A phenyl ring of $Au0^+$ has a disordered structure in the ratio of 52 (black bond) : 48 (white bond).

(a) Packing diagram of $Au0^+$ -Cl⁻ (type A), wherein $Au0^+$ -Cl⁻ forms a stacking dimeric assembly with the columnar structure along the *a*-axis, and (b) top and side views of enlarged ion pair. The pyrrole-N1,2,3– Au and pyrrole-N4–Au distances are 2.02 and 2.03 Å, respectively. The N1–Au–N2, N2–Au–N3, N3–Au–N4, and N4–Au–N1 angles are 90.4°, 89.5°, 90.5°, and 89.6°, respectively. The distance between nearest Cl⁻···Au is 3.00 Å and the angle of the line through Cl⁻ and Au to the core porphyrin plane (core 25 atoms including Au) is 76.9°, suggesting that Cl⁻ has no coordination to Au^{III}. The distances between two $Au0^+$, Au···Au, and Cl⁻···Cl⁻ in the column are 3.75, 5.34, and 10.81 Å, respectively. Atom color code: brown, pink, light blue, green, and light orange refer to carbon, hydrogen, nitrogen, chorine, and gold, respectively.

(a) Packing diagram of $Au0^+$ -Cl⁻ (type B), wherein $Au0^+$ -Cl⁻ forms a charge-by-charge assembly with the columnar structure along the *a*-axis, and (b) top and side views of the enlarged ion pair. All the pyrrole-N–Au distances are 2.03 Å, whereas the N1–Au–N2, N2–Au–N3, N3–Au–N4, and N4–Au–N1 angles are 90.1°, 89.8°, 89.9°, and 90.1°, respectively. The distance between nearest Cl⁻---Au is 3.12 Å and the angle of the line through Cl⁻ and Au to the core porphyrin plane (core 25 atoms including Au) is 80.2°, suggesting that Cl⁻ has no coordination to Au^{III}. The distances between two $Au0^+$, Au-··Au, and Cl⁻--·Cl⁻ in the column are 9.28, 9.45, and 9.45 Å, respectively. Atom color code: brown, pink, light blue, green, and light orange refer to carbon, hydrogen, nitrogen, chorine, and gold, respectively.

Figure S50 Packing diagram of Au0⁺-BF₄⁻, Related to Figure 5.

(a) Packing diagram of $Au0^+$ -BF₄⁻, wherein $Au0^+$ -BF₄⁻ forms a charge-segregated assembly with the columnar structure along the *b*-axis, and (b) top and side views of the enlarged ion pair. All the pyrrole-N–Au distances are 2.02 Å, whereas the N1–Au–N2, N2–Au–N3, N3–Au–N4, and N4–Au–N1 angles are 90.0°, 90.5°, 89.9°, and 89.7°, respectively. The stacking distances between two $Au0^+$ (core 25 atoms) and the Au···Au distances in the column are 3.73/3.88 and 5.05/5.48 Å, respectively. The BF₄⁻ anion is proximally located around the porphyrin–Au^{III} complex with the pyrrole- β -C(–H)···F distance of 3.12 Å. Solvent molecules are omitted for clarity. Atom color code: brown, pink, yellow, light blue, light green, and light orange refer to carbon, hydrogen, boron, nitrogen, fluorine, and gold, respectively.

Figure S51 Packing diagram of Au0⁺-PF₀⁻, Related to Figure 5.

(a) Packing diagram of $Au0^+$ -PF₆⁻, wherein $Au0^+$ -PF₆⁻ forms a charge-segregated assembly with the columnar structure along the *a*-axis, and (b) top and side views of the enlarged ion pair. The pyrrole-N1–Au and pyrrole-N2,3,4–Au distances are 2.01 and 2.02 Å, respectively, whereas the N1–Au–N2, N2–Au–N3, N3–Au–N4, and N4–Au–N1 angles are 90.4°, 89.8°, 90.6°, and 89.3°, respectively. The stacking distances between two $Au0^+$ (core 25 atoms) and the Au···Au distances in the column are 3.87/3.89 and 5.26/5.30 Å, respectively. The PF₆⁻ anion is proximally located around the porphyrin–Au^{III} complex with the pyrrole- β -C(–H)···F distances of 3.18 and 3.29 Å. Solvent molecules are omitted for clarity. Atom color code: brown, pink, light blue, light green, orange, and light orange refer to carbon, hydrogen, nitrogen, fluorine, phosphorus, and gold, respectively.

Figure S52 Packing diagram of Au0⁺-PCCp⁻, Related to Figure 5.

(a) Packing diagram of $Au0^+$ -PCCp⁻, wherein $Au0^+$ -PCCp⁻ forms a charge-by-charge assembly with the columnar structure along the *c*-axis, and (b) top and side views of the enlarged ion pair. The pyrrole-N1–Au, pyrrole-N2–Au, pyrrole-N3–Au, and pyrrole-N4–Au distances are 2.01, 1.99, 2.00, and 1.98 Å, respectively, whereas the N1–Au–N2, N2–Au–N3, N3–Au–N4, and N4–Au–N1 angles are 90.1°, 90.1°, 91.1°, and 88.9°, respectively. The stacking distances between $Au0^+$ (core 25 atoms) and PCCp⁻ and the Au···Au distance in the column are 3.37/3.40 and 6.77 Å, respectively, suggesting that the charge-by-charge assembly is stabilized by π – π stacking and electrostatic interactions. In the charge-by-charge stacking columnar structure, *meso*-phenyl rings are aligned in the same direction in order to minimize the steric repulsion with cyano groups of PCCp⁻. Furthermore, neighboring $Au0^+$ and PCCp⁻ are alternately arranged not only in the columnar direction (*c*-axis) but also in the intercolumnar (*a*- and *b*-axis) direction. Solvent molecules are omitted for clarity. Atom color code: brown, pink, light blue, and light orange refer to carbon, hydrogen, nitrogen, and gold, respectively.

Figure S53 Packing diagram of Au0⁺-NiO⁻, Related to Figure 12.

(a) Packing diagram of $Au0^+$ -NiO⁻, wherein $Au0^+$ -NiO⁻ forms a charge-segregated assembly with the columnar structure along the *c*-axis, and (b) top and side views of the enlarged ion pairs with independent NiO⁻. The pyrrole-N1–Au, pyrrole-N2–Au, and pyrrole-N3,4–Au distances are 2.03, 1.99, and 2.02 Å, respectively, whereas the N1–Au–N2, N2–Au–N3, N3–Au–N4, and N4–Au–N1 angles are 88.9°, 90.9°, 89.7°, and 90.6°, respectively. The (C–)O···Au distances were 3.03 and 3.55 Å with the O–Au–Au0⁺-plane (core 25 atoms) angles of 71.5° and 55.9°, respectively. The distance between mean planes of NiO⁻ (core 25 atoms) were 11.04 and 11.48 Å. The dihedral angles between Au0⁺ and NiO⁻ were 14.0° and 14.6° and that between Au0⁺ was 27.4°. Solvent molecules are omitted for clarity. Atom color code: brown, pink, light blue, light green, gray, and light orange refer to carbon, hydrogen, nitrogen, fluorine, nickel, and gold, respectively.

1-3. Theoretical studies

Semi-empirical calculations and DFT calculations. Semi-empirical calculations and DFT calculations for porphyrin derivatives and Au^{III} complexes were carried out by using the Gaussian 09 program (Frisch et al., 2013).

Figure S54 Optimized structures of metal-free porphyrins, Related to Figure 8. Optimized structures (top and side views) of (a) 2H8, (b) 2H12, (c) 2H16, and (d) 2H20 at AM1 level.

Figure S55 Optimized structures and electron density diagrams of Au^{III} complexes of Au0⁺, Related to Figure 2.

(a) Optimized structures and (b) electron density diagrams of Au^{III} complexes of Au0⁺. Geometry optimizations were performed using the DFT functional B3LYP and the basis set 6-31+G(d,p) for C, H, N, and O and def2TZVP for Au. Electrostatic potentials were mapped onto the electron density isosurface ($\delta = 0.01$) calculated at B3LYP/6-31+G(d,p) for C, H, and N and def2TZVP for Au. Atom color code: gray, white, blue, and yellow refer to carbon, hydrogen, nitrogen, and gold, respectively.

(i) Electron density diagrams (top and side perspective views) of (a) $Au0^{-}Cl^{-}$ and (b) $Au0^{+}-Cl^{-}$ with solvated CHCl₃ to Cl⁻ observed in (ii) the crystal structure of $Au0^{+}-Cl^{-}$ (type A) (Figure S41,48). Electrostatic potentials were mapped onto the electron density isosurface ($\delta = 0.01$) calculated at B3LYP/6-31+G(d,p) for C, H, N, and Cl and def2TZVP for Au. Greater electron density was observed in $Au0^{+}$ at the site proximal to Cl⁻. Negative charge of Cl⁻ decreased by $Au0^{+}$ and solvating CHCl₃. Atom color code: brown, pink, light blue, green, and light orange refer to carbon, hydrogen, nitrogen, chorine, and gold, respectively.

(i) Electron density diagrams (top and side perspective views) of (a) $Au0^+$ -Cl⁻ and (b) $Au0^+$ -Cl⁻ with solvated CHCl₃ to Cl⁻ observed in (ii) the crystal structure of $Au0^+$ -Cl⁻ (type B) (Figure S42,49). Electrostatic potentials were mapped onto the electron density isosurface ($\delta = 0.01$) calculated at B3LYP/6-31+G(d,p) for C, H, N, and Cl and def2TZVP for Au. Greater electron density was observed in $Au0^+$ at the site proximal to Cl⁻. Negative charge of Cl⁻ decreased by $Au0^+$ and solvating CHCl₃. Atom color code: brown, pink, light blue, green, and light orange refer to carbon, hydrogen, nitrogen, chorine, and gold, respectively.

Figure S58 Electron density diagrams of Au0-PCCp⁻, Related to Figure 5.

(i) Electron density diagrams (top and side perspective views) of two types of stacking ion pair (a,b) $Au0^+$ -PCCp⁻ observed in (ii) the crystal structure of $Au0^+$ -PCCp⁻ (Figure S45,52). Electrostatic potentials were mapped onto the electron density isosurface ($\delta = 0.01$) calculated at B3LYP/6-31+G(d,p) for C, H, and N and def2TZVP for Au. Small negative charge in $Au0^+$ was observed by stacking with PCCp⁻ compared to $Au0^+$ -Cl⁻ (Figure S56,57). Atom color code: brown, pink, light blue, and light orange refer to carbon, hydrogen, nitrogen, and gold, respectively.

Figure S59 Optimized structures of TBA⁺-NiO⁻ and Au0⁺-NiO⁻, Related to Figure 11.

Optimized structures of (a) TBA⁺-**NiO**⁻ and (b) **AuO**⁺-**NiO**⁻ at B3LYP-GD3BJ with the 6-31G(d,p) basis set for C, H, N, O, F, and Ni and LanL2DZ for Au (optimized from the crystal structures of TBA⁺-**NiO**⁻ (Sasano et al., 2017) and **AuO**⁺-**NiO**⁻ (Figure S53b(i))), wherein (i) and (ii) show the side perspective and side views and the top and side views of **NiO**⁻ with selected bond lengths, respectively. The mean-plane deviations of the 24-atom plane of **NiO**⁻ in (a) and (b) were 0.41 and 0.17 Å, respectively. Longer Ni–N distance and planar structure of **NiO**⁻ in **AuO**⁺-**NiO**⁻ than that of TBA⁺-**NiO**⁻ probably indicated the contribution of coordination of π -electron of **AuO**⁺ to the Ni site. Atom color code: gray, white, blue, red, light green, green, and yellow refer to carbon, hydrogen, nitrogen, oxygen, fluorine, nickel, and gold, respectively. LanL2DZ basis set was used for Au atom due to the limited calculation resource.

Figure S60 Electron density diagrams of Au0⁺-NiO⁻, Related to Figure 11.

Electron density diagrams (top and side perspective views) of $Au0^+$ -NiO⁻ as the optimized structure based on the single-crystal X-ray structure (Figure S53b(i)); see also Figure S59b). Electrostatic potentials were mapped onto the electron density isosurface ($\delta = 0.01$) calculated at B3LYP-GD3BJ with the 6-31+G(d,p) basis set for C, H, N, O, F, and Ni and LanL2DZ for Au on the basis of optimized structure obtained by B3LYP-GD3BJ with the 6-31G(d,p) basis set for C, H, N, O, F, and Ni and LanL2DZ for Au. LanL2DZ basis set was used for Au atom due to the limited calculation resource. Effective delocalization of positive and negative charges for stacking was observed in $Au0^+$ and NiO⁻, respectively.

Figure S61 Molecular orbitals of **Au0**⁺-Cl⁻ and **Au0**⁺-PCCp⁻, **Related to Figure 4 and 5**. Molecular orbitals (MOs) of associating ion pairs in (a)(i) **Au0**⁺-Cl⁻ (type A) and (ii) **Au0**⁺-Cl⁻ (type B) and (b) **Au0**⁺-PCCp⁻ found in the crystal structures (see also Figure S56–58) calculated at B3LYP/6-31+G(d,p) for C, H, N, and Cl and def2TZVP for Au. Separately localized MOs at **Au0**⁺ and anions (Cl⁻, PCCp⁻) suggest that each ion exists as an independent species.

Figure S62 Molecular orbitals of Au0⁺-NiO⁻, Related to Figure 12.

Molecular orbitals (MOs) of the associating ion pair $Au0^+$ -NiO⁻ calculated at B3LYP-GD3BJ level with the 6-31+G(d,p) basis set for C, H, N, O, F, and Ni and LanL2DZ for Au on the basis of optimized structure obtained by B3LYP-GD3BJ with the 6-31G(d,p) basis set for C, H, N, O, F, and Ni and LanL2DZ for Au (see also Figure S60). LanL2DZ basis set was used for Au atom due to the limited calculation resource.

Cartesian coordination of optimized structures

```
2H8 (AM1)
-1.0101567 hartree
C,1.313630469,2.3885532992,1.8251908904
C,0.92868797,3.5719776317,2.6550970288
C,-0.2756118482,4.0019289988,2.1842861222
C,-0.6515299428,3.0966882093,1.0591099052
C,-2.1776211111,2.31716543,-0.756818523
C,-3.3459713308,2.4500228494,-1.5713186928
C,-3.3298486766,1.4029814465,-2.5115228897
C,-2.1494090985,0.6301475858,-2.2765396921
C,-0.6035023185,-1.2599590692,-2.7984737461
C,-0.1844409566,-2.4542678534,-3.5882032763
C,1.012111577,-2.8659385898,-3.0822582971
C,1.3495192995,-1.9274086903,-1.9674813514
C,2.902203917,-1.2027230151,-0.1673031085
C,4.1567947988,-1.273594808,0.636725286
C,4.1526368665,-0.2469857893,1.5287435713
C,2.8940486872,0.531954949,1.3431751685
C,-1.7446483387,-0.5390738193,-3.0125682718
C,2.5580099757,-2.0511188569,-1.1870146756
C,2.5359481582,1.6519829937,2.046388587
C,-1.8009975486,3.1891619766,0.3259900963
C,3.4353210765,2.1496358262,3.0964383938
C,3.6783881927,1.363706485,4.2327456446
C,4.0423608877,3.3978980605,2.9631824578
C,4.5311463839,1.8339509335,5.2339362901
C,4.9159523674,3.8666082459,3.9621070191
C,5.1675703468,3.0924356802,5.1077709903
C,4.0150443988,-0.0063136881,6.6585218544
C,5.7963718288,5.9237590361,4.8084618737
C,7.210011845,2.9509875197,6.2802565408
C,4.4081184779,-0.4662899237,8.0516226272
C,5.8451440706,7.3390977165,4.2602424936
C,7.9318182334,3.68506605,7.3953863147
C,3.5949859783,-1.6778594172,8.45102145
C,6.2129721125,8.312425501,5.3583916277
C,9.2909277175,3.0663746693,7.6373980206
C,3.9724850059,-2.1516738856,9.8383494479
C,6.2622643117,9.7314009345,4.8334330222
C,10.0270797987,3.7865685266,8.7468589935
C,3.1609036652,-3.3635833426,10.2431320173
C,6.6308209784,10.7087748697,5.9289325586
C,11.3875763651,3.1702002707,8.99251098
C,3.5380457201,-3.8381952877,11.6299953462
C,6.6798504196,12.1278644153,5.404884956
C,12.1241758828,3.8897353078,10.1018050182
C,2.7269970146,-5.0500980256,12.0370016071
C,7.0484244623,13.1070036758,6.4992217261
C,13.4852642669,3.2745029002,10.348928509
C,3.4626889857,-3.1590537991,-1.5234357918
C,3.6844827114,-4.1804885962,-0.58750294
C,4.1050332705,-3.1881722457,-2.7605724047
C,4.5453350846,-5.2350512828,-0.8995624019
C,4.9702521972,-4.2512125907,-3.0793539125
C,5.199407271,-5.2845940513,-2.1550059084
C,4.1686485255,-6.259740052,1.2221828021
C,6.8200289928,-4.7331019997,-4.5169473466
C,5.5529096292,-7.5650143509,-2.6489410692
```

```
C,4.6364588982,-7.5079681427,1.9504128807
C,7.3943440288,-4.03792088,-5.7387822608
C,6.7064967502,-8.4798302104,-3.0175451723
C,4.0038517446,-7.5805944733,3.3226540079
C,8.7736557916,-4.5774803836,-6.046969803
C,6.2044276415,-9.8859974211,-3.260703026
C,4.4591357403,-8.8186509585,4.0653782936
C,9.3667022108,-3.8935099464,-7.2602215419
C,7.3419329363,-10.8137749764,-3.6305888632
C,3.829464689,-8.8956089567,5.4397251811
C,10.7468051102,-4.4309887748,-7.5727060249
C,6.8437909965,-12.2221878292,-3.8743698254
C,4.2842493084,-10.1331722787,6.1830253435
C,11.3405868061,-3.7472779679,-8.7854744237
C,7.9806822073,-13.1504027915,-4.2441515419
C,3.6558574818,-10.2118165256,7.5582005419
C,12.7210705232,-4.2836283663,-9.0996865238
C,7.4842748661,-14.5596957973,-4.4883131099
C,-2.6661601778,-0.9680595395,-4.0812072386
C,-3.2994597392,-2.2155232702,-3.983547497
C,-2.8938183755,-0.1437978227,-5.1816179116
C,-4.1724892263,-2.6305876729,-4.9918017059
C,-3.773215698,-0.5598066453,-6.198755579
C,-4.4224079488,-1.8033010245,-6.1143424096
C,-4.5567134176,-4.7149110716,-3.8958938659
C,-4.189576763,-0.1685079537,-8.5207700889
C,-6.6044877192,-2.3119674323,-6.8570737802
C,-5.3760505053,-5.9677446602,-4.1530192729
C,-3.7474906313,0.9186458927,-9.4843364058
C,-7.294911476,-2.7309029544,-8.1421037995
C,-5.1385095299,-6.9814828513,-3.0554921049
C,-4.0074341532,0.4892480125,-10.9114641263
C,-8.7882168419,-2.8374553784,-7.9247695004
C,-5.9463936659,-8.2392246809,-3.2944925085
C,-3.5689196792,1.5582422086,-11.8894543007
C,-9.4949147256,-3.254291675,-9.1969094713
C,-5.7120952518,-9.2571291309,-2.1989443233
C,-3.8279211684,1.1330458506,-13.3189104875
C,-10.9895812585,-3.3625033482,-8.9836720878
C,-6.5195050185,-10.5150190376,-2.4370357156
C,-3.3894103632,2.2012725668,-14.2974026963
C,-11.6968351438,-3.7793686855,-10.255230484
C,-6.2865555152,-11.5345154535,-1.3422624336
C,-3.6477354768,1.7778299588,-15.727822684
C,-13.1920298352,-3.8881853148,-10.0438184088
C,-2.7646725004,4.2596642515,0.6408654391
C,-4.0582094197,3.9212165833,1.0642636301
C,-2.3885969268,5.5960838908,0.5179280551
C,-4.9721171952,4.9302677545,1.3756857993
C,-3.3074549309,6.6148050132,0.832559502
C,-4.6048711511,6.2943769927,1.2663565191
C,-6.6847895873,3.3337185113,1.8337426259
C,-3.7284713532,8.9100226086,0.3120135954
C,-5.8984223561,7.471166147,2.8518959712
C,-8.1407563042,3.36414474,2.2652364597
C,-2.8823246819,10.0010248566,-0.3200576875
C,-6.8415052294,8.6598202515,2.88663437
C,-8.6979507889,1.9587954208,2.3219538118
C,-3.7558821825,11.1627038021,-0.7396436592
C,-7.2989739055,8.9253736995,4.3039381927
```

C,-10.1502432547,1.967772931,2.7491142727 C,-2.9314997827,12.2606249936,-1.3771886932 C,-8.2410978049,10.1089645151,4.3589470041 C,-10.7127215857,0.5636749695,2.8072460631 C,-3.8016518756,13.4255462359,-1.7979175488 C,-8.7016232598,10.3778899811,5.7755639371 C,-12.1647874232,0.5716099811,3.2342385339 C,-2.9781353603,14.5236287244,-2.4357895238 C,-9.6437499708,11.5611610255,5.8313377264 C,-12.7293203011,-0.831962144,3.2929943083 C,-3.8467863269,15.6898006967,-2.8572458031 C,-10.1054920862,11.8316029921,7.247599775 H,1.5402842542,3.9638109789,3.4636950204 H,-0.8934071154,4.8339140273,2.5149653801 H,-4.0932927647,3.2325826046,-1.467533058 H,-4.0640498906,1.2018199673,-3.2877896526 H,-0.7695469905,-2.8630540506,-4.4087480951 H,1.6475164235,-3.6943587621,-3.3849266629 H,4.9059698199,-2.0466673328,0.4702250537 H,4.8977672044,0.0293594093,2.2737385993 H,-0.6126900436,0.8797158494,-0.8278249227 H,1.3491143116,0.2490928203,-0.0920138508 H,3.1840711332,0.3866082125,4.3242159988 H,3.8576258032,4.024181738,2.0777753867 H,2.9377588904,0.3019203328,6.6220089658 H,4.2042176782,-0.8102778823,5.8993603356 H,6.7855590099,5.6152337391,5.2404390452 H,5.0014572934,5.8109762534,5.5894210448 H,7.0404182359,1.8735351983,6.5403225464 H,7.7730980742,3.0240057645,5.3138007148 H,4.2429770822,0.3703538776,8.7795517348 H,5.5023520757,-0.7097966789,8.068625906 H,6.5952589012,7.3908469324,3.4284829834 H,4.8476900361,7.6057819886,3.8236441297 H,8.0416384658,4.7664245451,7.1190950884 H,7.3134806324,3.6419774383,8.3296091313 H,2.5020219707,-1.4250525951,8.424475354 H,3.7619404859,-2.5060277804,7.7125433657 H,7.2113043792,8.035832743,5.7895643167 H,5.4627556714,8.244489972,6.1900692816 H,9.8981674495,3.1072297465,6.6946894152 H,9.1698963147,1.9839069054,7.9070172039 H,3.8061894005,-1.3233521815,10.5766708763 H,5.0653589217,-2.4041218705,9.865224045 H,7.0115283036,9.7985950646,4.0010162363 H,5.263890555,10.0077958773,4.4024892251 H,10.1474069982,4.8690635293,8.4775086339 H,9.4195506266,3.7460400024,9.689248 H,2.0680984287,-3.1107091962,10.2163684358 H,3.3266552585,-4.1915187032,9.5042941901 H,7.6292060632,10.4322074033,6.359721079 H,5.881637841,10.640885252,6.7613844163 H,11.9947483444,3.2107093289,8.0498728297 H,11.2671085032,2.0876276462,9.2615242654 H,4.6307059149,-4.0914438105,11.6570801392 H,3.3725084851,-3.0104071555,12.3690270603 H,7.4289016414,12.1960058934,4.5723855749 H,5.6815201849,12.404697333,4.9742032256 H,12.2449208729,4.9722910421,9.8329655487 H,11.5172803832,3.8493769584,11.044578071

H,1.6345365232,-4.7951571859,12.0083096515 H,2.8921980113,-5.8762319147,11.2957404248 H,8.0463198226,12.8275837768,6.9297997305 H,6.2990009564,13.0363301082,7.3314733273 H,14.0901664367,3.3144984225,9.4045905649 H,13.3626302556,2.1915099542,10.6160514266 H,3.1684934908,-4.1368233109,0.3815875333 H,3.9391948867,-2.3928005233,-3.5022996457 H,4.4755448545,-5.3320613868,1.7724255166 H,3.0559451657,-6.2655992773,1.0813522282 H,6.7417474429,-5.8420973903,-4.6727875073 H,7.4330341652,-4.5316475484,-3.6014884789 H,5.0473097731,-7.9013623529,-1.7063107594 H,4.803000126,-7.500657866,-3.4794583196 H,5.7541601886,-7.4909546434,2.0374532347 H,4.3643633712,-8.4138107273,1.3483964392 H,6.7111227685,-4.1968811777,-6.6134862587 H,7.4425465985,-2.9335250742,-5.5526684745 H,7.2154878768,-8.0856221135,-3.9358444807 H,7.4632646648,-8.4751661082,-2.1903421594 H,4.2763863598,-6.6663621066,3.9134396279 H,2.8861171823,-7.5909016487,3.2241318549 H,8.7147238601,-5.6830413745,-6.2295639537 H,9.4458258352,-4.4234172544,-5.1617695386 H,5.4423759283,-9.8781797682,-4.084305976 H,5.6919090425,-10.268181256,-2.3385716786 H,5.5768208778,-8.8088321476,4.163137125 H,4.1868898603,-9.7329024306,3.4747283295 H,8.6936910254,-4.0466836427,-8.1447674309 H,9.4256770053,-2.7880938254,-7.0773811816 H,7.8548003813,-10.4311688029,-4.5522204094 H,8.1040362064,-10.8210881361,-2.8071934184 H,4.1015871801,-7.9811310118,6.0300935674 H,2.711803327,-8.9051821623,5.3417128284 H,10.687630016,-5.5364021991,-7.7554610334 H,11.4193706227,-4.2780540732,-6.687760467 H,6.0815818041,-12.2144760887,-4.6976810789 H,6.3306613606,-12.6045477386,-2.9527730893 H,4.0119957311,-11.0478803144,5.5931338485 H,5.4018798828,-10.1239849967,6.2810509698 H,10.6681870868,-3.8999839127,-9.6705362218 H,11.4000377587,-2.6418785355,-8.6028665806 H,8.4938742042,-12.7683676141,-5.1658160027 H,8.7430482355,-13.1583437779,-3.4210424082 H,3.9282942307,-9.2957128182,8.146249119 H,2.5381628176,-10.2190166884,7.4582707032 H,12.6598600065,-5.3894475396,-9.2804677063 H,13.3916109951,-4.1313516713,-8.212858808 H,6.7209244502,-14.549483832,-5.3107917205 H,6.9699417405,-14.9394945369,-3.5660979058 H,-3.0981589757,-2.8503165834,-3.1091056481 H,-2.4016960186,0.8366629755,-5.2674377315 H,-3.4587168704,-4.9425326359,-3.8953893908 H,-4.8448587982,-4.2346897594,-2.9240618787 H,-5.283312881,-0.3965568158,-8.6303005916 H,-3.6002394489,-1.1102796465,-8.662642656 H,-6.7646625396,-3.0638626981,-6.0408210287 H,-6.9539871518,-1.3026631024,-6.5173849581 H,-5.0937665376,-6.3989034652,-5.1487838638 H,-6.4629883386,-5.6977470812,-4.2042814159

H,-4.302174649,1.8661892484,-9.2570238044 H,-2.6566208466,1.1295746331,-9.3353667188 H,-7.0725099689,-1.9810317991,-8.9458353652 H,-6.8806457124,-3.715547902,-8.4824883992 H,-4.0473101356,-7.2388211459,-3.0082494928 H,-5.4180033379,-6.53780807,-2.0634392464 H,-5.1009244147,0.2787425538,-11.0494525599 H,-3.4569407319,-0.4649812597,-11.1248656731 H,-9.1910771862,-1.8495909942,-7.5770127361 H,-8.9990752678,-3.5850270664,-7.114984998 H,-5.6671572737,-8.6826560751,-4.2865969714 H,-7.037439623,-7.9820409018,-3.3425191203 H,-4.1185346456,2.5125570305,-11.6749018249 H,-2.4754724717,1.7684294968,-11.7514252949 H,-9.2833996314,-2.5071561332,-10.0067705824 H,-9.0916416971,-4.2418266517,-9.544735496 H,-4.6209509834,-9.5140082973,-2.1510728826 H,-5.9909152814,-8.8133340547,-1.2068938793 H,-4.9213702053,0.9227629204,-13.456711666 H,-3.2784539338,0.1785026237,-13.5329164779 H,-11.3924874734,-2.3748711362,-8.6356591271 H,-11.2009260205,-4.1094307708,-8.1735626924 H,-7.6106932351,-10.2585279579,-2.4849955493 H,-6.240750428,-10.9591244246,-3.4289327111 H,-3.9386415889,3.1559414719,-14.0835662284 H,-2.2959467331,2.4115636125,-14.1599097725 H,-11.4857853876,-3.0325312676,-11.0654612081 H,-11.2941659056,-4.7669690941,-10.6034807313 H,-5.1945687132,-11.7886760633,-1.2948628508 H,-6.5643582605,-11.0880843671,-0.3509010099 H,-4.741491212,1.56642709,-15.8629952712 H,-3.0988301208,0.8221798014,-15.9392778925 H,-13.5926334994,-2.8999778,-9.6941874725 H,-13.4010985708,-4.6343017714,-9.2321113604 H,-4.3339943533,2.8599562624,1.1429781978 H,-1.3778345014,5.8722960778,0.1822683545 H,-6.5761358832,2.8994587613,0.8056411812 H,-6.059208405,2.7509027776,2.5597670019 H,-4.2783823368,9.286184943,1.2155483341 H,-4.4644027447,8.484196038,-0.4169976167 H,-6.4013650963,6.5370657617,3.2149126376 H,-4.9758244561,7.665543715,3.4579110736 H,-8.7297821891,3.9874346495,1.5429683201 H,-8.2212407849,3.8550753195,3.2699536455 H,-2.1071298829,10.3437646508,0.4139429611 H,-2.3375943722,9.5851980326,-1.2072109995 H,-6.3193379893,9.5616743753,2.4722129123 H,-7.7235324516,8.4536931761,2.2259185363 H,-8.6054431606,1.4745070265,1.3139418774 H,-8.0978042879,1.3424904777,3.042457406 H,-4.2979105904,11.5700454308,0.1544200935 H,-4.5344161008,10.8068510034,-1.4651757092 H,-6.4086964753,9.1224732375,4.9578975064 H,-7.8140492736,8.0152646824,4.7107328439 H,-10.7502372272,2.5843275786,2.0288775856 H,-10.2430139971,2.4526263352,3.7566563924 H,-2.1522777269,12.6152037958,-0.651994266 H,-2.3898196488,11.8531349724,-2.2712772133 H,-7.7262702975,11.018754229,3.9514462646 H,-9.1309879454,9.9118758826,3.7046608493

H,-10.6196101158,0.0790228236,1.7996164682 H,-10.1123042606,-0.0528106545,3.5271791284 H,-4.3433852958,13.8327901902,-0.9037612802 H,-4.5809572072,13.0704492064,-2.5228022257 H,-7.8114897569,10.5746761616,6.4296279299 H,-9.2161692857,9.4679035618,6.1830122966 H,-12.2582663371,1.0562015084,4.2418156625 H,-12.7654531586,1.1878935849,2.5143860826 H,-2.1986784273,14.8788306642,-1.7111871313 H,-2.4365113272,14.1166452082,-3.3301036425 H,-9.1294122445,12.4713144603,5.4240829533 H,-10.5339926182,11.3646472728,5.1774061873 H,-12.6335989092,-1.3154745084,2.2848612527 H,-12.1263968783,-1.4472220278,4.0121684332 H,-4.3888639877,16.0944553479,-1.9618856138 H,-4.6265510697,15.3322724741,-3.5807234627 H,-9.2137199947,12.0264304525,7.9003349383 H,-10.6182041093,10.9197767892,7.6537628701 N,0.381554065,2.1271041717,0.9013400115 N,0.3952061978,-1.0014466777,-1.8152495371 N,-1.4701042028,1.2064427742,-1.2065565039 N,2.1706383551,-0.1125303333,0.3276424508 O,4.8570993692,1.119131065,6.3683638386 0,5.5201388281,5.0734120711,3.6820263071 O,5.934798631,3.6068798564,6.1382284771 O,4.8143256085,-6.2945668068,-0.058436971 O,5.4882794137,-4.2141912717,-4.3562157046 O,6.1356462876,-6.2652150091,-2.4318223323 O,-4.8646555578,-3.8230382082,-4.9773265232 O,-3.9799815126,0.3637394374,-7.2007442853 O,-5.1989388441,-2.2487950101,-7.1691112519 O,-6.2544145719,4.7030529005,1.8286745514 O,-2.8058040197,7.8960060656,0.7481867797 O,-5.5321692027,7.3009762308,1.4684746849 C,-7.0885101689,-12.7887557992,-1.5751438701 H,-6.8078054026,-13.2616460195,-2.5473016391 H,-6.902195873,-13.5261571385,-0.7574888762 H,-8.18128449,-12.5592152747,-1.6008404602 C,-13.9004194355,-4.3030579936,-11.3073622792 H,-15.0003719957,-4.3771721182,-11.1294884541 H,-13.7240965445,-3.5585249031,-12.1210523432 H,-13.5319845066,-5.2975095382,-11.6578287104 C,-3.212590272,2.838464707,-16.7056711511 H,-3.4117243918,2.5063338651,-17.7530739947 H,-3.7667949993,3.7914773656,-16.526419405 H,-2.1197819862,3.0451678179,-16.6029141672 C,-14.1750324348,-0.8290146629,3.7177191768 H,-14.571074657,-1.8724868602,3.7544265612 H,-14.2875350622,-0.3731972174,4.7311683385 H,-14.7960528392,-0.2411148038,2.9992356423 C,-11.0438378442,13.0090315517,7.3079845398 H,-11.3717468459,13.1907738021,8.3598746247 H,-10.5423859141,13.9328172853,6.9302602271 H,-11.9506479682,12.8232354752,6.6829397841 C,-3.0310085527,16.7856260743,-3.4929787089 H,-3.6901139718,17.6346395878,-3.7959224415 H,-2.2643345123,17.1718120129,-2.778432121 H,-2.5027556545,16.4075753089,-4.4015723721 C,3.09949915,-5.5264649679,13.4171479584 H,2.4903970735,-6.4195488898,13.6971985806

```
H,4.1793434442,-5.808754765,13.4590001295
H,2.9183223372,-4.7247378674,14.1734038748
C,14.222375383,3.9877555397,11.4527462232
H,15.2221569005,3.5186765871,11.6183670978
H,14.3759780399,5.063291519,11.1936338624
H,13.6464466742,3.9373802995,12.4083988487
C,7.098486834,14.5213599883,5.9819457537
H,6.1056975911,14.8264141661,5.5710638957
H,7.3716139542,15.2261519613,6.8039477299
H,7.857694514,14.6171453931,5.1683496689
C,13.316247077,-3.6056356329,-10.3065732762
H,14.3327875565,-4.0154301041,-10.520424827
H,12.6743897634,-3.7670869926,-11.2062732352
H,13.4081145727,-2.5056807861,-10.1357678258
C,8.6129494704,-15.4874778643,-4.8568126971
H,8.2254169659,-16.5199790805,-5.0322766876
H,9.1220997856,-15.1389019808,-5.7878185201
H,9.3718959031,-15.5299104576,-4.0384581922
C,4.1054962293,-11.4428038122,8.3018270247
H,5.2146907434,-11.4413383915,8.4329444892
H,3.6310250332,-11.4811075499,9.3119983087
H,3.8208510909,-12.3671348932,7.7431726869
```

2H12 (AM1)

-1.5362474 hartree C,3.0903548729,-0.5514109989,-1.1354572359 C,3.9680948071,-0.1654828033,-2.2834487116 C,3.1612988704,-0.0795924146,-3.3783006063 C,1.7779988963,-0.4097459964,-2.9267697148 C,-0.6706715474,-0.723520393,-3.3006673738 C,-1.817171438,-0.8246205319,-4.1500047312 C,-2.9233204364,-1.1316546628,-3.3359268152 C,-2.4546823041,-1.2229196001,-1.9876342887 C,-2.8020183311,-1.6342576324,0.450590699 C,-3.650114834,-1.9447219071,1.6379206437 C,-2.8188055954,-2.0039489152,2.7161971764 C,-1.4389657166,-1.7321637971,2.2066664064 C,0.9968591498,-1.4747718588,2.6278428101 C,2.22388041,-1.4937942993,3.4761031153 C,3.2965605643,-1.2254501623,2.6844617148 C,2.8110607366,-1.0171142473,1.2896144925 C,-3.2616243038,-1.5091856977,-0.8302788065 C,-0.2797920472,-1.7141962173,3.0671153802 C,3.5975228213,-0.7263981156,0.2054908794 C,0.6716486015,-0.4242851709,-3.728808242 C,5.0452986814,-0.572890873,0.4017441891 C,5.5262292289,0.4386386959,1.2473634697 C,5.935974244,-1.4274273923,-0.2466675638 C,6.9009072433,0.588275685,1.4418631296 C,7.3215330975,-1.2872897874,-0.042743899 C,7.8186963994,-0.2795786712,0.8011224893 C,6.5749057729,2.5238664787,2.7982002748 C,9.3941908598,-1.8070878773,-1.1186201623 C,9.712458923,-0.4304402586,2.2004327094 C,7.4551080838,3.5188324724,3.5346584768 C,9.7696552605,-2.7336703305,-2.2616814392 C,11.2119500172,-0.2151356614,2.107625301 C,6.6056647547,4.5774401951,4.2032323232 C,11.1637791172,-2.415773901,-2.7555989902 C,11.8732347843,-0.5515515166,3.4259729585

C,7.4724199028,5.6231476435,4.8717597174 C,11.5560686183,-3.3259154251,-3.8998279235 C,13.3708209564,-0.3433617144,3.3524719381 C,6.6330569951,6.6855848922,5.5489973571 C,12.9509158714,-3.0117530999,-4.3967401058 C,14.0363633361,-0.6785535145,4.6700103947 C,7.5025712085,7.7893054641,6.1121974034 C,13.3436024777,-3.921222704,-5.5412207205 C,15.5338579198,-0.4702749266,4.5972015431 C,6.6709452097,8.8685769262,6.7718425591 C,14.7384039058,-3.6075781777,-6.038504059 C,16.1998146717,-0.8053282909,5.9145392888 C,7.5367874192,10.0279382892,7.2168508512 C,15.131122912,-4.5169965853,-7.1829950901 C,17.6972888242,-0.5969566825,5.8418545683 C,6.7060900067,11.1410429866,7.8182942408 C,16.5259002391,-4.2035111249,-7.6804322507 C,18.3633857974,-0.9319883173,7.1591216857 C,7.5717176471,12.3198064945,8.2090897734 C,16.9186832458,-5.1128125362,-8.8248494563 C,19.8607595374,-0.723634683,7.0865914988 C,6.7435893442,13.4409290745,8.8001970082 C,18.3136429661,-4.8003668725,-9.3234384282 C,20.5283345071,-1.0584035739,8.4035592696 C,-0.4955261444,-1.9592500195,4.4992817464 C,-0.1621410413,-0.9570507679,5.4234505059 C,-1.0071484143,-3.1782479346,4.9416282781 C,-0.3395755346,-1.1813977047,6.7901628081 C,-1.2027417995,-3.4014639335,6.3174913338 C,-0.869080887,-2.4094942582,7.2556046229 C,0.6375710128,0.9243994025,7.3265636499 C,-1.3735735054,-5.2166356792,7.8659499417 C,-1.9979973001,-1.9422697647,9.2741378724 C,1.0242108504,1.6811288004,8.5851935801 C,-1.6088010174,-6.7074140517,7.6978549005 C,-1.9909678472,-2.4197697608,10.7147498112 C,1.7252174792,2.9708268242,8.2179495462 C,-1.278710064,-7.4365743188,8.9815880371 C,-3.0532264047,-1.696347624,11.512739566 C,2.2225156074,3.6926530439,9.4518138412 C,-1.5021560378,-8.9264472475,8.8337491955 C,-3.0617765735,-2.1601523483,12.9536826665 C,2.8830152095,5.0054816026,9.0882125499 C,-1.1737987951,-9.6599695758,10.1164597314 C,-4.1232155525,-1.438251164,13.7558140481 C,3.4534604792,5.6886701689,10.3122530211 C,-1.3966645645,-11.149870301,9.9691495882 C,-4.1320589578,-1.9014288654,15.1968409615 C,4.0553391964,7.0331279599,9.9638943907 C,-1.0686134578,-11.8838922057,11.2516200244 C,-5.1933172508,-1.1797488612,15.9993660244 C,4.6633512052,7.6908440475,11.1841271058 C,-1.2914220441,-13.3737904542,11.1043460714 C,-5.2021536979,-1.6428010664,17.4404195224 C,5.2294126132,9.0543104076,10.8509448746 C,-0.9634616649,-14.1079982877,12.3867276005 C,-6.2633646783,-0.921208363,18.2430773954 C,5.8622568576,9.6966775966,12.0666592112 C,-1.186215309,-15.5978038612,12.239558451 C,-6.2722785514,-1.3841210541,19.6840607522

C,6.3236143382,11.10730033,11.7687035607 C,-0.8585558915,-16.3335029667,13.521553958 C,-7.3333279791,-0.6631506855,20.4881175495 C,-4.7051119554,-1.6715129939,-1.0862334914 C,-5.6096145686,-0.7559272475,-0.5292571273 C,-5.1625324564,-2.7327682944,-1.8650355884 C,-6.9784810684,-0.9030497255,-0.7651497446 C,-6.5413726186,-2.8828216105,-2.1044681527 C,-7.4619862577,-1.970896908,-1.5607033651 C,-7.4864386512,0.9895817201,0.596092234 C,-8.1182039688,-4.5894066379,-2.6696750993 C,-9.4636056236,-1.2177646901,-2.5597703594 C,-8.7347184131,1.7324232241,1.0399315817 C,-7.9700808608,-5.9951416914,-3.224452833 C,-10.9096309862,-1.663944299,-2.6756497278 C,-8.3647913784,2.8642370996,1.9731054216 C,-9.2639781066,-6.7612912054,-3.0586517589 C,-11.6874819423,-0.7017612809,-3.5461079507 C,-9.5968838832,3.6170423712,2.428022563 C,-9.136135336,-8.1684936101,-3.6017448804 C,-13.1335492776,-1.1308107877,-3.6738764698 C,-9.2320692859,4.7507665657,3.362279867 C,-10.4290250206,-8.9385826265,-3.4385784848 C,-13.9156266906,-0.1703123131,-4.543939618 C,-10.463504273,5.5040594909,3.8176137994 C,-10.3017719445,-10.3459064175,-3.9811848367 C,-15.3617652051,-0.5986726368,-4.6718597831 C,-10.0993924329,6.638002009,4.7518268874 C,-11.5944119342,-11.1164385244,-3.8183988693 C,-16.1442559723,0.3615498694,-5.5418140663 C,-11.3307027413,7.3913902023,5.2072639544 C,-11.4672224979,-12.5237599806,-4.3609842724 C,-17.5904204409,-0.0666843898,-5.6696980489 C,-10.9668247477,8.5254254012,6.1414419209 C,-12.759771484,-13.2944586634,-4.1983110872 C,-18.3730511604,0.8934354917,-6.5396312603 C,-12.1979553136,9.2788490921,6.5969366029 C,-12.6326990672,-14.7016960054,-4.7408368082 C,-19.8191435948,0.4653554859,-6.6675575953 C,-11.8354847933,10.4135133318,7.5314358078 C,-13.9248820361,-15.4737879272,-4.5787765971 C,-20.6031855172,1.4248506804,-7.5374876567 C,0.8233643133,-0.1094185136,-5.1610505345 C,0.1506444172,0.997140003,-5.6996709444 C,1.6303235323,-0.9077823829,-5.9698431052 C,0.2996534031,1.3079988925,-7.0530055598 C,1.783121929,-0.595743303,-7.3337784334 C,1.1237565342,0.5140359201,-7.8885449718 C,-1.222631059,3.136136137,-6.8722858601 C,2.3359166403,-1.6720925759,-9.3958225238 C,1.9333048173,1.9381553367,-9.5881593661 C,-1.8048339159,4.1885813286,-7.7998388586 C,2.9808105668,-3.006159857,-9.7276999843 C,1.9789689522,1.9798017323,-11.1046333645 C,-2.7957391719,5.0530544626,-7.0518533949 C,2.7673838708,-3.3409239657,-11.1875052904 C,2.7317609445,3.2054074209,-11.5733990872 C,-3.3892277249,6.1084458177,-7.9604922028 C,3.3992460324,-4.6709900989,-11.5384756489 C,2.7881696512,3.2643023791,-13.0849761393

C,-4.3817348322,6.9761717737,-7.2166912379 C,3.1887917268,-5.0095065483,-12.9987291684 C,3.5404007765,4.4896090075,-13.5582472976 C,-4.9757903512,8.0316795556,-8.1245501792 C,3.8201182605,-6.3395476493,-13.350284698 C,3.5969663046,4.5491865363,-15.0696779583 C,-5.9683548515,8.8997955538,-7.3813497311 C,3.6101209972,-6.6784886964,-14.8104756655 C,4.3490832242,5.7743549825,-15.543409734 C,-6.5625608429,9.9553047232,-8.2890718907 C,4.2414121101,-8.0085119551,-15.1620989729 C,4.4056316711,5.8340562769,-17.0548224327 C,-7.5551353356,10.823563421,-7.5460690782 C,4.0315552366,-8.3476091258,-16.6222684994 C,5.1577273582,7.0591719424,-17.5287085829 C,-8.1494000532,11.8790299534,-8.4536173941 C,4.6627689668,-9.6775211661,-16.9739803917 C,5.2143256279,7.1190021628,-19.0400049712 C,-9.1424451499,12.748287519,-7.71173657 C,4.4536259871,-10.0179966623,-18.434275309 C,5.9663623801,8.3439723717,-19.5154191991 H,5.0385983955,0.0003676534,-2.1940705507 H,3.4111443467,0.1734143769,-4.4063068242 H,-1.8082342307,-0.6910437091,-5.2287743671 H,-3.9528206861,-1.2831171577,-3.6510979368 H,-4.7263049632,-2.0909796796,1.581380788 H,-3.0477854018,-2.2067434759,3.7593344336 H,2.1855759397,-1.706004852,4.5438857211 H,4.3526944513,-1.1648003791,2.9443088633 H,-0.496170337,-0.9752618093,-1.1967677349 H,0.8339401231,-1.2004276349,0.5244128335 H,4.808151704,1.1089507069,1.7398634014 H,5.571443904,-2.2238942158,-0.9123976489 H,6.0203479386,3.0178169164,1.9582111043 H,5.8462650395,2.0339296883,3.4962997239 H,10.1075087949,-1.9057186156,-0.2573889431 H,9.3600939504,-0.7373549232,-1.4488101301 H,9.2503246998,0.2304931922,2.9794704156 H,9.4678768579,-1.5023467607,2.4185570059 H,8.1663225403,3.9920489063,2.8083480328 H,8.0723673802,2.9773331466,4.2980711456 H,9.7149410726,-3.7976444233,-1.9121949613 H,9.0278487474,-2.6201309796,-3.0944390481 H,11.6302760858,-0.8574143637,1.2889566947 H,11.4176247359,0.8516851098,1.8308993457 H,5.9448794537,5.0690288864,3.4409396591 H,5.9349663124,4.0999473989,4.9652951594 H,11.8978198327,-2.5306718735,-1.9147286477 H,11.2104467454,-1.3463306186,-3.0921149952 H,11.6545798457,-1.6181792696,3.6972757979 H,11.4433883979,0.0919159593,4.2385331062 H,8.1376252899,6.1019976013,4.1050768307 H,8.140069458,5.1323496912,5.6279943336 H,11.5080359853,-4.3951573045,-3.563307683 H,10.8220256087,-3.2107771243,-4.7405320745 H,13.8004512242,-0.9862488396,2.5394899278 H,13.5892526386,0.7230706072,3.080728294 H,5.9077845138,7.1193348727,4.8107155365 H,6.0289221252,6.2226051762,6.3730948586 H,13.6848063927,-3.1269798665,-3.5559339779 H,12.9986881086,-1.9423185095,-4.7327091978 H,13.8177231454,-1.7450253738,4.9414636291 H,13.6063555616,-0.0359155865,5.4829921681 H,8.2216899794,7.3596330455,6.8582776766 H,8.1142634169,8.2401141418,5.2860901871 H,13.2956189239,-4.9906572324,-5.2053016789 H,12.6096996894,-3.8059339833,-6.3820178365 H,15.9638675529,-1.1129248918,3.7842240866 H,15.7525417251,0.5961548545,4.3256577759 H,5.8924887429,9.2362717715,6.0522133544 H,6.1281783774,8.4407350844,7.6567742185 H,15.4722943614,-3.7228238002,-5.1977042991 H,14.7863273673,-2.5381451075,-6.3744276134 H,15.9812354175,-1.8718126351,6.18596077 H,15.7697211983,-0.1628362943,6.7275853654 H,8.1132393941,10.4239876273,6.3391491542 H,8.2869444188,9.6690794349,7.9699510846 H,15.0831332978,-5.5864325113,-6.8470937998 H,14.3972132885,-4.4017437228,-8.023782241 H,18.1273811953,-1.2394824502,5.0288280841 H,17.9159133516,0.4694984577,5.5703790113 H,5.93001933,11.473231692,7.0793203409 H,6.1603875577,10.7587068504,8.7230379423 H,17.259780711,-4.3187152357,-6.8396093329 H,16.5738465911,-3.134057593,-8.0163024078 H,17.9332113695,-0.289559014,7.9721831222 H,18.1447714607,-1.9984735627,7.4305281674 H,8.3409783735,11.9890097629,8.9562854874 H,8.1248818695,12.6957801605,7.3083531669 H,16.1850416695,-4.9977004914,-9.665852939 H,16.8709264752,-6.1823161103,-8.4892193512 H,20.291202572,-1.3660831519,6.2737269898 H,20.0796883977,0.3427783963,6.8153053409 H,6.2248989274,13.0699058595,9.7251106106 H,5.9457607175,13.7420483319,8.0709968254 H,18.3598387934,-3.7299780171,-9.6572133419 H,19.0457003636,-4.914532686,-8.4806284339 H,20.09547798,-0.4160477882,9.2155220696 H,20.3070190454,-2.1248034289,8.6739066417 H,0.2309086677,-0.0004494543,5.0518048374 H,-1.2707502282,-3.9731313665,4.2281124141 H,1.5480616104,0.6333554031,6.7397875015 H,-0.0494484483,1.5330096389,6.6816502527 H,-2.005519624,-4.7902812855,8.6900585673 H,-0.2963420903,-4.989647649,8.0720523531 H,-1.7728604479,-0.8460777251,9.2035782869 H,-2.9788456956,-2.1607832244,8.7776436993 H,1.693628336,1.0384198926,9.2143449549 H,0.1056554955,1.896108795,9.1905862111 H,-2.6787191827,-6.8861731196,7.414150914 H,-0.9745501243,-7.0938558371,6.8581872579 H,-2.1723928352,-3.5261756765,10.7410986091 H,-0.9787524164,-2.2383433648,11.1613754657 H,2.5916131335,2.7504908559,7.5394199121 H,1.0206863845,3.6348847547,7.6507662266 H,-1.9170557847,-7.0412736616,9.815454273 H,-0.2097672702,-7.2421668847,9.262111866 H,-4.0606042444,-1.8780306742,11.0530809392 H,-2.8660189433,-0.5906502687,11.4744705364 H,2.9541720542,3.0410772329,9.9987203721

H,1.3643037906,3.8833240674,10.1487802 H,-2.5707224311,-9.1203226726,8.5519537998 H,-0.8636394424,-9.3215404994,8.0000509272 H,-3.2482501455,-3.2658651845,12.9917967705 H,-2.0542990141,-1.9788562686,13.4129819945 H,3.7029564114,4.8224848521,8.3444691511 H,2.133657169,5.679077218,8.5947449816 H,-1.81238281,-9.2647558877,10.9500329036 H,-0.1053042457,-9.4655206108,10.3981636951 H,-5.1305495163,-1.619706026,13.2962466489 H,-3.9368672667,-0.3325289094,13.7173001357 H,2.6442382864,5.8272394012,11.0771286392 H,4.2376742811,5.0339757499,10.77630519 H,-2.4650855725,-11.3443032094,9.6871820679 H,-0.7579794363,-11.5450662094,9.135634644 H,-4.3184341432,-3.0071506651,15.2353525628 H,-3.1247126163,-1.7201010251,15.6564119082 H,4.8423928045,6.9038494875,9.1740585251 H,3.2623459701,7.6994713905,9.5325760506 H,-1.7072555404,-11.4886866016,12.0851478552 H,-0.0001787702,-11.6894530438,11.5335254314 H,-6.200663205,-1.3612121572,15.5398459 H,-5.0070756806,-0.0740158369,15.960772261 H,5.4761222025,7.0373294208,11.5978531239 H,3.8828539604,7.7931715139,11.9837651005 H,-2.3598224467,-13.5682419448,10.8223287853 H,-0.6527374284,-13.7689814253,10.2708363944 H,-5.3884372994,-2.7485317574,17.4790101481 H,-4.1948074199,-1.461418845,17.8999595546 H,5.9945468719,8.9549096164,10.0350048566 H,4.4128258552,9.7154227427,10.4569933878 H,-1.6021030659,-13.7127505554,13.2202444844 H,0.1049512592,-13.9135126807,12.668701684 H,-6.07715669,0.1845337766,18.2044050153 H,-7.2707040295,-1.1026532937,17.783524903 H,5.1232916481,9.7160919206,12.9108242057 H,6.7347805416,9.0785582644,12.4061917197 H,-0.547571013,-15.9933181259,11.4062085223 H,-2.2545623824,-15.7925878481,11.9576745525 H,-6.4586392134,-2.4897980235,19.7230245495 H,-5.2651082928,-1.2027115757,20.1439113784 H,5.4397499676,11.7340033657,11.4745708117 H,7.0234241076,11.0974206565,10.8896815033 H,0.2097938317,-16.1362747226,13.8026288777 H,-1.4971087315,-15.9355371667,14.3541059062 H,-7.1462160113,0.4425358509,20.4466934644 H,-8.3396506106,-0.8445375106,20.0258518794 H,-5.2245509175,0.0686152129,0.087146702 H,-4.4608454959,-3.4566344977,-2.3060305122 H,-6.9565573853,0.529941416,1.4709396837 H,-6.7860477899,1.6687333534,0.042645206 H,-8.9358739717,-4.0243419314,-3.1915739802 H,-8.3216095882,-4.5997175324,-1.5683559705 H,-9.3829684849,-0.205703071,-2.0838507327 H,-8.9590326174,-1.2079268452,-3.5605426952 H,-9.4306161421,1.0176779112,1.5517875224 H,-9.2710382798,2.1304831123,0.1394501493 H,-7.6877126839,-5.9402473514,-4.3081684877 H,-7.1364289533,-6.5218151114,-2.6912366168 H,-10.9468255177,-2.697075493,-3.1104011631

H,-11.365082851,-1.7173720981,-1.6525586481 H,-7.8225532623,2.4557053115,2.8665570009 H,-7.6636609925,3.5695390855,1.4533958132 H,-10.0917508039,-6.2251713371,-3.5938559481 H,-9.5428674661,-6.8007917306,-1.9724667812 H,-11.2190689274,-0.6499432022,-4.5644453785 H,-11.6384163976,0.3291699715,-3.1058231375 H,-10.298046523,2.9117415197,2.9474443354 H,-10.1396533169,4.0249329252,1.5347933711 H,-8.8559282952,-8.1285961033,-4.6874341308 H,-8.3085258105,-8.7044337056,-3.0663108178 H,-13.1824959315,-2.1619531693,-4.1133941419 H,-13.6016070993,-1.183004495,-2.6555259982 H,-8.689220893,4.3426024685,4.2553539052 H,-8.530562593,5.4557015694,2.8428561726 H,-11.25653927,-8.4024613487,-3.9739480895 H,-10.7090604047,-8.9779687188,-2.3528156322 H,-13.4472949311,-0.1182952498,-5.5621782338 H,-13.8662834855,0.8608603585,-4.104531184 H,-11.0065589693,5.9120548242,2.9246030531 H,-11.1649542412,4.7991534897,4.337159166 H,-10.0214721675,-10.3065282123,-5.0668707273 H,-9.4743070688,-10.8820190277,-3.445711503 H,-15.4111149205,-1.6298507474,-5.1112635341 H,-15.8301012857,-0.6507928592,-3.6536365561 H,-9.5563873714,6.2300007537,5.644863996 H,-9.3978916613,7.3428949983,4.2323559917 H,-12.4219014003,-10.5802987017,-4.353781463 H,-11.8746165945,-11.1558420248,-2.7326899078 H,-15.6759686643,0.4135453118,-6.5600659556 H,-16.0948224318,1.392767073,-5.1025319318 H,-12.0321778447,6.6865204995,5.7268077101 H,-11.8738127426,7.7993155578,4.3142602673 H,-11.1869083714,-12.484375727,-5.4466623891 H,-10.6397452038,-13.0598874331,-3.8255583019 H,-17.639853327,-1.0978947617,-6.109006767 H,-18.0587261059,-0.1187479334,-4.6514627493 H,-10.423714727,8.1174842207,7.0344464477 H,-10.2653045814,9.2302746625,5.6219274468 H,-13.5872582738,-12.7582716074,-4.7336641636 H,-13.0400281792,-13.3338211775,-3.1126097306 H,-18.3235351638,1.9246718995,-6.1003881121 H,-17.9047303025,0.9454408626,-7.5578719489 H,-12.7412221136,9.6869952467,5.7041629274 H,-12.8995738471,8.5742811438,7.1166346925 H,-11.8053801473,-15.2381376896,-4.2055391855 H,-12.3525379739,-14.662634692,-5.8265386636 H,-19.8689487339,-0.5657795909,-7.1069318609 H,-20.2877576242,0.413361485,-5.649490006 H,-11.1325843698,11.1162454866,7.0105033997 H,-11.2909572513,10.003578155,8.4229046236 H,-14.2041972289,-15.5104749892,-3.49253979 H,-14.7513695975,-14.9349783463,-5.1134465399 H,-20.5509284902,2.4557846856,-7.0973581657 H,-20.1321624983,1.4766388913,-8.5547050029 H,-0.4888343607,1.604740198,-5.043584247 H,2.1585331223,-1.780876111,-5.5583152912 H,-2.0217695166,2.4522958176,-6.483547306 H,-0.6778166233,3.6095899959,-6.0137088251 H,2.7638969032,-0.841237348,-10.0177451545

H,1.2253293075,-1.7042084416,-9.5370403277 H,1.40038914,2.8310434126,-9.1686034886 H,2.9633616366,1.8710850051,-9.1514612043 H,-2.3054248657,3.684125303,-8.6670449931 H,-0.9756750404,4.8183797806,-8.2155273062 H,4.0769709937,-2.9578788728,-9.4969226682 H,2.5404174687,-3.8064679617,-9.0778961822 H,2.4749396968,1.0498265868,-11.4879137342 H,0.9328067058,1.9887066225,-11.5077123145 H,-3.6164434653,4.4120991734,-6.6337584948 H,-2.2861339928,5.5479848305,-6.1832447925 H,3.2095785573,-2.5333512226,-11.8288812374 H,1.6681066754,-3.3759201054,-11.410009223 H,3.7741590413,3.1905587992,-11.1583195463 H,2.2311919312,4.1290942041,-11.1792952614 H,-3.8984800019,5.6135472142,-8.8291765548 H,-2.5686969715,6.7489355691,-8.3792209901 H,4.4980810403,-4.6361229873,-11.3144924619 H,2.9567041634,-5.4783604552,-10.8972495935 H,3.2879696827,2.3403061251,-13.4789987784 H,1.7457982676,3.2787275132,-13.4998193805 H,-5.2019966164,6.3353866911,-6.7978511966 H,-3.8723766919,7.4707108091,-6.3478804487 H,3.6312392511,-4.2019930393,-13.6398122204 H,2.089859786,-5.0439562099,-13.222372593 H,4.5826687747,4.4749641033,-13.1431425986 H,3.0406909244,5.4135098257,-13.1638721121 H,-4.1555777415,8.672377854,-8.5435898112 H,-5.4852093344,7.5371371609,-8.9933254425 H,4.9189808147,-6.3052256057,-13.1263379049 H,3.3775056683,-7.1470459424,-12.7092789132 H,4.0966553381,3.625276633,-15.4640618638 H,2.5547132012,4.563760945,-15.4848049227 H,-6.7885611925,8.259097535,-6.9623027563 H,-5.4589776018,9.3943413533,-6.5125648865 H,4.0526220756,-5.8709594584,-15.4514965934 H,2.5112395165,-6.7128717053,-15.0343292259 H,5.3913567721,5.7597036031,-15.1283390397 H,3.8494920443,6.6982798571,-15.1489550054 H,-7.071975361,9.4607664401,-9.157842355 H,-5.7423818795,10.5959722921,-8.70821301 H,5.3402655737,-7.9742016738,-14.9381218375 H,3.7988349176,-8.8160281111,-14.5211027307 H,4.90523753,4.9101358557,-17.4492768076 H,3.3633730712,5.848665558,-17.4699222451 H,-8.3753003613,10.1828789182,-7.1269115357 H,-7.0457316583,11.3180787709,-6.6772763999 H,4.4740409903,-7.5400353084,-17.2632553194 H,2.9326784335,-8.3819249779,-16.846175002 H,4.6581754557,7.9830921634,-17.1341769116 H,6.1999890087,7.0445163097,-17.1135963402 H,-7.3294867971,12.5199392229,-8.8728367262 H,-8.6589991496,11.3847938561,-9.3224151321 H,4.2203267682,-10.4852774552,-16.3332424857 H,5.7616545371,-9.6434699973,-16.7502524379 H,5.7139740593,6.1952767242,-19.4347851703 H,4.1722122276,7.1337836731,-19.4553912912 H,-8.6313834137,13.2405070142,-6.8423644294 H,-9.9608316367,12.1054149489,-7.29193713 H,3.3541280219,-10.0501106587,-18.6564179228

H,4.895353665,-9.2083034742,-19.0734485997 H,5.4661317131,9.2666723843,-19.1183493223 H,7.0078015222,8.3281776444,-19.0977706501 N,1.8185582209,-0.6874916956,-1.5291910743 N,-1.4504106677,-1.514610297,0.8859643878 N,-1.0852704172,-0.9715633532,-1.9956114752 N,1.415506436,-1.1629110514,1.3257681198 O,7.468151928,1.5301822216,2.2750386015 O,8.0970650207,-2.2378047123,-0.6711414217 O,9.1831498288,-0.0751269337,0.9081848442 O,-0.0538484303,-0.2522392385,7.7697166515 O,-1.7891771667,-4.6090800808,6.6303445679 O,-0.9537024232,-2.6803968817,8.6099435072 O,-7.9453905421,-0.0436210037,-0.2880344985 O,-6.8743354455,-3.9217808643,-2.9466878229 O,-8.8198073555,-2.1889493026,-1.7116844059 O,-0.2926713451,2.3890789121,-7.6706765129 O,2.6622312166,-1.4058711977,-8.0201662536 O,1.1945651603,0.7477424604,-9.2502736046 C,6.0252282912,8.4076749819,-21.0197260934 H,4.9967410354,8.4490323212,-21.4533261738 H,6.5833576927,9.3173233598,-21.3484463583 H,6.5425717306,7.5080396754,-21.4326672487 C,5.0805185374,-11.3414939039,-18.7889939889 ${\sf H,} 4.9147237774, -11.572891692, -19.8688034214$ H,6.1807197802,-11.3207313984,-18.5975982862 H,4.6353369822,-12.1647698589,-18.1794527584 C,-9.7367281336,13.8007104622,-8.6115688334 H,-10.4652452262,14.429654532,-8.0452478294 H,-8.9386575672,14.4667852642,-9.0201441981 H,-10.2716679196,13.3286328615,-9.4709231369 C,18.7089673824,-5.7034108338,-10.4630417161 H,18.0050841416,-5.5854614192,-11.3221952414 H,19.739544717,-5.4563048803,-10.8149937522 H,18.69276928,-6.7732088416,-10.1424515651 C,22.0194599039,-0.8523949926,8.3359775486 H,22.4912527979,-1.1046658708,9.3161803132 H,22.4722160142,-1.5027544577,7.5488604017 H,22.2601405423,0.2106173307,8.0918837298 C,7.5943449853,14.6366960351,9.1417976858 H,8.099567863,15.0354004083,8.2289390235 H,6.9649942448,15.4487265982,9.5794809581 H,8.3815465505,14.361207406,9.8847407324 C,7.0100910358,11.727483079,12.9579837777 H,7.9115785255,11.1346836574,13.246761284 H,7.3345625849,12.768961071,12.7187572354 H,6.3207506661,11.7653178523,13.8359676545 C,-7.3458371162,-1.1209465309,21.9236416361 H,-8.1344651282,-0.5774258361,22.4978173361 H,-7.5554641388,-2.2162126404,21.9865493959 H,-6.3587939256,-0.925711801,22.4085475076 C,-1.0789107152,-17.8173362655,13.3796106781 H,-0.8316885728,-18.3399230976,14.3350192737 H,-2.1440810431,-18.0352230516,13.1237896975 H,-0.4325881337,-18.2364773257,12.5708474847 C,-13.0583507881,11.1665296202,7.9875381324 H,-12.7687865613,11.997706141,8.6747982868 H,-13.6009144375,11.6035355616,7.1145226309 H,-13.7597002176,10.4878719975,8.5307143013 C,-22.043720869,1.002509186,-7.6676751489

```
H,-22.6029373345,1.7227773796,-8.3122810051
H,-22.1170919858,-0.0127477794,-8.127434597
H,-22.5370064647,0.9689922063,-6.6661508402
C,-13.8029636341,-16.8756493007,-5.1176514965
H,-14.7656179191,-17.4266388112,-4.9883139496
H,-13.5491825808,-16.8594706904,-6.2052362256
H,-13.0005569817,-17.4364944594,-4.5799655074
```

2H16 (AM1)

-2.0623854 hartree

C,3.7457418643,-1.6279142731,1.6100149592 C,2.821421763,-0.5986498924,1.0413131851 C,3.5064754167,0.5793741578,1.0367607327 C,4.8592970109,0.2985342554,1.6001081623 C,7.169291981,0.9591821658,2.2795744726 C,8.1823264636,1.9377252874,2.5290865388 C,9.308284573,1.2636159665,3.0373809958 C,8.9846183851,-0.1280411049,3.1034171076 C,9.5312856917,-2.5011384589,3.6552290691 C,10.4469311968,-3.5764593132,4.1355155158 C,9.7422266192,-4.7425307942,4.10437055 C,8.3740780801,-4.4011301164,3.6053658282 C,6.0693698952,-5.1032951274,2.9953751094 C,4.9551168685,-6.0861535925,2.8612659378 C,3.8564750303,-5.4288256608,2.4028288375 C,4.212259185,-3.9925797881,2.2150258299 C,9.8594416002,-1.1783393906,3.5552697931 C,7.3346818801,-5.389266673,3.4401288808 C,3.3672845137,-3.0135339216,1.7610777128 C,5.8538927409,1.2227935927,1.7552212937 C,1.9918826224,-3.379072953,1.3970326621 C,1.7701753025,-4.3090749189,0.3695237861 C,0.9130874436,-2.8087311813,2.0715904769 C,0.4653966128,-4.668699804,0.0259936343 C,-0.4029167054,-3.1766211053,1.7343981199 C,-0.6411966566,-4.1082883374,0.7097797747 C,1.2300056767,-6.0389145585,-1.7728372991 C,-2.6366547388,-2.3317890887,1.8768454712 C,-2.3711111619,-5.7116630804,0.6525296643 C,0.5944436273,-6.916812621,-2.8369463047 C,-3.2753843572,-1.2076081115,2.6733118782 C,-3.8188083227,-5.8037545821,0.2063097165 C,1.6506918986,-7.4714837274,-3.767586806 C,-4.6485549259,-0.8918260343,2.1226050618 C,-4.3766495845,-7.1759289233,0.5136668143 C,1.0168405635,-8.3055641719,-4.8604536575 C,-5.3013484979,0.2309662332,2.900234456 C,-5.8215173008,-7.2866501072,0.0759369247 C,2.0528402185,-8.8412255153,-5.8258714281 C,-6.6761324642,0.5497934508,2.3529349184 C,-6.3834142056,-8.6585809853,0.3813635744 C,1.3922674637,-9.5805490829,-6.9698648725 C,-7.3292235724,1.6727781991,3.1298211858 C,-7.8280955817,-8.7699901524,-0.0564208357 C,2.4062008138,-10.0658094455,-7.9839678788 C,-8.7040769304,1.9920083022,2.5830068496 C,-8.3903859712,-10.1417835757,0.2487867099 C,1.7173841887,-10.689240014,-9.1793197211 C,-9.3571728892,3.1150187018,3.359827408 C,-9.835011383,-10.2533223547,-0.1891101323

C,2.7063699201,-11.0779797,-10.2573310005 C,-10.7320386644,3.4343729593,2.8131261209 C,-10.3973894709,-11.6250840019,0.1160626369 C,1.9914724245,-11.6323699325,-11.4712885814 C,-11.3851124481,4.5573878159,3.5899524612 C,-11.8419873886,-11.7366689548,-0.3219030066 C,2.961308824,-11.9848106582,-12.5785439039 C,-12.7599824771,4.8768020543,3.043299295 C,-12.4044057692,-13.1084148404,-0.016739696 C,2.2262564446,-12.4524046626,-13.8168036924 C,-13.4130401023,5.9998162446,3.8201349354 C,-13.8489892292,-13.2200241779,-0.4547374585 C,3.1888438219,-12.8635171228,-14.9100040373 C,-14.7879158832,6.3193028108,3.2735421421 C,-14.411475982,-14.5917449115,-0.1495951109 C,2.4507861353,-13.2534381798,-16.1728110741 C,-15.4410150535,7.4422285496,4.0502625244 C,-15.8559565059,-14.7034717189,-0.5875331244 C,3.4072258439,-13.7332373468,-17.2439690075 C,-16.8163508388,7.7628510004,3.5045684309 C,-16.4198641858,-16.0750864947,-0.2828806244 C,2.6848965745,-14.0605675605,-18.5250930868 C,-17.4704498142,8.880472878,4.2749872143 C,-17.8580437353,-16.1908974303,-0.7172709994 C,7.6673456641,-6.7846985272,3.7556741338 C,7.5847998946,-7.7508995944,2.7409860504 C,8.0404136433,-7.1550322344,5.0466494538 C,7.8727446623,-9.0874577238,3.0241175816 C,8.3486184383,-8.4986629516,5.3314061862 C,8.2654887548,-9.4785364593,4.3271284273 C,7.2774782422,-9.742932278,0.8136602648 C,8.4188897923,-9.9992947698,7.1928680438 C,9.6589225569,-11.3662530394,4.0778202982 C,7.1523652565,-11.0371030189,0.0291665516 C,8.4152064833,-9.7900593328,8.6969349258 C,9.7379935225,-12.7933074981,4.5883940797 C,6.6031001424,-10.7489173108,-1.3510698415 C,8.1219787842,-11.0942366805,9.4052731172 C,10.9718995539,-13.4781739607,4.0434613803 C,6.403636224,-12.0250108217,-2.1398435755 C,8.1090145017,-10.9064330385,10.9072942579 C,11.0682812365,-14.9040138392,4.5426573559 C,5.9010614365,-11.7284715164,-3.5368397324 C,7.8167998013,-12.2093684424,11.6201687602 C,12.3015829831,-15.5930813093,3.999185 C,5.6763363457,-13.0030324404,-4.3211446703 C,7.803346945,-12.0221558249,13.1221491011 C,12.398342961,-17.0189863114,4.4977861566 C,5.2518532478,-12.7069840011,-5.7436501848 C,7.5113749395,-13.3248254578,13.8355505885 C,13.6314538156,-17.7084693107,3.9544720067 C,5.0542863308,-13.9846612469,-6.5307753565 C,7.4978861174,-13.1376497852,15.337522909 C,13.72821184,-19.1344116419,4.4529331194 C,4.6843742971,-13.6942873671,-7.9693048438 C,7.2060102184,-14.4402565787,16.051071009 C,14.9612714889,-19.8239952129,3.9096394841 C,4.5577573893,-14.9724315302,-8.7705019469 C,7.1925308954,-14.2530605203,17.5530376347 C,15.0580041688,-21.2499560314,4.4080439372

C,4.2923400533,-14.6810715366,-10.2316032332 C,6.9007016294,-15.5556364083,18.2666589428 C,16.2910389374,-21.9395886058,3.8647593641 C,4.2262395706,-15.9561728506,-11.0447940351 C,6.8872331431,-15.3684216816,19.7686205496 C,16.3877578835,-23.3655569837,4.3631367012 C,4.0816405498,-15.6557978232,-12.5210883605 C,6.5954242089,-16.6709519343,20.4823303916 C,17.6207680605,-24.055259329,3.8198893921 C,4.0097205372,-16.9265639047,-13.3397755621 C,6.5819437604,-16.4838528631,21.9841985773 C,17.7175744457,-25.4811463916,4.3181579614 C,3.9451207023,-16.6216783643,-14.8213515821 C,6.290162527,-17.7859717834,22.6993766534 C,18.9504943662,-26.1722274672,3.7755273793 C,3.8429775675,-17.8805471564,-15.6426862631 C,6.2757601275,-17.604408388,24.1951362903 C,19.0509845754,-27.5923574264,4.2690865601 C,11.2213070073,-0.7538080024,3.9303161402 C,12.3158328188,-1.2184047022,3.1868155826 C,11.4150164367,0.0916743956,5.021024655 C,13.6091057043,-0.8227075101,3.5360415059 C,12.7172164455,0.4921274467,5.3745427277 C,13.8255016813,0.0425886855,4.636686213 C,14.5591812527,-2.1496048894,1.7954231032 C,13.9308806071,1.2670974579,7.2836788089 C,15.7967114373,1.2535242397,4.1678977706 C,15.9510046682,-2.4589356731,1.2718282988 C,13.5010800969,1.82613737,8.628504728 C,17.1318778531,1.5441566443,4.8284714488 C,15.8715490959,-3.4489163148,0.1306496258 C,14.6677376863,1.8254132337,9.5916010054 C,17.9499901855,2.4815966466,3.9679807281 C,17.2503096111,-3.77135449,-0.4048599385 C,14.2589071718,2.3752419537,10.9414377857 C,19.2865970899,2.7837052588,4.6112001529 C,17.1762850199,-4.7618725965,-1.5470735478 C,15.4236647393,2.377114711,11.9081643637 C,20.1086291575,3.7212705118,3.7530346874 C,18.5545244831,-5.0848339423,-2.0831372583 C,15.0154499472,2.9265554793,13.2582205683 C,21.4454282474,4.0234710389,4.3955431371 C,18.4812058805,-6.0752483157,-3.2254431511 C,16.1798596695,2.9288034594,14.2253209442 C,22.2678233387,4.960983691,3.5377103984 C,19.8593544024,-6.3983586154,-3.7615918872 C,15.7717043704,3.4782422881,15.5753815864 C,23.6046968219,5.2631017733,4.1800748781 C,19.7862128037,-7.388713248,-4.9039512718 C,16.9360291415,3.4806055994,16.542578115 C,24.4271715098,6.2006132945,3.3223234611 C,21.1643445622,-7.7118865749,-5.440090155 C,16.5278675655,4.0300689992,17.8926231052 C,25.7640829948,6.5026649157,3.96463274 C,21.091284674,-8.7022131548,-6.5824756092 C,17.6921519164,4.0324853262,18.8598664125 C,26.5865922757,7.4401822229,3.1069231104 C,22.4694139707,-9.0254183791,-7.1185919026 C,17.2839807685,4.5819670439,20.2098979298 C,27.9235234805,7.7421951728,3.7492029807

C,22.3964539974,-10.0157316501,-8.2609924579 C,18.4482085085,4.5844258644,21.1772069755 C,28.7460879334,8.6797191109,2.8915564304 C,23.7744410796,-10.3390051529,-8.7971308414 C,18.0401689198,5.1338651714,22.5271756775 C,30.0829636716,8.9817625587,3.5336855456 C,23.7029466463,-11.3294957651,-9.9399130866 C,19.2037759115,5.1368953701,23.4957513041 C,30.9067904476,9.9194630067,2.676854486 C,25.0728328479,-11.6543340917,-10.4769052013 C,18.8020601768,5.6832159382,24.8413470063 C,32.2388753913,10.2230017859,3.3123716753 C,5.5984915037,2.6202447446,1.3611552241 C,6.3796362023,3.2076536049,0.35520955 C,4.5874151869,3.3483281752,1.9859436282 C,6.1349534643,4.5271678004,-0.0312461246 C,4.3380366007,4.6779096609,1.5972850849 C,5.1047919786,5.2796849719,0.5853094458 C,7.9465251934,4.4820190163,-1.5831015514 C,3.3921821328,6.6862128069,2.4851347235 C,4.3566488677,6.8411272685,-1.019173828 C,8.5871032958,5.4463653736,-2.5662861797 C,2.5049626968,6.9716172978,3.6839476068 C,4.1512626546,8.3407830058,-1.1303677871 C,9.7827189661,4.798507661,-3.229214782 C,2.4982077733,8.4535622771,3.9879916463 C,3.5622745747,8.6910977364,-2.4790403617 C,10.4369983853,5.7453314509,-4.2126508551 C,1.6223054184,8.7593364042,5.1841537548 C,3.3497432161,10.1842543024,-2.6087705665 C,11.6342842219,5.1017448399,-4.878655068 C,1.6119505881,10.2414712509,5.4913891528 C,2.7607400656,10.539110601,-3.9572385285 C,12.2892599922,6.0478654486,-5.862052136 C,0.7365045928,10.5478836972,6.6875832777 C,2.5482304037,12.032093442,-4.0876785132 C,13.4866290074,5.4048748408,-6.5284066742 C,0.725619091,12.0299181879,6.9951437578 C,1.9592505531,12.3874136277,-5.436007358 C,14.1417948734,6.350889125,-7.5117486048 C,-0.1498012316,12.3363941095,8.1913246235 C,1.746831345,13.8803858203,-5.5665804066 C,15.339179426,5.7080441092,-8.1781991853 C,-0.160847515,13.8184106896,8.4989473292 C,1.1578378399,14.2358065041,-6.9148728058 C,15.9944072975,6.6540545521,-9.1614959916 C,-1.0362781023,14.1248815532,9.6951178688 C,0.9454806396,15.7287805611,-7.0454904292 C,17.1918044623,6.0112799136,-9.8279861146 C,-1.0473960424,15.6068901785,10.0027707769 C,0.3564735089,16.0842465027,-8.3937634926 C,17.8470523071,6.9572992561,-10.8112560131 C,-1.9228348732,15.9133523383,11.1989340562 C,0.1441539184,17.5772211068,-8.5244045553 C,19.0444665205,6.3146112365,-11.4777944065 C,-1.9340137351,17.395345552,11.5066518584 C,-0.4448686829,17.9327619857,-9.872649266 C,19.6997551329,7.2604913264,-12.4610063981 C,-2.8093708991,17.7018958202,12.7027170816 C,-0.6571981798,19.4256169867,-10.0034029944

C,20.8976663686,6.6189065704,-13.1284728138 C,-2.8214565434,19.1839701976,13.0116485564 C,-1.246363882,19.7826596127,-11.3515632345 C,21.5533328462,7.557196568,-14.1083616678 C,-3.6918629694,19.4938663606,14.2019535965 C,-1.4595002539,21.2682271,-11.4862116006 H,1.8082477267,-0.8147527286,0.712307737 H,3.1895484361,1.5650872172,0.7033530917 H,8.0746636936,3.0054309963,2.3556496164 H,10.2581047338,1.6990586276,3.3380148689 H,11.4736331735,-3.3930977074,4.4438014282 H,10.0519124048,-5.748334686,4.3766909424 H,5.0768083862,-7.1375777826,3.1189040203 H,2.8574055043,-5.8095964479,2.1942162368 H,7.1923196915,-1.1455622311,2.579138398 H,6.0395442671,-3.0010792587,2.669520176 H,2.6330462713,-4.7370139102,-0.1594703289 H,1.0738708792,-2.0779541582,2.8781958571 H,1.7430319008,-5.1529398656,-2.2297188699 H,1.9605676281,-6.620476288,-1.1514544573 H,-3.2575587238,-3.2663725658,1.9130346047 H,-2.472665414,-2.0389182446,0.8082695689 H,-1.7279543699,-6.4571665384,0.1160078011 H,-2.276529038,-5.8563347614,1.7600167338 H,-0.1536402209,-6.3133623673,-3.4147993032 H,0.0347790787,-7.7536371901,-2.3433846727 H,-3.3492856201,-1.5095159686,3.7506080213 H,-2.6209892295,-0.2985427759,2.6283511116 H,-4.420356807,-5.0146440441,0.7289764817 H,-3.88245466,-5.5959461249,-0.8935750644 H,2.2312358888,-6.6279110352,-4.2264207539 H,2.3778796832,-8.0982714931,-3.1874286024 H,-5.2946493406,-1.807984105,2.1705307825 H,-4.564480341,-0.6020601997,1.0418197162 H,-4.3007868879,-7.3768636852,1.6150208056 H,-3.7643031698,-7.9576725149,-0.0088098827 H,0.2713932939,-7.6804102893,-5.4203759681 H,0.4527557403,-9.1602905874,-4.4022868247 H,-5.3840668705,-0.0586600429,3.9810240877 H,-4.6551844629,1.1469436723,2.8520964676 H,-6.4336089107,-6.5045022191,0.5978703459 H,-5.897243788,-7.0852206424,-1.0252108211 H,2.6650469652,-7.9923083893,-6.2303320769 H,2.7559122724,-9.5287545317,-5.2862345896 H,-7.322154149,-0.3662599867,2.4012033389 H,-6.5930707868,0.8388837296,1.2720207327 H,-6.3075371406,-8.8596884899,1.4825681586 H,-5.7709817492,-9.4406759033,-0.140253065 H,0.8135478561,-10.4541582351,-6.5694112007 H,0.6554268523,-8.9007870787,-7.4751828422 H,-7.412095571,1.3837546781,4.2107617966 H,-6.6831712927,2.5888170426,3.0815047325 H,-8.4405326606,-7.9879068341,0.4652173204 H,-7.9040320172,-8.5687876507,-1.1575941584 H,3.0416610932,-9.2052597738,-8.322406126 H,3.091224117,-10.8167403219,-7.5072899183 H,-9.3501178607,1.0759733194,2.6313049005 H,-8.6211510065,2.2810254626,1.5020713838 H,-8.3145971458,-10.3428656228,1.3499943421 H,-7.7778716075,-10.9239209453,-0.2726618075

H,0.9728479446,-9.9632633701,-9.6020941331 H,1.1440565774,-11.5959078764,-8.8506654518 H,-9.440040084,2.8260253605,4.4407732217 H,-8.7111078522,4.0310417151,3.311522075 H,-10.4475276953,-9.4712096374,0.3323840112 H,-9.9108509214,-10.0521864809,-1.2902990328 H,3.3126417845,-10.1818404126,-10.55388649 H,3.4223741793,-11.8454966529,-9.8568108289 H,-11.3780969247,2.5183499391,2.8614205732 H,-10.6491489489,3.7233820143,1.7321877662 H,-9.7848330402,-12.4072336898,-0.4053174645 H,-10.3216535271,-11.8261476952,1.2172748146 H,1.4110049241,-12.5470093849,-11.1777784558 H,1.251610177,-10.8771890319,-11.8476518773 H,-10.7390369092,5.4734017371,3.541662329 H,-11.4679755854,4.2683849395,4.6708951022 H,-12.4545425399,-10.954537175,0.1995137587 H,-11.9177604874,-11.5355691087,-1.4231023178 H,3.6571971292,-12.7937327494,-12.2253480933 H,3.5908028571,-11.0910191354,-12.8295818693 H,-12.6771073697,5.1658120475,1.9623607776 H,-13.4060516911,3.9607861716,3.0915861909 H,-11.7918283196,-13.890570418,-0.5380864039 H,-12.3286929769,-13.3094694343,1.0844744758 H,1.566049778,-13.3215229747,-13.5546761189 H,1.5596212558,-11.631029074,-14.1904977507 H,-13.4959013648,5.7108091965,4.9010756265 H,-12.7669583034,6.9158250072,3.7718617482 H,-14.4615660257,-12.4378797618,0.0666319966 H,-13.924732994,-13.0189428446,-1.5559414536 H,3.8091068356,-13.7314368643,-14.5551442026 H,3.8934481285,-12.0192710051,-15.1310046046 H,-15.4339615447,5.4032600353,3.3217880351 H,-14.7050234051,6.6082716965,2.192587434 H,-13.7988430469,-15.3738924703,-0.6709029399 H,-14.3357155462,-14.7927895013,0.951623522 H,1.7127320223,-14.0664833363,-15.9405604642 H,1.8667810205,-12.374963108,-16.554360613 H,-14.7952387103,8.3584256149,4.0020757696 H,-15.5241559428,7.1534630383,5.131219646 H,-16.4688330179,-13.9215381339,-0.0662555896 H,-15.9320049208,-14.5026019242,-1.6887287647 H,3.950456826,-14.6442208503,-16.8729788518 H,4.1795721721,-12.9428534005,-17.4379527208 H,-17.4602279544,6.8450116072,3.552162794 H,-16.7313446379,8.049920714,2.4230708205 H,-15.8047339422,-16.8558285218,-0.8037719313 H,-16.3415601315,-16.274761211,0.8186063881 H,3.4070953815,-14.4202830825,-19.2971478448 H,1.9230024068,-14.8594176873,-18.3552215223 H,2.1618162826,-13.158284163,-18.9248650865 H,-18.482178844,9.100478581,3.8566298877 H,-17.5862932141,8.6029585732,5.3506598464 H,-16.8554376804,9.8111070146,4.2185476157 H,-18.2536345779,-17.2087096996,-0.4836259258 H,-18.4912525083,-15.4368095644,-0.190105058 H,-17.9530044615,-16.0194308209,-1.8168548555 H,7.2971396591,-7.4340147703,1.7287487831 H,8.1064181299,-6.4088582743,5.8524305166 H,6.2735047265,-9.2630779937,0.9549674083
H,7.9712696577,-9.0249853029,0.302021246 H,9.1907832892,-10.7535924005,6.8838383696 H,7.4145255455,-10.3249960944,6.8192404884 H,9.5862464682,-11.3335223714,2.9593623633 H,10.539753682,-10.7626205964,4.4185180126 H,6.4769339903,-11.7429749548,0.578948849 H,8.15681401,-11.5288576528,-0.0459006551 H,9.4110752721,-9.3885419521,9.0197307676 H,7.6451667147,-9.0210140835,8.9657471376 H,9.7613415641,-12.7867636199,5.7096235562 H,8.815727071,-13.3504232332,4.2785253282 H,5.6242015914,-10.2072021033,-1.2626756037 H,7.3077715839,-10.0718818828,-1.9028657305 H,8.8967172061,-11.8571626356,9.1281352873 H,7.1290092058,-11.4926644552,9.0670528319 H,11.887976347,-12.9086437295,4.3525617878 H,10.941484786,-13.4734693498,2.9217966039 H,5.6706974564,-12.6866289971,-1.6072473593 H,7.3732483973,-12.5863225226,-2.1997143517 H,9.1015429821,-10.5067529809,11.2448952356 H,7.334129973,-10.1437231472,11.1842096683 H,11.0979868284,-14.9086462351,5.664228372 H,10.1519963538,-15.4731830669,4.2339431208 H,4.9420578813,-11.1491059838,-3.4784463361 H,6.6451642456,-11.0823826421,-4.0735629096 H,8.5917438216,-12.9719540145,11.3431245419 H,6.8244064767,-12.6089461272,11.2820249606 H,13.2176757137,-15.0236661421,4.3080378565 H,12.2719637602,-15.5880265219,2.877610683 H,6.6207140701,-13.6092172535,-4.3306835102 H,4.8908756793,-13.6235477486,-3.8146335669 H,8.7956335792,-11.6222979261,13.460254506 H,7.0282918198,-11.259661494,13.3991647587 H,12.4280254899,-17.0240364423,5.6193622271 H,11.4822035573,-17.5883940374,4.1890851976 H,4.2993083936,-12.1134482948,-5.7408507957 H,6.0322604455,-12.0745486986,-6.2439890485 H,8.2863873144,-14.0873393241,13.5585134997 H,6.5190644311,-13.7246191893,13.4974454019 H,14.5475802593,-17.1391202205,4.263321289 H,13.6019016822,-17.7033122432,2.8329006319 H,4.2492666476,-14.60215455,-6.0521968736 H,5.9976948704,-14.5918402103,-6.501162982 H,8.4901413866,-12.737719928,15.6756243162 H,6.7228093061,-12.3751856493,15.614539724 H,13.7578389581,-19.1395583065,5.5745070789 H,12.8120617388,-19.7037690091,4.1441829039 H,3.7160010948,-13.1271898395,-8.0033680895 H,5.4663323159,-13.03640123,-8.433333594 H,7.9810560016,-15.2027375762,15.774037679 H,6.213728922,-14.8401407039,15.7129932875 H,14.9317268501,-19.8187934784,2.7880685219 H,15.8774200664,-19.2546851769,4.2184875006 H,5.5025096697,-15.5705236741,-8.6736146428 H,3.7262885163,-15.5988900633,-8.3530114513 H,6.4174489551,-13.4906046295,17.8300546419 H,8.1847806076,-13.853098794,17.8911144913 H,15.0876014739,-21.25514805,5.5296170515 H,14.1418416288,-21.8192746913,4.0992621499 H,5.1043984506,-14.0196451525,-10.6357458828 H,3.327537443,-14.1154734151,-10.3359909608 H,5.908434021,-15.9555665662,17.9285978903 H,7.6757624912,-16.3181030822,17.9896280437 H,16.2614937313,-21.9343654613,2.7431885364 H,17.2072003748,-21.370297921,4.1736010851 H,5.1565829319,-16.5601934121,-10.8749046514 H,3.3601843747,-16.5793358261,-10.6987198204 H,7.8794806911,-14.9684459655,20.1066841494 H,6.1121581066,-14.6059622246,20.0456409395 H,16.4173317167,-23.3707760917,5.4847089839 H,15.4715900064,-23.9348578951,4.0543408933 H,4.9524871795,-15.0359760681,-12.8643585257 H.3.1563230598.-15.04250336.-12.6935868934 H,7.3704772284,-17.4334172407,20.2052468401 H,5.6031725464,-17.0709045525,20.1442284072 H,17.5912239874,-24.0499718987,2.6983122589 H,18.5369215818,-23.4859300667,4.1287050844 H,4.9083793937,-17.5638882498,-13.1274533234 H,3.106153637,-17.5185542881,-13.0371510143 H,5.8068798857,-15.7215434037,22.2615575785 H,7.5741113696,-16.0840240811,22.3225853041 H,17.7472906322,-25.4867120757,5.4396988524 H,16.8016169777,-26.0507462997,4.0093822775 H,4.8607277576,-16.0467053906,-15.1242728325 H,3.0618045145,-15.9596097626,-15.0309053333 H,7.0654146597,-18.5475207525,22.4195583051 H,5.2982666991,-18.1850351073,22.3585478607 H,18.9197582986,-26.1643043504,2.6538038139 H,19.8653644165,-25.6003148322,4.0840776861 H,3.8018874254,-17.6306998283,-16.7304425051 H,4.7262920416,-18.5405858821,-15.4650388708 H,2.9207913404,-18.4516877519,-15.3765906828 H,6.0590629503,-18.5754369011,24.7022525275 H,7.2642372771,-17.230589308,24.5566287967 H,5.4923445591,-16.8671275034,24.4954415723 H, 19.9659457798, -28.0827870415, 3.8575664545H,19.1076403303,-27.6192957988,5.3842412749 H,18.159490374,-28.1848175441,3.9501314442 H,12.1374867309,-1.889981591,2.3351889531 H,10.5627696739,0.4611455275,5.6109277926 H,14.064314477,-3.0716059678,2.1984415695 H,13.9177649256,-1.6934467271,0.9962977835 H,14.7641133075,1.8701411639,6.8338756846 H,14.2519468473,0.197203344,7.3650909171 H,15.9308026869,0.7535280635,3.173265863 H,15.1914788216,2.1887307659,4.0441221735 H,16.5777238444,-2.8736869547,2.1038962297 H,16.4395859241,-1.5096269489,0.929691791 H,13.1116242366,2.8686013139,8.4914707724 H,12.659469273,1.2093465788,9.0383098564 H,16.9564356572,1.9986503365,5.8386233894 H,17.6844958407,0.5818622734,4.9885030022 H,15.3746828456,-4.3917277781,0.4819450684 H,15.2373565577,-3.0267887143,-0.6932073402 H,15.5048559518,2.4433201177,9.1714815067 H,15.0564879711,0.7798159271,9.7129955599 H,17.3849427475,3.437706173,3.8077220778 H,18.1140313346,2.0202824572,2.958348166 H,17.884506295,-4.1931792975,0.4189948624 H,17.7476166267,-2.8286967648,-0.7554491859

H,13.8689632445,3.4201798624,10.819461323 H,13.4220170142,1.7571100984,11.36142183 H,19.1224959598,3.244249503,5.6210495425 H,19.851237168,1.8275471567,4.7717739915 H,16.678823353,-5.7043737196,-1.1962335274 H,16.5417060272,-4.3400731515,-2.3706270938 H,16.2605048299,2.9951533218,11.4879809595 H,15.8135165442,1.3320719565,12.0296272295 H,19.5437249497,4.6773076538,3.5926397023 H,20.2722908561,3.2608101966,2.743072437 H,19.0521640983,-4.1423731565,-2.4337919684 H,19.1890692628,-5.5067501056,-1.259612737 H,14.6253320063,3.9714859644,13.1367229455 H,14.1786826047,2.308409521,13.6784140655 H,21.2817763566,4.4839264187,5.4055126172 H,22.0103193926,3.0674505786,4.5560343679 H,17.9835933809,-7.0177202778,-2.874779588 H,17.8466403474,-5.6534004709,-4.0489715585 H,17.0166673232,3.5468589556,13.8051056627 H,16.5698786063,1.8838389082,14.3468369228 H,21.7029750624,5.9170568831,3.3773841361 H,22.4313530976,4.5006559345,2.5276712834 H,20.4939012619,-6.8202893355,-2.9380863332 H,20.3570599318,-5.4559061813,-4.1121643538 H,15.3815596702,4.5231567472,15.4538609157 H,14.9349347486,2.8601255364,15.9955982999 H,23.4411642822,5.7234591851,5.1901047965 H,24.16954903,4.3070454346,4.3404634488 H,19.2885205793,-8.3311766645,-4.5533892939 H,19.1516912654,-6.9668122729,-5.7274841097 H,17.7728244645,4.098667584,16.122347803 H,17.3261079912,2.4356701139,16.6641302618 H,24.5906352771,5.7403374185,2.3122505667 H,23.8623569166,7.1567118829,3.1620450816 H,21.6620890206,-6.7694366777,-5.7906107206 H,21.7988613018,-8.1338306432,-4.6165719288 H,15.6910898717,3.4119728627,18.3128483438 H,16.137720051,5.07497747,17.7710675363 H,25.6006131903,6.9629635858,4.9746979893 H,26.3289026146,5.5465789762,4.1249527885 H,20.4567934559,-8.2802840798,-7.4060166935 H,20.5935458793,-9.6446698675,-6.2319660904 H,18.0822578482,2.9875634234,18.9814401427 H,18.528944265,4.6505473437,18.439629766 H,26.7500199248,6.9799354736,2.0968311753 H,26.0217948084,8.3962942871,2.9466723247 H,22.967187548,-8.0829735616,-7.4690816868 H,23.1039097683,-9.4473660202,-6.2950618154 H,16.8938348006,5.6268730512,20.0883240109 H,16.4471915986,3.9638917655,20.6301269261 H,27.7600930562,8.2024532584,4.7592916217 H,28.4883271432,6.7860944234,3.9094848938 H,21.7619364749,-9.5937838812,-9.0845123588 H,21.8986410698,-10.9581605697,-7.9104945118 H,19.2850113991,5.2024547073,20.7569246705 H,18.8383358262,3.539500803,21.2987416468 H,28.9094460497,8.2194861233,1.8814396806 H,28.1812533144,9.635814849,2.7312975585 H,24.2724406413,-9.3967844203,-9.1478197269 H,24.4091233427,-10.7611105131,-7.9738609597

H,17.20347649,4.5159319029,22.9477366928 H,17.6501199056,6.1788202908,22.4059494413 H,29.9198931888,9.4421401189,4.5437490853 H,30.6480679835,8.0258657937,3.6939452293 H,23.0665879537,-10.9062623257,-10.7616146694 H,23.2032578008,-12.2705234669,-9.5877041351 H,20.0400912269,5.7540783674,23.0727465592 H,19.59344679,4.0912740216,23.6145182712 H,31.0675084519,9.4580399804,1.6666417298 H,30.3393844359,10.8742365373,2.5164415036 H,24.9971624378,-12.3853663727,-11.3176732084 H,25.5769407293,-10.7323444397,-10.855473798 H,25.713966678,-12.1002771469,-9.6784148075 H,19.6737307461,5.6764824623,25.5393195638 H,18.4340649166,6.7335184081,24.7467474407 H,17.9862191854,5.0662453842,25.2899637749 H,32.8294425532,10.9151461706,2.6649227209 H,32.0991713361,10.7060707439,4.309684479 H,32.8292652913,9.2860665404,3.4576149392 H,7.1785276658,2.6162603849,-0.1144645106 H,3.9721869756,2.898562888,2.7795887307 H,8.6609097975,4.2041403408,-0.764678235 H,7.584799949,3.555545847,-2.1016922541 H,3.0399378884,7.2353201026,1.5715262444 H,4.460047546,6.9556652024,2.6886968093 H,5.0716106828,6.4656754899,-1.7970808851 H,3.3841174846,6.2898573555,-1.0998326728 H,8.8993718731,6.3770345186,-2.0245680867 H,7.831497485,5.7487087153,-3.3373854025 H,1.4637663477,6.6145746924,3.4704349612 H,2.8774254935,6.3955263608,4.5705565466 H,3.4704302889,8.6853355456,-0.3084826175 H,5.1337665546,8.8618626745,-0.9883457393 H,10.5284460527,4.492996277,-2.4483573751 H,9.4601977925,3.8656536599,-3.7629725144 H,2.1260990317,9.0209091459,3.094277046 H,3.5455463176,8.8024483022,4.1892467084 H,2.5838053619,8.158684117,-2.614091696 H,4.2477710506,8.3364605986,-3.2935414525 H,10.7591383773,6.6782348418,-3.6789909962 H,9.6913103454,6.0514740616,-4.9930717068 H,0.5755466651,8.4090183355,4.9831654808 H,1.9947830762,8.1921879794,6.0777220864 H,2.6649694509,10.5389119168,-1.7938313784 H,4.328147042,10.7164363551,-2.4733092879 H,12.3796566997,4.7954395017,-4.0979757363 H,11.3119891556,4.1687285931,-5.4119965213 H,1.2396094482,10.8084856832,4.5976988167 H,2.6589088852,10.5914532806,5.6920026187 H,1.7824132763,10.0067131425,-4.0924376639 H,3.4454295572,10.1840641641,-4.7720865719 H,11.5439136334,6.3543459409,-6.6426706913 H,12.6115855823,6.9808695832,-5.328703475 H,-0.3103682899,10.1975926136,6.4871263762 H,1.1090152037,9.980981662,7.5812868908 H,1.8635665489,12.3871548966,-3.2728139104 H,3.5265323079,12.5645094849,-3.9524247859 H,14.2319581438,5.0983624343,-5.7477857554 H,13.1643403244,4.4718817423,-7.0617754979 H,0.3532186184,12.5968469287,6.1014272752

H,1.7725098444,12.3801218445,7.1956704756 H,0.9808905015,11.8550836922,-5.5711724821 H,2.6438093838,12.0322393257,-6.2509027262 H,14.4641119546,7.2838763405,-6.9783799414 H,13.3964826855,6.657481591,-8.2923508384 H,-1.1966559591,11.9860465094,7.990885849 H,0.2226970889,11.7695237716,9.085046041 H,1.0622601742,14.2355573002,-4.751689941 H,2.7251717878,14.4127382323,-5.4313861989 H,16.0844961029,5.4014365217,-7.397608386 H,15.0168878338,4.775077293,-8.7116085211 H,-0.5332780432,14.3852989081,7.6052175078 H,0.8860139793,14.1687083952,8.6994482601 H,1.8423439656,13.8805723216,-7.7297853723 H,0.1794530114,13.7035201191,-7.0500129 H,15.2491055626,6.9606992043,-9.9420860422 H,16.3167101163,7.5870238531,-8.6280926484 H,-0.6637914282,13.558019138,10.5888462996 H,-2.0831203561,13.7745061399,9.4946653333 H,0.2609624539,16.084008732,-6.2305819164 H,1.9238513111,16.2610839494,-6.9103302898 H,16.8695191372,5.0783236059,-10.3614163698 H,17.9371137223,5.7046308477,-9.0474060672 H,-0.0005485648,15.9572322518,10.2032613879 H, -1.4198389919, 16.1737618304, 9.1090352945H,1.0409499632,15.7289781066,-9.2086858038 H,-0.6219255937,15.5519845436,-8.5288880748 H,17.1017564438,7.2639733675,-11.5918385702 H,18.1693418066,7.8902612652,-10.2778353936 H,-2.9696721355,15.5629687721,10.9984732239 H,-1.5503663066,15.3464854899,12.092665177 H,-0.5403252854,17.9324880583,-7.7094818739 H,1.1225411159,18.1094980435,-8.3892672228 H,18.722168578,5.381633067,-12.0111921181 H,19.7897390766,6.0079093742,-10.6971912454 H,-2.3064196045,17.9621996357,10.6128812971 H,-0.8871508756,17.745689401,11.7070927673 H,0.2395867897,17.5774226874,-10.6875672215 H,-1.4232561561,17.4004614526,-10.0077558613 H,18.9547549331,7.5672545303,-13.2417991183 H,20.0222818495,8.1934920741,-11.9278518384 H,-2.4370915046,17.1352764995,13.5966512541 H,-3.8563135619,17.3517684539,12.502501562 H,-1.341729268,19.7811918869,-9.1886938579 H,0.3210442887,19.9581589918,-9.8684749571 H,20.5734286709,5.6852150201,-13.6598505281 H,21.6409030625,6.3114247953,-12.3459593719 H,-3.1925651814,19.7490672813,12.11598426 H,-1.7734242858,19.5325655656,13.2101008389 H,-0.5611687501,19.4249018728,-12.1650671908 H,-2.2238594139,19.2479709311,-11.4852963762 H,22.4331327489,7.0647914703,-14.5884802448 H,20.8350517609,7.855359446,-14.9100319147 H,21.9053997854,8.4832379659,-13.592608748 H,-3.6865342025,20.5906078116,14.4120741308 H,-4.7458452485,19.176001054,14.0133075058 H,-3.322883601,18.9589127203,15.1103506873 H,-1.8940151907,21.5092458903,-12.4862765812 H,-2.1594323438,21.6392493052,-10.6988469709 H,-0.4922732,21.8166688684,-11.3804415941

```
N,4.9280069849,-1.0871068457,1.9275617491
N,8.2723462512,-3.0921032204,3.3446772385
N,7.6814310668,-0.2839409809,2.6387106751
N,5.562910898,-3.8645976742,2.5749720675
O,0.1463935474,-5.5991870289,-0.9410713881
O,-1.3813228805,-2.6085579961,2.5216800508
O,-1.9368458193,-4.3816383584,0.307794724
O,7.8288737871,-10.1016319804,2.0889156416
O,8.7837565795,-8.7322516632,6.6183658288
O,8.4549921053,-10.8122047177,4.6435895149
O,14.7470583514,-1.1997664009,2.8548257188
O,12.7852489791,1.3857664374,6.4216378693
O,15.1062074907,0.3539653504,5.0572352941
O,6.8243800707,5.1843249306,-1.0282095742
O,3.2678026298,5.2763244652,2.22718794
O,4.923194956,6.6183527212,0.2871124414
```

2H20 (AM1)

-2.5879587 hartree

C,1.9108894459,2.8439954499,0.5733683749 C,3.1592041903,3.5251348381,0.1094182412 C,4.058741479,2.5404608484,-0.1702296081 C,3.3842709979,1.2405570585,0.1156270431 C,3.3042873263,-1.253321613,0.2075629184 C,3.9208027793,-2.5415598062,0.127642769 C,2.944242315,-3.500944343,0.4539939378 C,1.7295385029,-2.8010030306,0.7375873739 C,-0.6755715885,-2.7265211731,1.4040006843 C,-1.965842213,-3.363710563,1.7972348737 C,-2.8530253076,-2.3555911199,2.0294432076 C,-2.1184568919,-1.075935223,1.7842924562 C,-2.0819054894,1.4089015449,1.7487261705 C,-2.6699339511,2.7639408927,1.9568327809 C,-1.7108701937,3.6919438801,1.6952747641 C,-0.4628266192,2.9791407906,1.296250901 C,0.4739626428,-3.402201193,1.1046010794 C,-2.7372437709,0.2193761923,1.9362710728 C,0.7222387576,3.5738615106,0.9492334447 C,3.9513225843,0.0080054197,-0.047764272 C,0.8090245929,5.0401913277,0.9537166338 C,-0.0303783506,5.7911338917,0.1163446694 C,1.7211089253,5.6819285212,1.7909015125 C,0.0412094717,7.1856351359,0.1296147796 C,1.7915165096,7.0872966359,1.8109151779 C,0.9532444589,7.8534868459,0.9835376554 C,-1.6515729496,7.3661192468,-1.5466205951 C,3.3231551695,8.8388112417,2.3670532239 C,-0.0031160465,9.9462732494,1.5067563498 C,-2.3924722461,8.4916637143,-2.2476648403 C,4.6215736231,8.87431536,3.1537977823 C,0.3703372666,11.4153048192,1.4294171629 C,-3.4062190781,7.9373320818,-3.2245203672 C,5.3498318226,10.1761186967,2.901728801 C,-0.7365403509,12.2695583243,2.0069776023 C,-4.1952396362,9.0586483344,-3.8663830647 C,6.6508860695,10.2297276863,3.6736692853 C,-0.3814039936,13.7395166534,1.9390546574 C,-5.1938442367,8.5351619229,-4.8767403727 C,7.3827083703,11.5311677818,3.4248566466 C,-1.4867632313,14.5979206802,2.5157088312

C,-6.0038036942,9.6695845124,-5.4671202949 C,8.6840156768,11.5851704247,4.196126999 C,-1.132329835,16.0679305091,2.4477342274 C,-6.9703827941,9.181728692,-6.5250564404 C,9.4162888988,12.8864013259,3.9477130667 C,-2.2374325577,16.9267147416,3.0242556976 C,-7.7703812746,10.3349667004,-7.0926750743 C,10.7176113325,12.9404172884,4.7189325857 C,-1.8831467023,18.396742317,2.9561490233 C,-8.7298617915,9.8778331378,-8.1702074311 C,11.4500357452,14.2415705633,4.4705774107 C,-2.9881939531,19.2556072331,3.5326485904 C,-9.4888182796,11.0521706407,-8.7510974408 C,12.7513491659,14.2955619666,5.2418079006 C,-2.633966656,20.7256420601,3.4644554256 C,-10.3994029177,10.6244396685,-9.881592593 C,13.4838456352,15.5966759752,4.9934634042 C,-3.7389951359,21.5845368644,4.0409437877 C,-11.1446941327,11.8089891544,-10.4590861233 C,14.7851504733,15.6506430414,5.7647083098 C,-3.3847956812,23.0545750739,3.9727002021 C,-12.086556775,11.3843806512,-11.5650111179 C,15.5176874845,16.9517348315,5.5163677612 C,-4.4898155675,23.9134856437,4.5491803045 C,-12.7350654646,12.582101386,-12.2256218984 C,16.8189853067,17.0056854192,6.2876247027 C,-4.1356313021,25.3835256242,4.4809093119 C,-13.6165414842,12.1603657546,-13.3814702209 C,17.551552429,18.3067611903,6.0392899706 C,-5.2406421349,26.2424505479,5.0573843487 C,-14.2870899532,13.3536220999,-14.0276983346 C,18.852844306,18.3607064964,6.8105532343 C,-4.8864710792,27.7124910415,4.9891037021 C,-4.1606622885,0.251492332,2.2984638903 C,-5.0794675975,0.8121045443,1.3978553348 C,-4.5969359885,-0.2518123843,3.522754379 C,-6.4360938018,0.861630982,1.7246834547 C,-5.96496679,-0.2112939561,3.8519179646 C,-6.8978324957,0.3448017625,2.959691707 C,-6.9439182994,1.9560569053,-0.3285055219 C,-7.3793276325,-0.2175072696,5.7809661693 C,-9.1172251324,-0.3748724073,2.6065318668 C,-8.1723121809,2.5030739118,-1.0343553631 C,-7.1452833525,-0.5703383472,7.2393033897 C,-10.4923967172,-0.1474561979,3.2070775168 C,-7.7659108139,3.1381718263,-2.3461916827 C,-8.2890102849,-0.0631483762,8.0897450507 C,-11.5218667888,-1.0007275501,2.4995252246 C,-8.9674686558,3.666394721,-3.0997626486 C,-8.0727195873,-0.4007165483,9.5494612688 C,-12.9011977839,-0.787572453,3.0856307598 C,-8.550417534,4.2777324439,-4.4204581011 C,-9.2154441554,0.1043065379,10.4040678707 C,-13.9344779815,-1.6393925898,2.3799799414 C,-9.747941926,4.7611008743,-5.209515432 C,-8.9995579652,-0.2325973529,11.8638841657 C,-15.3139896433,-1.4264444457,2.9654476913 C,-9.3271394602,5.3188245668,-6.5524412827 C,-10.142080094,0.2720361494,12.7189433276 C,-16.3476094147,-2.2780045498,2.2600291087

C,-10.5256284459,5.7490217053,-7.3704738253 C,-9.9262133914,-0.0648132088,14.1787625925 C,-17.7271589273,-2.065006866,2.8453608956 C,-10.1107231216,6.2043856107,-8.7531205836 C,-11.0686928496,0.4397009276,15.0339431558 C,-18.7608597778,-2.9164919692,2.1399773004 C,-11.3066456235,6.6528501185,-9.5650456839 C,-10.8528053979,0.1028420579,16.4937540547 C,-20.1404205394,-2.7034493834,2.7252592696 C,-10.9044118653,7.028300625,-10.9753092528 C,-11.9952689905,0.6072969423,17.3489892079 C,-21.1741575527,-3.5548923855,2.0198800369 C,-12.0907959117,7.5391932899,-11.7637980548 C,-11.7793592221,0.2704225456,18.8087922039 C,-22.5537213629,-3.3418226386,2.605142478 C,-11.7086789374,7.8640880644,-13.1920502785 C,-12.9218130518,0.774843633,19.6640598102 C,-23.5874805535,-4.1932370779,1.8997622967 C,-12.8863614348,8.4339173689,-13.9533310743 C,-12.7058865155,0.4379567868,21.1238568521 C,-24.9670445621,-3.9801541084,2.4850178767 C,-12.5144811032,8.7655194014,-15.3824473414 C,-13.8483292203,0.9423567756,21.9791513069 C,-26.0008227272,-4.8315478497,1.779641365 C,-13.7037346115,9.3098958612,-16.1444952229 C,-13.6323954803,0.6054643716,23.4389437896 C,-27.3803863051,-4.6184640868,2.3648920436 C,0.463416049,-4.8764588053,1.1469259886 C,-0.3507437399,-5.5845740465,0.2511519514 C,1.2477546715,-5.5552035896,2.0776202734 C,-0.3680887375,-6.9808489611,0.2854688981 C,1.2321704246,-6.9621396013,2.1138934912 C,0.4281566435,-7.688729404,1.2192089871 C,-1.9935566757,-7.0720789672,-1.4588218731 C,1.6611552269,-8.7510193206,3.6417038735 C,0.9384727312,-9.7711213119,0.2317765639 C,-2.7448526907,-8.1518738529,-2.2181715156 C,2.3797266407,-8.8236637238,4.9774387447 C,0.8207624493,-11.2455082556,0.5721008622 C,-3.7032664271,-7.5246105891,-3.2064237972 C,2.0503308613,-10.1234661771,5.6779070893 C,1.4187023151,-12.0883790422,-0.5326996527 C,-4.4633654149,-8.5856825621,-3.9732960346 C,2.7537519558,-10.213926165,7.015266152 C,1.3107221889,-13.5635890345,-0.2108066413 C,-5.4239495296,-7.9630562772,-4.9636859479 C,2.4275336573,-11.5135458724,7.7193926927 C,1.9076365071,-14.4106570822,-1.31415723 C,-6.1844215055,-9.0233625069,-5.7309182423 C,3.1303796075,-11.6044938422,9.0568950902 C,1.7996727965,-15.8859112558,-0.9929978986 C,-7.1450608631,-8.4013973077,-6.7216202612 C,2.8046266808,-12.9039781668,9.7614261801 C,2.3964234644,-16.7333737901,-2.0961012729 C,-7.9056506211,-9.4615561553,-7.4888986325 C,3.5074491685,-12.9949761562,11.0989231733 C,2.2883594553,-18.2086399511,-1.775086193 C,-8.8662429354,-8.8397563216,-8.4797391613 C,3.181817618,-14.2944278392,11.803562727 C,2.8850766428,-19.0561911194,-2.878134835

C,-9.6268800387,-9.8998842459,-9.2470033923 C,3.8846633933,-14.3854186198,13.141044434 C,2.7769404714,-20.5314602282,-2.5571711868 C,-10.5874370726,-9.2781534227,-10.2379177146 C,3.5590863141,-15.6848576698,13.8457304674 C,3.3736421255,-21.3790471228,-3.6601992346 C,-11.3480944398,-10.3382802279,-11.0051600877 C,4.2619535099,-15.7758325849,15.183200864 C,3.265461193,-22.8543166636,-3.3392573762 C,-12.3086324881,-9.7165888731,-11.9961160799 C,3.936407539,-17.0752646658,15.887913479 C,3.8621533388,-23.7019240218,-4.4422741379 C,-13.069299488,-10.7767204674,-12.763340513 C,4.6392896825,-17.1662261631,17.2253763052 C,3.7539467186,-25.1771932984,-4.1213426781 C,-14.0298302989,-10.1550608769,-13.754322542 C,4.313765783,-18.4656511679,17.9301116552 C,4.3506338076,-26.0248190281,-5.2243474963 C,-14.7905034701,-11.2151925187,-14.5215362511 C,5.0166542186,-18.5566071879,19.2675691582 C,4.242416864,-27.5000873889,-4.9034255652 C,5.3426971131,-0.0806887145,-0.526949478 C,5.6160947134,-0.7387491572,-1.7349924263 C,6.3753397993,0.4864939438,0.2178227854 C,6.9304346619,-0.8158679142,-2.2007167185 C,7.7006332745,0.4111826904,-0.2501031243 C,7.9919880519,-0.2363923368,-1.4624982025 C,6.2582566372,-2.1056228172,-4.0919551635 C,9.9356030943,0.4720048195,0.5969017231 C,9.6512624398,0.3693553253,-3.0283936599 C,6.9341255735,-2.7516993583,-5.2889287105 C,10.5300660003,0.9206024778,1.9202096782 C,11.1338343508,0.1365799147,-3.2549128103 C,5.917517024,-3.5034997451,-6.1195862754 C,11.9479113017,0.4107026646,2.0557260138 C,11.6039102126,0.8971943888,-4.4751752903 C,6.5724186606,-4.1569113501,-7.3178602545 C,12.557992274,0.8433644334,3.3718230159 C,13.0819154408,0.6773776184,-4.717450297 C,5.5592090687,-4.9107775973,-8.1523367562 C,13.9772807316,0.3359956411,3.5111840374 C,13.5563079016,1.4366074241,-5.937997578 C,6.213222832,-5.5646495477,-9.3506375617 C,14.5878144845,0.7680273974,4.8271521402 C,15.034119905,1.2170070889,-6.1809384115 C,5.2005277743,-6.3186550008,-10.1855523258 C,16.0071971498,0.2611255252,4.9669440415 C,15.5089476339,1.9760470002,-7.4014046504 C,5.8543800816,-6.9726952622,-11.3838242839 C,16.6177793935,0.6931201326,6.2828876462 C,16.9867200156,1.7564128014,-7.6444836161 C,4.8418058957,-7.7267192269,-12.218855962 C,18.037204349,0.1863721014,6.4227684983 C,17.4616448606,2.5154286387,-8.8649227322 C,5.4956343182,-8.3808284348,-13.4170974413 C,18.6477816681,0.6183832353,7.7387054845 C,18.9394000294,2.2957542783,-9.1080527668 C,4.4831101434,-9.134862502,-14.2521764108 C,20.0672310853,0.111714366,7.8786149748 C, 19.4143630209, 3.0547647532, -10.3284789957

C,5.1369455467,-9.7889987571,-15.4503974282 C,20.6777954992,0.5437416791,9.194551555 C,20.8921093097,2.8350620762,-10.5716315859 C,4.1244509484,-10.543043069,-16.2855013857 C,22.0972598302,0.0371192704,9.3344749173 C,21.3670935936,3.5940701092,-11.7920504442 C,4.7782967289,-11.1971887876,-17.4837105627 C,22.707813265,0.4691561534,10.6504128367 C,22.844834841,3.3743502081,-12.0352144833 C,3.7658268391,-11.9512434691,-18.3188341285 C,24.1272867166,-0.0374359539,10.7903508655 C,23.3198387844,4.1333554411,-13.2556269484 C,4.4196756601,-12.6053927233,-19.5170368654 C,24.7378357576,0.3946017277,12.1062881394 C,24.7975754899,3.9136302783,-13.4988004581 H,3.2634014948,4.6042920883,0.0316467505 H,5.0815561299,2.6174014805,-0.5323939461 H,4.9607658745,-2.7204140137,-0.133409081 H,3.0677544291,-4.5803370441,0.4962679152 H,-2.1021819892,-4.4401152568,1.8716301605 H,-3.8944230479,-2.4036857374,2.337456099 H,-3.7019464403,2.9029618938,2.2766121354 H,-1.7638642113,4.7784593685,1.7522825514 H,1.3122626132,-0.715756277,0.7202917949 H,-0.0848661695,0.8858105751,1.2351136414 H,-0.7282742738,5.2660589813,-0.5504729385 H,2.3854745278,5.1039248997,2.4504889297 H,-1.0625676793,6.7486271822,-2.2735315999 H,-2.3605011881,6.7085201851,-0.978269171 H,2.645018299,9.6864471045,2.6532423024 H,3.5087019046,8.8714010492,1.2629569732 H,-0.9309744418,9.7272165239,0.9164847243 H,-0.1426247958,9.6170949816,2.5690709932 H,-1.6544613697,9.1439747563,-2.7835765126 H,-2.9033637336,9.1308194309,-1.4806169056 H,4.3983336101,8.7597837266,4.2466017217 H,5.2643123938,8.0060460003,2.8543781338 H,1.3256582902,11.586621993,1.991335342 H,0.5591151572,11.6947791844,0.3601880811 H,-2.882346325,7.3406791856,-4.0169592428 H,-4.1065781674,7.2408300019,-2.6924540912 H,4.6977915491,11.0382132959,3.2029179459 H,5.5581502359,10.285951315,1.8046091471 H,-0.9226927754,11.9764390437,3.0740013769 H,-1.6884504829,12.0860396206,1.4419528357 H,-3.490117547,9.7706166811,-4.3717104066 H,-4.7354623871,9.6378630267,-3.0712776282 H,6.4422513007,10.1186512192,4.7704666959 H,7.3027004313,9.3676487613,3.372307542 H,0.5707965613,13.922834438,2.5034436793 H,-0.1948354696,14.0323063516,0.8721421474 H,-4.6530639853,7.9901180751,-5.6945157814 H,-5.8804254182,7.7971812166,-4.3845610645 H,6.7307810543,12.3931085594,3.7263123884 H,7.5907224253,11.6421180853,2.3279207201 H,-1.6730511523,14.3048936193,3.5826132476 H,-2.4390261261,14.4141785907,1.9515607804 H,-6.5729691382,10.1870914871,-4.6500407545 H,-5.3104330206,10.4286325798,-5.9175069024 H,8.475999442,11.4740508966,5.2930391049

H,9.3358987122,10.7231958203,3.8946408381 H,-0.1800757617,16.2516776845,3.0119053699 H,-0.9459302696,16.3609742916,1.3808637895 H,-6.4031795433,8.673931756,-7.3490401108 H,-7.6649176773,8.4187750165,-6.0838062256 H,8.7644009589,13.7483711085,4.249161747 H,9.6242937042,12.9974603224,2.8507950309 H,-2.4236528322,16.6337726455,4.0911872661 H,-3.1897634975,16.742850487,2.4602691963 H,-7.069002076,11.1015118612,-7.5172563181 H,-8.3446150019,10.8345898662,-6.2681711221 H,10.5096055995,12.8293274562,5.8158466552 H,11.3694631003,12.0784099133,4.4174954286 H,-0.9308398764,18.5806048945,3.5201870813 H,-1.6968527565,18.6897079331,1.8892421072 H,-8.1630936153,9.3536062679,-8.9844465215 H,-9.4537867197,9.1343307091,-7.7426335995 H,10.7981783454,15.1035757404,4.7719918352 H,11.6580575629,14.3526252531,3.3736641785 H,-3.9405492914,19.0716789922,2.9687242604 H,-3.1743739004,18.962717718,4.5995991527 H,-10.0953359675,11.5417660879,-7.9440198349 H,-8.7614307862,11.8191869913,-9.1281713914 H,13.4031812274,13.4335288659,4.9404090094 H,12.5433208739,14.184502851,6.3387200389 H,-1.6816329307,20.9095658289,4.0284253352 H,-2.4477315888,21.0185483962,2.397522637 H,-11.13131143,9.8572235447,-9.5124183524 H,-9.792839117,10.1332275735,-10.6885624821 H,13.6918835235,15.7077161901,3.8965522887 H,12.8320094307,16.4587061138,5.2948537489 H,-4.6913595218,21.4005745193,3.4770453 H,-3.9251576958,21.2916782598,5.1079047404 H,-11.7258871831,12.3217792774,-9.647984041 H,-10.4070288134,12.5546336452,-10.8581764848 H,14.5771052207,15.5396027057,6.8616188466 H,15.4369694401,14.7885935106,5.4633308449 H,-2.432448148,23.2385327879,4.5366342318 H,-3.1985916881,23.3474457597,2.9057523107 H,-12.8805461924,10.7104344842,-11.1461858702 H,-11.5251709079,10.7868208243,-12.3326626088 H,14.8658649371,17.8137813419,5.8177416805 H,15.7257383201,17.0627643658,4.4194581777 H,-5.4421832762,23.7295050891,3.9852929567 H,-4.6759724415,23.6206444145,5.6161463678 H,-13.3451493581,13.143682016,-11.4700651065 H,-11.9416783437,13.2834938842,-12.596698058 H,17.4707956019,16.1436245899,5.9862623504 H,16.6109283466,16.8946564453,7.384533914 H,-3.1832751448,25.5675021825,5.0448215417 H,-3.9494441543,25.6763766081,3.4139531414 H,-14.3976503891,11.4412627646,-13.0177587045 H,-12.9992821239,11.6147136614,-14.1451265693 H,16.899737559,19.1688186421,6.3406492142 H,17.7596106134,18.4177836373,4.9423812289 H,-6.1930116478,26.058459439,4.4935034569 H,-5.4267992902,25.9496149333,6.1243513675 H,-14.9407750287,13.8700610083,-13.2762556294 H,-13.5086851176,14.0935590639,-14.3522779774 H,18.6447852013,18.2496786145,7.9074615472

H,19.504652051,17.4986390904,6.5092066377 H,-3.934107797,27.8964813277,5.5529978648 H,-4.7002881718,28.0053370399,3.9221458936 H,-4.7107330793,1.2015246882,0.4386993366 H,-3.887208889,-0.691379205,4.2392334202 H,-6.2132210637,2.7762506249,-0.1015477082 H,-6.4440963949,1.1641613783,-0.9464258089 H,-8.3344030794,-0.6654588844,5.3969746002 H,-7.4023415081,0.8911177561,5.6233431036 H,-9.0905345296,-0.0906421833,1.522194153 H,-8.791322195,-1.4404390841,2.727499143 H,-8.6793277527,3.2554660455,-0.3761555882 H,-8.9024870279,1.6715271788,-1.2127709221 H,-7.0484074522,-1.6825887266,7.3426660756 H,-6.1775866461,-0.1203454199,7.5824050499 H,-10.4671250669,-0.3968716539,4.3001916429 H,-10.7610356068,0.937544677,3.1199751817 H,-7.0467885072,3.9774711428,-2.1518094488 H,-7.2296130128,2.3825865609,-2.9797762791 H,-9.2524250351,-0.5176905625,7.7371771369 H,-8.3841606108,1.0485367976,7.9704600425 H,-11.2395540265,-2.0832814261,2.5860212591 H,-11.5343726071,-0.7477871577,1.4063931671 H.-9.4969191031.4.434771674.-2.4773400021 H,-9.6937452091,2.8310958659,-3.2831474725 H,-7.9762904378,-1.5122256515,9.6681215268 H,-7.1094590623,0.0540411173,9.9018517138 H,-12.888429526,-1.0398310597,4.1788043526 H,-13.1831031103,0.2949935114,2.9995081095 H,-7.8514098849,5.1354077491,-4.2344595214 H,-7.9868359276,3.5173331959,-5.0236189789 H,-10.1786017316,-0.3505407545,10.0515488235 H,-9.3118470023,1.2157628347,10.2848222716 H,-13.6522808199,-2.7218760381,2.4662596964 H,-13.9468701367,-1.387338926,1.2867525927 H,-10.4641339089,3.9110142459,-5.3633652227 H,-10.2918594769,5.5499414941,-4.6264112935 H,-8.9028750205,-1.3440273012,11.9830905116 H,-8.036447212,0.2223708995,12.2163999488 H,-15.3016136535,-1.6785509136,4.0586672202 H,-15.5961675631,-0.3439516682,2.8793194987 H,-8.6421388996,6.1949409904,-6.3994940039 H,-8.7477781017,4.5406488498,-7.1164688675 H,-11.1051956488,-0.1828903882,12.3664219959 H,-10.238701064,1.3834689854,12.5997300148 H,-16.0654856735,-3.3604992151,2.3463167508 H,-16.3599174732,-2.0260569188,1.1667803769 H,-11.061225201,6.5822454606,-6.8437327991 H,-11.2481621041,4.89500904,-7.4584351103 H,-9.8294625526,-1.1762335556,14.2979727676 H,-8.9631192832,0.3901786237,14.5312767399 H,-17.7148643522,-2.3170302976,3.9385972312 H,-18.0092823133,-0.9825076462,2.7591778577 H,-9.3774423273,7.0508213608,-8.6671793465 H,-9.5879673592,5.3655820348,-9.2840090172 H,-12.0317929639,-0.0152591389,14.6814231477 H,-11.1653955022,1.5511273654,14.9147538476 H,-18.7731237787,-2.6645636255,1.0467238433 H,-18.4787821403,-3.998996638,2.2262632815 H,-12.0708594452,5.8322494366,-9.5977236295

H,-11.7881804487,7.535236212,-9.0652716483 H,-9.8897168733,0.5578428265,16.8462657633 H,-10.7560257632,-1.0085773359,16.6129419667 H,-20.1281648178,-2.9554398715,3.8185022236 H,-20.4224984543,-1.6209412342,2.639048732 H,-10.4609038064,6.1369989911,-11.4917707484 H,-10.1109187829,7.8222548804,-10.9389671041 H,-12.0920145636,1.7187210019,17.2298178772 H,-12.9583612823,0.1523172248,16.9964722406 H,-21.1863994095,-3.3029597378,0.9266270966 H,-20.8921087061,-4.6374045429,2.1061544325 H,-12.9084209223,6.7714232503,-11.7579390659 H,-12.4958041496,8.4624484696,-11.2676540564 H,-11.6825648747,-0.8409972307,18.9279621308 H,-10.8162726971,0.7254273601,19.1613012158 H,-22.5414848356,-3.5938016972,3.6983875092 H,-22.8357706325,-2.2593079259,2.518922749 H,-11.3378122245,6.9380182957,-13.7046527255 H,-10.8660721841,8.6057496686,-13.1953689035 H,-13.8849019724,0.3198533773,19.3115464767 H,-13.0185833625,1.8862666683,19.5449012876 H,-23.5997122583,-3.9412942956,0.8065113976 H,-23.305449091,-5.2757544363,1.9860215805 H,-13.7323142378,7.6973895333,-13.9447712823 H,-13.2486605219,9.3645022342,-13.4365055106 H,-11.7427993145,0.8929608337,21.4763631158 H,-12.6090845141,-0.6734634252,21.2430146725 H,-24.954816384,-4.2321286412,3.5782634789 H,-25.2490776019,-2.897635313,2.398797927 H,-12.1260882244,7.8467841458,-15.8955694333 H,-11.6867796435,9.5233733206,-15.3872115119 H,-14.8114176925,0.4873638566,21.6266400518 H,-13.9451145699,2.0537788997,21.8599988022 H,-26.0130489683,-4.5795973227,0.6863921967 H,-25.7187986609,-5.9140679243,1.8658850188 H,-14.5259965126,8.5468448918,-16.1545186512 H,-14.1023436104,10.2192822636,-15.6175642898 H,-13.535585648,-0.5059548933,23.5580989773 H,-12.6693054151,1.0604598261,23.7914507931 H,-27.3681646168,-4.8704315821,3.4581385371 H,-27.6624143047,-3.5359437776,2.2786810028 H,-0.9653814226,-5.0260858516,-0.468862754 H,1.8896572555,-5.0086386655,2.7847735106 H,-2.6968318027,-6.4298030258,-0.8669675709 H,-1.3904509259,-6.4321139676,-2.1551031364 H,1.9533058167,-9.6014999887,2.969697898 H,0.5486766834,-8.7483675986,3.7711949652 H,0.3825886142,-9.521227323,-0.7094015852 H,2.0108100427,-9.4602969301,0.133201792 H,-3.3028878806,-8.7979346397,-1.4913065564 H,-2.011314098,-8.8103240357,-2.7523288681 H,3.4854915987,-8.7420814557,4.8106625218 H,2.0755563651,-7.9522788069,5.6137163322 H,1.3470638703,-11.4470092997,1.5417175146 H,-0.2592954368,-11.5077013639,0.7195311202 H,-4.4276639023,-6.8624717284,-2.6623693191 H,-3.1355516481,-6.8757001303,-3.9245804907 H,2.3565851116,-10.9886815217,5.0323946077 H,0.941195383,-10.1999262602,5.8299253118 H,2.4967965437,-11.8127785943,-0.6771454759

H,0.889548747,-11.8743792133,-1.498762967 H,-5.0308566283,-9.2346401207,-3.2551839949 H,-3.7392157167,-9.2483935601,-4.5166685746 H,3.8626155152,-10.1360579882,6.8629911627 H,2.4472289208,-9.3488088039,7.6606147249 H,1.8391804178,-13.7773515782,0.7555595407 H,0.2327243625,-13.838870966,-0.0659593124 H,-6.1478779672,-7.3002855148,-4.4200635872 H,-4.8563396353,-7.3138297118,-5.6814400355 H,2.7339980969,-12.3785431723,7.0738805962 H,1.3185772301,-11.5911924882,7.8711779909 H,2.9856070832,-14.1351271091,-1.4587715076 H,1.3793843031,-14.1964937075,-2.280550545 H,-5.4605750478,-9.6863691456,-6.2743388674 H,-6.7521845228,-9.6724784402,-5.0131818014 H,4.2393125147,-11.5265740311,8.9051404586 H,2.8238021267,-10.739525204,9.7024076859 H,2.3279293481,-16.1000840387,-0.0266053569 H,0.7217278818,-16.1614558597,-0.848276962 H,-7.8689228795,-7.7384082083,-6.178201343 H,-6.5773501326,-7.7522504128,-7.4393541977 H,3.1111087348,-13.7689522388,9.115896336 H,1.6956928041,-12.9818018005,9.9132191542 H,3.4744108463,-16.4579196593,-2.2406782555 H,1.8683213562,-16.5191114566,-3.0625496236 H,-8.4734697115,-10.1106318366,-6.7711813394 H,-7.1818297312,-10.1246722671,-8.0322123618 H,4.6163756841,-12.9170370974,10.9471541902 H,3.2009099004,-12.1300094677,11.7444465536 H,2.8165000591,-18.4229067223,-0.808654835 H,1.2103907008,-18.4841165151,-1.6304414222 H,-9.5900812136,-8.1766480724,-7.936440704 H,-8.2984575243,-8.1906900068,-9.1974842372 H,3.4882994144,-15.1593986421,11.1580281481 H,2.0728927626,-14.3723077373,11.955375794 H,2.3570307681,-18.8418764387,-3.8446018519 H,3.9630774567,-18.7807850098,-3.0226865469 H,-8.9030669303,-10.5630629338,-9.7902488447 H,-10.194730212,-10.5489128493,-8.5292720352 H,3.5781467372,-13.5204492733,13.7865713536 H,4.9935843438,-14.307472975,12.9892432776 H,3.3050213611,-20.7457750521,-1.5907194167 H,1.6989528147,-20.8068827043,-2.412570791 H,-10.0196082322,-8.6291394408,-10.9556750402 H,-11.3112633408,-8.6149786053,-9.6946865752 H,2.450166383,-15.7627659702,13.9975593579 H,3.8655699946,-16.5498281819,13.20019568 H,2.8456206817,-21.1647047519,-4.6266736181 H,4.4516509194,-21.1036701158,-3.804739728 H,-10.624285217,-11.0014955181,-11.5483650733 H,-11.9159611514,-10.987275655,-10.2874135231 H,5.3708709491,-15.6978828491,15.0313774874 H,3.9554482302,-14.9108608764,15.8287283678 H,3.793509391,-23.0686576627,-2.372794381 H,2.1874618543,-23.1297054586,-3.1946816169 H,-11.7407807708,-9.0676057004,-12.7138828936 H,-13.0324519111,-9.0533761807,-11.4529228199 H,4.2428927677,-17.940236252,15.2423803533 H,2.8274906576,-17.1531899855,16.0397535197 H,3.3341437756,-23.4875673444,-5.4087519942

H,4.9401664465,-23.4265640299,-4.5868108819 H,-12.3454927246,-11.4399581798,-13.3065206893 H,-13.6371735604,-11.425695515,-12.0455823577 H,4.3327924608,-16.3012515882,17.8709027661 H,5.7482048941,-17.0882737106,17.0735391397 H,4.2819736701,-25.3915482266,-3.1548717744 H,2.6759406733,-25.4525628217,-3.9767812968 H,-13.4619670496,-9.5060931755,-14.4720939027 H,-14.7536440039,-9.4918246828,-13.2111509403 H,4.6202492814,-19.3306244554,17.2845798653 H,3.2048505743,-18.5435872934,18.0819562999 H,3.8226329344,-25.8104540323,-6.1908282273 H,5.4286481115,-25.7494653483,-5.368883923 H,-14.0667021468,-11.8784478458,-15.0647008184 H,-15.3583774784,-11.8641618119,-13.8037741012 H,6.1255682274,-18.4786496317,19.1157296726 H,4.7101690863,-17.6916296677,19.9130960677 H,4.7704250247,-27.7144531105,-3.9369476886 H,3.1644094078,-27.7754512902,-4.7588677675 H,4.7857505352,-1.1878287365,-2.2983912987 H,6.1722594479,1.0005992939,1.1692004973 H,5.7977472933,-2.8775332104,-3.4215339778 H,5.4762542185,-1.3699378294,-4.4165690873 H,10.5347741082,0.8506362721,-0.2736775824 H,9.860299947,-0.643765213,0.5355414003 H,9.0411895839,0.0064967517,-3.8963914986 H,9.4335613261,1.4521609043,-2.8377139858 H,7.7365964237,-3.4484912538,-4.9316683702 H,7.4325833115,-1.960349582,-5.9071941492 H,10.5134373853,2.0403339184,1.9757339131 H,9.8980120862,0.5377114115,2.7631724716 H,11.7053861063,0.4666074654,-2.3481850648 H,11.3219565398,-0.961006854,-3.3849892798 H,5.4195374819,-4.2871038925,-5.4893764952 H,5.116507226,-2.79848015,-6.4666676915 H,12.571312689,0.7975932777,1.2067504744 H,11.9544250795,-0.709339046,1.9878517446 H,11.4040264702,1.9927884719,-4.3379679261 H,11.0215793758,0.5641259107,-5.3746422017 H,7.3735802725,-4.8615831737,-6.9707974899 H,7.0710141814,-3.3736373355,-7.9477138498 H,12.5499305915,1.9632354709,3.4399906802 H,11.934665133,0.456096506,4.2205562167 H,13.6640490665,1.0096618443,-3.817711042 H,13.2816163571,-0.4181824405,-4.8542300328 H,5.0605565126,-5.6937607871,-7.5221418321 H,4.7580104845,-4.2059985565,-8.4990563801 H,14.6004350866,0.7232187335,2.6623244876 H,13.984950463,-0.7838688853,3.4426330479 H,13.3563775928,2.5320976353,-5.8009625947 H,12.9738412575,1.1044870018,-6.837588247 H,6.712058062,-4.7817605049,-9.9807845896 H,7.0143818367,-6.2694748913,-9.0039155544 H,14.5798123247,1.8878678275,4.8958764225 H,13.9647230374,0.3805960257,5.6759761331 H,15.6165905956,1.5490937225,-5.281336299 H,15.2340790407,0.1215223583,-6.3179208466 H,4.7016616047,-7.1015117513,-9.5553921281 H,4.3993720638,-5.6138585374,-10.5323092521 H,16.6302780634,0.6484521652,4.1180814354

H,16.0151143408,-0.8587217361,4.8982920032 H,15.3090809072,3.0715376838,-7.2643391852 H,14.9264082894,1.64408896,-8.3010021631 H,6.6555121722,-7.6775258541,-11.0370731288 H,6.3533279089,-6.1898837733,-12.0139723355 H,16.6097060921,1.8129560883,6.3516359193 H,15.9947291624,0.3056750709,7.1317278378 H,17.5692581091,2.0883842048,-6.7448862778 H,17.1866164258,0.6609272874,-7.7815210933 H,4.3428418742,-8.5095260046,-11.588716684 H,4.0406844671,-7.0219070098,-12.5656543703 H,18.6602489192,0.5737529498,5.5739036711 H,18.0452313467,-0.9334699085,6.3540840758 H,16.8790696058,2.183535821,-9.7645202896 H,17.2618218052,3.6109222265,-8.7278336168 H,5.9946353064,-7.5980472968,-14.0472391668 H,6.2967473638,-9.0856576865,-13.070307138 H,18.0247530033,0.2309281807,8.5875540539 H,18.6396611502,1.7382189245,7.8074462731 H,19.5219714191,2.6276648562,-8.2084560157 H,19.1392451089,1.2002640269,-9.2451201654 H,3.6820037332,-8.4300461841,-14.598999683 H,3.984103512,-9.9176478889,-13.6220458121 H,20.0753214352,-1.0081253013,7.8099141709 H,20.6902551743,0.4991316433,7.0297511254 H,18.8317695207,2.7229033076,-11.2280763373 H,19.2145661794,4.1502607193,-10.1913777401 H,5.6359705155,-9.0062297289,-16.0805343695 H,5.9380500017,-10.4938236255,-15.1035816034 H,20.6696453012,1.6635774989,9.263286836 H,20.0547789618,0.1562774492,10.0434034806 H,21.4746988803,3.1669383861,-9.6720347316 H,21.0919222885,1.7395683036,-10.7087157709 H,3.3233485616,-9.8382289044,-16.6323378116 H,3.6254262866,-11.3258197548,-15.655374758 H,22.7202728482,0.4245604688,8.4856134182 H,22.1053891684,-1.0827190486,9.2657635013 H,20.7844906521,3.2622257615,-12.6916480691 H,21.1673118495,4.6895676458,-11.6549436504 H,5.2773330971,-10.4144240976,-18.1138432466 H,5.5793992586,-11.9020079048,-17.1368805347 H,22.0848027464,0.0816861088,11.4992656836 H,22.6996444943,1.5889919021,10.7191466841 H,23.4274347154,3.7062044524,-11.1356167291 H,23.0446291003,2.2788543674,-12.172308239 H,2.9647231313,-11.2464332241,-18.6656748798 H,3.266792743,-12.7340149884,-17.6887089835 H,24.7502934759,0.3500188099,9.9414908336 H,24.1354397042,-1.1572730939,10.7216287209 H,22.7372296806,3.8015227689,-14.1552248129 H,23.1200620954,5.2288532025,-13.1185179561 H,4.9187218366,-11.8226334226,-20.1471672973 H,5.2207829949,-13.3102040442,-19.1702045959 H,24.7296547532,1.5144364823,12.1750297676 H,24.114828952,0.007133823,12.955143613 H,25.3801846063,4.2454652523,-12.5992024812 H,24.9973657965,2.8181345138,-13.6358965199 N,2.060531358,1.514183479,0.5684735098 N,-0.8533219891,-1.3126702235,1.4167646711 N,1.976808056,-1.439774832,0.5810297144

N,-0.7573968543,1.6070203595,1.3317427553 O,-0.7579781014,8.0139388292,-0.6298244828 O,2.6734719784,7.6089730406,2.7327580935 O,1.1033549618,9.2279825341,0.9271685813 O,-7.41305923,1.377700782,0.8977353513 O,-6.2893991131,-0.8078788358,5.0515037476 O,-8.2211743039,0.4830491019,3.3396125545 O,-1.1103860354,-7.7693847397,-0.5680015816 O,2.0998590588,-7.5287815215,3.0225555424 O,0.3375442596,-9.0644003528,1.3346632373 O,7.299331597,-1.4122402727,-3.3878805739 O,8.6292851112,1.0706256496,0.5264433692 O,9.3076787379,-0.3985373174,-1.8582305092 C,19.5854687395,19.6617562118,6.5622579582 H,19.7934770617,19.7727764132,5.4653327911 H,18.9336171218,20.5238091266,6.8635754476 C,20.8866901061,19.7158037872,7.3334243424 H,20.6789582725,19.6049415838,8.4303853181 H,21.5387844403,18.853943966,7.0321991479 C,21.6205537525,21.0167049504,7.0859768326 H,20.9662685514,21.8774828561,7.3863849084 H,21.8260515913,21.1265224817,5.9882595619 C,22.9168773948,21.0749160669,7.8518912257 H,23.5923927617,20.2389183528,7.5480952806 H,23.4411529832,22.0411076242,7.6553429937 H,22.7302960692,20.9918901715,8.9499802725 C,-5.99144575,28.5714682755,5.5655667363 H,-6.9438192852,28.3874221783,5.0016972655 H,-6.1776215016,28.2785769618,6.6325218704 C,-5.6374100456,30.0414346868,5.497347055 H,-4.6851620436,30.2257809918,6.0612685428 H,-5.4513041782,30.3346308563,4.4304987004 C,-6.74184412,30.9018033173,6.0736479334 H,-6.9275623606,30.6060909747,7.1401080873 H,-7.6936849389,30.7149333551,5.5094222423 C,-6.3936277179,32.3663434793,6.0078083243 H,-7.2204392988,32.9818990654,6.4373405271 H,-5.4609200328,32.5763601585,6.5852639109 H,-6.2290857037,32.6855052527,4.9501857466 C,-15.117000211,12.9348480321,-15.2222852574 H,-15.8740510235,12.1697806964,-14.9052504125 H,-14.4552920593,12.4454655701,-15.9863386596 C,-15.82140621,14.1195165777,-15.8473564103 H,-15.0628479735,14.8805171035,-16.1701628245 H,-16.4795208854,14.6125178797,-15.0840663969 C,-16.6558634521,13.698595215,-17.0385392151 H,-17.4186117903,12.9432674189,-16.7114039639 H,-15.9988877696,13.1945317525,-17.7974722763 C,-17.3493741195,14.8768550775,-17.671854894 H,-16.604062101,15.6290769429,-18.0270852929 H,-17.9593359282,14.5446279814,-18.5462770323 H,-18.0274478267,15.3763948943,-16.9382387091 C,-13.3294272531,9.6716606583,-17.5657565412 H,-12.4964728186,10.4234596874,-17.5548890583 H,-12.9462722076,8.7616606958,-18.0982356806 C,-14.5144389558,10.2393809861,-18.3167943489 H,-15.3422910744,9.4827169698,-18.3418209121 H,-14.9073236092,11.1407030688,-17.7733389848 C,-14.1390993675,10.62688748,-19.7312708347 H,-13.7746070155,9.7205504464,-20.2832217282

H,-13.2900815645,11.3602959405,-19.7050493765 C,-15.3077449496,11.2326493176,-20.4648136203 H,-15.0084868198,11.5236154638,-21.5004755135 H,-16.151457074,10.503994235,-20.5327569602 H,-15.6754840425,12.1445548818,-19.9336308719 C,-28.4142145598,-5.4698249914,1.6595520741 H,-28.1321431999,-6.5523424896,1.7457563444 H,-28.4263881577,-5.2178809324,0.5662939802 C,-29.7937269405,-5.2568401949,2.2446843858 H,-29.7818729776,-5.5088599769,3.3378965213 H,-30.0761084898,-4.174436161,2.1585020176 C,-30.8288287287,-6.1078424493,1.5400629371 H,-30.5439169937,-7.1898359957,1.6260235886 H,-30.8381400216,-5.8554833195,0.4466735929 C,-32.2040300365,-5.89900466,2.1194383011 H,-32.9509602318,-6.5351125182,1.5860657642 H,-32.2206586987,-6.1689608518,3.2031137847 H,-32.5156783094,-4.8310105489,2.0206056042 C,-14.7748038829,1.1098332478,24.2943003047 H,-15.7378918919,0.6548598431,23.9417412595 H,-14.871607858,2.2212547007,24.1750952844 C,-14.5589835117,0.773016823,25.7540167997 H,-13.5960369388,1.2279883443,26.1068648699 H,-14.4622749697,-0.3383475764,25.8735255049 C,-15.7009833151,1.2769538247,26.6107630359 H,-16.6633116881,0.8220653579,26.2554144636 H,-15.7971053302,2.388324739,26.4887453952 C,-15.4903174292,0.9437926335,28.0650986536 H,-14.5483180122,1.4092241237,28.4439342498 H,-16.3427905207,1.323918283,28.6781372482 H,-15.4168462245,-0.1612484788,28.2099815153 C,4.6911752338,-19.8560111489,19.9723615143 H,4.9976256586,-20.7209745474,19.3267891129 H,3.5822466455,-19.9339523568,20.1241538956 C,5.3939668102,-19.9470645671,21.3097429256 H,5.0875841908,-19.0822995222,21.955558553 H,6.5029119078,-19.8692798809,21.1582304116 C,5.0692746529,-21.2463569543,22.0158194549 H,5.3749771948,-22.1099951747,21.3677861936 H,3.9597192236,-21.3230450724,22.1650797538 C,5.7669397233,-21.3413572243,23.3480007304 H,5.4560095464,-20.5025772915,24.0167879678 H,5.5140821019,-22.3057449396,23.8510328343 H,6.8750754819,-21.2916379908,23.2173552789 C,4.8390901863,-28.347769335,-6.0063928634 H,4.3111045724,-28.1333501523,-6.9728776498 H,5.9170950834,-28.0723613461,-6.150945413 C,4.7309369026,-29.8229613299,-5.6856000916 H,5.2589673918,-30.0376800686,-4.7192425774 H,3.6530341121,-30.0986741174,-5.5411244115 C,5.3274045346,-30.6720448565,-6.7880587614 H,6.4049541734,-30.3938180792,-6.9321093352 H,4.7991019693,-30.4548072144,-7.7539657277 C,5.2219253031,-32.1417414379,-6.4728860945 H,4.1534677222,-32.4431532895,-6.3501938358 H,5.6671012516,-32.7488243839,-7.297684552 H,5.7636438843,-32.3819920894,-5.5261410878 C,-15.7510482872,-10.5936042788,-15.5125473618 H,-16.474822935,-9.9303229391,-14.9693654036 H,-15.1831603007,-9.9446064893,-16.2302821819

C,-16.5117272409,-11.6535771106,-16.2797648761 H,-17.0798176424,-12.3026296164,-15.5622894328 H,-15.78821037,-12.3169143716,-16.8231554758 C,-17.4729166796,-11.0331957568,-17.2714174501 H,-18.194713387,-10.3689951289,-16.7263301503 H,-16.9031647767,-10.3832728984,-17.9871379858 C,-18.2325574599,-12.0849922286,-18.0376667608 H,-18.9346627971,-11.6064800645,-18.7623039887 H,-17.5312233573,-12.7416354934,-18.6072757951 H,-18.826240245,-12.7273214096,-17.3430742915 C,3.4072628788,-13.3594699423,-20.3522068825 H,2.6061387851,-12.6546485603,-20.6989991476 H,2.908202995,-14.1422047383,-19.7220449214 C,4.0609619498,-14.0136184644,-21.5503573531 H,4.5599774527,-13.2311031168,-22.1807694645 H,4.8620296338,-14.7185945168,-21.2038515142 C,3.0493949275,-14.7682653095,-22.3866424946 H,2.2482755332,-14.0619243812,-22.7309719274 H,2.5503209833,-15.549347308,-21.7541005112 C,3.6958908145,-15.4212754089,-23.5808321507 H,2.933218905,-15.9715805292,-24.182928734 H,4.1775303413,-14.6558702797,-24.2363340417 H,4.4803859751,-16.1472896641,-23.2568327398 C,25.2726422452,4.6726153722,-14.719199422 H,24.6899812227,4.3408037473,-15.6187797022 H,25.0728106315,5.7681088915,-14.5820842766 C,26.7502691639,4.4529777857,-14.9624571927 H,27.3331710288,4.784842571,-14.0630918479 H,26.9503666348,3.3575871606,-15.0997369707 C,27.2267981333,5.2116162316,-16.1829157723 H,26.6416671606,4.8794916833,-17.081017832 H,27.02445979,6.3066732428,-16.0444129604 C,28.6976349725,4.9958447478,-16.4289835302 H,28.9152539105,3.9128183561,-16.5939082588 H,29.0277258231,5.5633987552,-17.3322808507 H,29.2990668837,5.3438439344,-15.5545227743 C,26.1573169878,-0.111948849,12.2462848562 H,26.7802920762,0.2754921713,11.3973863966 H,26.1654629256,-1.231788784,12.1775022219 C,26.76792295,0.3199988741,13.5621029232 H,26.1452231479,-0.0674333089,14.4111660246 H,26.7600190438,1.4397948514,13.6310935422 C,28.1878153607,-0.1860215536,13.7034488383 H,28.808640785,0.2012076653,12.8526249318 H,28.1938666083,-1.3059442473,13.6326682862 C,28.7998216783,0.2417182461,15.0122479819 H,28.2087125989,-0.1556028073,15.8726152876 H,29.8453702084,-0.1415131618,15.0958187156 H,28.8251383438,1.3556046931,15.0904837124

Au0+ (DFT)

-2048.2451046 hartree C,-2.8606637445,-1.109534015,-0.0000295681 C,-4.2291330195,-0.6709902412,-0.0002256063 H,-5.0797876179,-1.33595995,-0.0003787823 C,-4.2258784863,0.6912223249,-0.0000224615 H,-5.0733587113,1.3602303188,-0.0000117733 C,-2.8553285538,1.1232394359,-0.0000160246 C,-1.1095696562,2.8606543434,0.0000961237 C,-0.6710197859,4.2291214106,0.0001888305 H,-1.3359879135,5.0797767579,0.000230587 C,0.6911934207,4.2258644743,0.0002213824 H,1.3602049124,5.0733418386,0.0002961735 C,1.1232058775,2.8553128449,0.000143492 N,-2.0380349172,0.0048885338,0.0000341801 C,2.8606249815,1.1095591014,0.0000957162 C,4.2290903172,0.6710060735,0.0001350807 H,5.0797485177,1.3359707605,0.0001777783 C,4.2258316852,-0.6912064199,-0.0000627263 H,5.073308983,-1.3602185117,-0.0001756989 C,2.8552781867,-1.1232136886,0.0000696687 C,1.109527061,-2.8606316997,0.0000668999 C,0.6709768606,-4.2290996092,0.0000953847 H,1.3359445189,-5.0797551677,0.0001385574 C,-0.6912354244,-4.2258433093,0.0000780102 H,-1.3602453843,-5.0733215586,0.0001060877 C,-1.1232506236,-2.8552911743,0.0000269267 N,2.0379898252,-0.0048663699,0.0001048638 N,0.0048550926,2.0380236729,0.0000765402 N,-0.0048995791,-2.038001264,0.0000211484 C,2.459312679,2.4475978705,0.000140484 C,2.4475671753,-2.4593211082,0.0000699384 C,-2.4593575103,-2.447575597,-0.0000177378 C,-2.4476114226,2.459344323,0.0000379327 Au,-0.0000226496,0.0000114417,0.0000680946 C,3.5233612813,3.5064951908,0.0002197774 C,4.0258591943,4.0058592439,1.2112552577 C,4.0253488506,4.0065799642,-1.2107168019 C,5.0166338447,4.9917685529,1.2099501585 H,3.6418683101,3.6232307718,2.1530175525 C,5.0161446679,4.9924817065,-1.209238415 H,3.6409804899,3.6245157931,-2.1525545451 C,5.5130665801,5.4863605506,0.0003956213 H,5.3987758501,5.3715035815,2.1528048908 H,5.3978922546,5.3727609367,-2.1520334629 H,6.282761758,6.2522026343,0.0004709064 C,3.5064701888,-3.5233627413,0.0000380697 C,4.0063790913,-4.0254468899,1.2110206447 C,4.0060228764,-4.0257524512,-1.2109513941 C,4.9922872023,-5.0162225003,1.2096108806 H,3.6241616859,-3.6411466682,2.1528237812 C,4.9919359147,-5.0165370988,-1.2095777462 H,3.6235438916,-3.6416970335,-2.1527483645 C,5.486349482,-5.513054716,0.0000038056 H,5.3724367513,-5.3980514936,2.1524253912 H,5.3718053326,-5.3985928055,-2.1524131857 H,6.2521964736,-6.2827450181,-0.0000021245 C,-3.5234098454,-3.506467918,-0.0000995338 C,-4.0252777702,-4.0064636191,-1.2111358133 C,-4.0260458191,-4.0059036623,1.2108360619 C,-5.0160762867,-4.992348854,-1.2098324756 H,-3.6408021167,-3.6243206606,-2.1528974766 C,-5.0168334684,-4.9918135434,1.2093560102 H,-3.6421620709,-3.6233540269,2.1526744122 C,-5.513133519,-5.4863153854,-0.0002788013 H,-5.3977398696,-5.3725630087,-2.1526879068 H,-5.3990711391,-5.3716017237,2.1521504245 H,-6.2828359551,-6.2521501776,-0.0003554383 C,-3.5065102179,3.5233914387,0.0000668787 C,-4.006491238,4.0253334175,1.2110783551

C,-4.0059769759,4.025936065,-1.2108937212 C,-4.9923945684,5.0161139509,1.2097258316 H,-3.624338658,3.6409140811,2.152859087 C,-4.9918843974,5.0167263003,-1.2094627576 H,-3.6234338098,3.6419992486,-2.1527130593 C,-5.486376098,5.5130962703,0.0001475017 H,-5.3726046594,5.3978283843,2.1525623106 H,-5.3716872048,5.398902815,-2.1522760775 H,-6.2522183786,6.2827912558,0.0001859876

TBA+-NiO- (DFT)

-5439.3230725 hartree

C,-110.1582835282,67.5072624404,11.3572138526 C,-111.2988594729,67.8345946756,12.1299706092 C,-112.255399262,68.2981558759,11.2526075354 C,-111.6936347129,68.1953522296,9.9451047253 C,-112.4139018144,68.2652907421,8.7413475694 C,-111.8734953717,67.9249154529,7.5157316465 C,-112.6280087974,67.6679607812,6.3173939718 C,-111.7362011044,67.3129063294,5.3520056189 C,-110.4196760183,67.4240145886,5.9325870225 C,-109.2262689482,67.4350940632,5.2081819079 C,-108.0195528927,67.8257070162,5.7938770421 C,-106.8547847696,68.2459874201,5.0530703453 C,-105.9290028889,68.6594000432,5.9602965786 C,-106.4856526467,68.4239718714,7.2686275076 C,-105.7871640005,68.4629579881,8.4618562362 C,-106.3114503251,67.9745784667,9.6733332404 C,-105.5504025452,67.6825064036,10.8418275218 C,-106.4310651533,67.1694070556,11.7693312614 C,-107.714140957,67.1928779433,11.1714299763 C,-108.9244878576,67.024242827,11.949905967 C,-113.8502965829,68.645039439,8.8067955728 C,-114.2814525494,69.9033213591,8.3883500662 C,-115.6049278987,70.3131991556,8.4967009703 C,-116.5518257026,69.4331312997,9.0126138469 C,-116.1610995906,68.1594282725,9.4198846681 C,-114.824561469,67.7809918357,9.3151874184 C,-109.2306464766,67.1236767592,3.7567655762 C,-109.8599172635,67.9313618618,2.8054071241 C,-109.8502404997,67.6299104589,1.4471060524 C,-109.1761820772,66.4962649966,1.0018743736 C,-108.5241839892,65.6753938718,1.9183693062 C,-108.5594880276,65.9938559419,3.2731063968 C,-104.4132826299,69.0286601043,8.4882022564 C,-103.3285388365,68.4525033895,7.8203740919 C,-102.0633259081,69.037428421,7.8257664474 C,-101.8496981713,70.2201344235,8.528721156 C,-102.9050148058,70.8102088883,9.2197823548 C,-104.1527676871,70.2016886989,9.2028090381 C,-108.0422193734,72.7338297946,8.4883219764 C,-107.0252351855,72.0237596127,7.5993991946 C,-105.7772892832,72.8952939056,7.4013510149 C,-104.8225563125,72.3126394139,6.3572945429 C,-108.5389551863,70.8958144576,10.1128740077 C,-107.8225167754,71.5752790859,11.2774190255 C,-107.5127814633,70.5619701326,12.3932070375 C,-108.7327405229,70.204266447,13.2442354507 C,-110.1824423982,72.7427042387,9.6974920547 C,-111.3926329991,72.019785294,10.2745352567

C,-112.3719429459,73.0195504151,10.9060887646 C,-113.7225489259,72.368277108,11.2140003603 C,-109.7604691123,70.989722812,7.9698367312 C,-110.4527307249,71.7825818878,6.8698142571 C,-110.9040533418,70.8570235976,5.7359015539 C,-111.6810810166,71.6079142521,4.6560387086 F,-113.3929200212,70.7985393046,7.9038843231 F,-115.9591709715,71.5560113081,8.1430728439 F,-117.8275490882,69.8105792298,9.1228625256 F,-117.0712330462,67.3107565513,9.9068891283 F,-114.4835788822,66.5548921822,9.7205563652 F,-110.4959414813,69.0527328998,3.1873390541 F,-110.4654274077,68.4307568781,0.5677477799 F,-109.1532452044,66.19886041,-0.3001805473 F,-107.8779026707,64.5848645163,1.491663589 F,-107.9266324596,65.1793400567,4.1252056994 F,-103.4852462852,67.3126798044,7.1382507244 F,-101.0499313946,68.4634634126,7.169995265 F,-100.6433272522,70.7915203542,8.5318637108 F,-102.7235923394,71.9654482367,9.8726989641 F,-105.1532624936,70.8242870118,9.8599333317 H,-111.3499645195,67.7155174562,13.2014906181 H,-113.2618867939,68.6210283882,11.4757924417 H,-113.7042546274,67.7249293259,6.2417564093 H,-111.9422485023,67.0354528692,4.3295484665 H,-106.7766186059,68.2461369747,3.9759825793 H,-104.9398553928,69.0422623684,5.7621902266 H,-104.4832169838,67.8207667349,10.9391027621 H,-106.2489465909,66.8452439967,12.7825598537 H,-107.551918226,73.2016570524,9.3418834586 H,-108.5489547857,73.5231457485,7.9312831909 H,-106.7228668217,71.069442826,8.0321025359 H,-107.4706346397,71.7960706846,6.6257095953 H,-105.2586055902,72.995200697,8.3623259886 H,-106.0748313696,73.9079963798,7.0986749289 H,-109.3627956607,70.272319881,10.4538901962 H,-107.8558883781,70.2371036304,9.5812885341 H,-106.8864294914,72.0170218752,10.9297944886 H,-108.4280896267,72.3826177074,11.7039200666 H,-106.7354171249,70.9925569961,13.0339344435 H,-107.0766477242,69.6612479154,11.9555112345 H,-109.6705280794,73.3301905833,10.460055979 H,-110.4987087325,73.4322506606,8.9139202195 H,-111.0985157147,71.2830326492,11.0271487801 H,-111.9113599317,71.4736200263,9.4854237062 H,-111.9323404091,73.4332118398,11.8221037372 H,-112.5266045385,73.868061889,10.2264500152 H,-110.4579291209,70.3160144585,8.4631590422 H,-108.9625036276,70.3660739934,7.5698827359 H,-111.3307755496,72.3018146564,7.2673603678 H,-109.7852260824,72.5486984821,6.4582942922 H,-111.5351329946,70.0687820775,6.1489766868 H,-110.033741452,70.3596454453,5.297113132 H,-103.9339739454,72.9401436161,6.244002827 H,-105.3080851026,72.233877844,5.3791539951 H,-104.492154592,71.3101869816,6.6418738758 H,-108.5054681057,69.3834302008,13.9286760159 H,-109.574837879,69.8677626807,12.6335313633 H,-109.0666534168,71.0664680517,13.8332930662 H,-114.372035892,73.0458387471,11.7751492311

```
H,-113.5934980537,71.4553876275,11.8048934286
H,-114.2402527116,72.1017665307,10.2879229934
H,-111.9752959203,70.9287774287,3.8530620022
H,-111.0824950392,72.4118998808,4.2123447452
H,-112.5909456419,72.0563488731,5.0705004763
N,-110.3764378536,67.7577817796,10.0274178904
N,-110.5179967642,67.7425874539,7.2694871384
N,-107.7958382051,67.9628528778,7.14312011
N,-107.6442450924,67.6610737369,9.8800111038
N,-109.1319092565,71.8426940986,9.066696733
Ni,-109.0827353636,67.7343644516,8.5776958388
O,-108.8916636782,66.6271128661,13.1264269055
```

Au0⁺-NiO⁻ (DFT)

-6801.2902921 hartree

Au,-64.5077184835,42.867938224,-6a4.3439049396 C,-63.5145823788,40.0523605752,-63.6388563662 C,-62.3631842919,39.3792709993,-63.1037460992 C,-61.3801288622,40.3088057996,-62.9399047224 C,-61.8971576425,41.5724618647,-63.3834635834 C,-61.1661295641,42.7580708679,-63.4293913556 C,-59.714965815,42.7047532239,-63.0910345347 C,-59.2237401376,43.3837918953,-61.9663755054 C,-57.8621029139,43.3376227425,-61.6692757202 C,-56.9829985514,42.6209498266,-62.4837419409 C,-57.4694579487,41.9417748829,-63.6020276111 C,-58.8301889008,41.9819790259,-63.9039113203 C,-61.7078389233,43.9891543841,-63.803426208 C,-60.949640269,45.1953310114,-63.9615567582 C,-61.8169477011,46.185165274,-64.3174913738 C,-63.1337887928,45.6146183105,-64.3772334085 C,-64.3000104777,46.3157241531,-64.7012927276 C,-64.1979685694,47.7830054228,-64.9390534536 C,-63.6309501562,48.633917763,-63.9791821528 C,-63.5530767268,50.0064383629,-64.2041243272 C,-64.0416197921,50.5537725584,-65.3910303344 C,-64.5838844858,49.713420434,-66.3643268572 C,-64.6563523707,48.3397653979,-66.1437857667 C,-65.5422088855,45.7010168047,-64.8899477583 C,-66.7732181871,46.3867294234,-65.1589805865 C,-67.7225262726,45.447461831,-65.4324242063 C,-67.1059308849,44.156134969,-65.3266595112 C,-67.7313743761,42.9367737495,-65.6185801007 C,-69.0624157588,42.9716402162,-66.2876974196 C,-70.1591758376,42.2710918004,-65.7649622002 C,-71.3998332437,42.3197179991,-66.3969182687 C,-71.568529017,43.0724240885,-67.5598044194 C,-70.4790110883,43.7577571226,-68.0993856681 C,-69.2359849358,43.7041780763,-67.4726584478 C,-67.1512816807,41.6932323581,-65.356341615 C,-67.7409837938,40.4211932547,-65.6790029675 C,-66.9235499607,39.4480234913,-65.1941692786 C,-65.7802255812,40.0888209115,-64.6045684621 C,-64.6946549929,39.4205885967,-64.0398291213 C,-63.2483118411,43.7126321147,-60.9513212212 C,-63.8625088698,44.9987010827,-61.0988448435 C,-64.1024500262,42.5658424456,-60.8878050227 C,-63.1218069269,46.1804290316,-60.8565701098 C,-63.6097453089,41.3206084915,-60.4360634286 C,-64.0057817549,47.2225235513,-60.9674900685

C,-64.6825759013,40.4661040626,-60.4027790936 C,-65.2700893901,46.6547415396,-61.3120676461 C,-65.8137285999,41.2078569825,-60.8575474186 C,-66.4080198194,47.4067520935,-61.6210693875 C,-67.0894616524,40.660953378,-61.0389883526 C,-66.3192751355,48.8874835878,-61.4867806748 C,-67.3184463139,39.2707670111,-60.556520072 C,-66.4139349152,49.7539566731,-62.5788325928 C,-67.2138222624,38.9701103482,-59.1920538925 C,-66.2589465107,51.130749829,-62.4536213809 C,-67.3621325043,37.6738394746,-58.7069755306 C,-66.0134211183,51.6836057545,-61.2011703797 C,-67.6380635787,36.6336081981,-59.5915311209 C,-65.9363574461,50.8535189684,-60.0853000909 C,-67.7715923703,36.9019140261,-60.9495377061 C,-66.0953639256,49.4789742337,-60.2369976355 C,-67.6095305547,38.2047172012,-61.409506602 C,-67.5919159513,46.8364023525,-62.0407420278 C,-68.1330643404,41.366982116,-61.5974595398 C,-68.7536675256,47.6001068097,-62.4115825205 C,-69.4186693978,40.7907293354,-61.8855473557 C,-69.7160637645,46.7122134125,-62.760037548 C,-70.1870101448,41.7775592367,-62.4071980815 C,-69.1561915989,45.3956085987,-62.5796036572 C,-69.3896006798,42.980516337,-62.4040467955 C,-69.9022426784,44.2321162028,-62.7337563768 C,-71.3357518332,44.3423225258,-63.1195401882 C,-72.3567221921,43.9740914839,-62.2316464582 C,-71.7506727734,44.816524844,-64.3672130454 C,-73.7024307228,44.0090276397,-62.5863256843 C,-73.0878104407,44.8651361577,-64.7468084214 C,-74.0709268037,44.452283141,-63.854025582 C,-64.7719758917,37.9372557311,-63.8872895692 C,-64.7988223171,37.3659232546,-62.6083175258 C,-64.8906981441,35.9842047464,-62.4515228264 C,-64.9487930016,35.1543037504,-63.5718527239 C,-64.9058149691,35.713595047,-64.8497108039 C,-64.8146263575,37.0964935533,-65.0072785242 F,-66.6560647198,49.2789388334,-63.8100324354 F,-66.956665692,39.9407872808,-58.3091611821 F,-67.2476758486,37.4204565773,-57.3985722176 F,-66.3235884587,51.9202718229,-63.5333881205 F,-67.7726426218,35.3835267011,-59.1378840506 F,-65.856537992,53.0039048798,-61.0688511083 F,-65.717258062,51.3834593344,-58.8767166375 F,-68.0190288131,35.9053016607,-61.8080344129 F,-66.0192541463,48.7175727343,-59.1396978682 F,-67.7262029881,38.4126767265,-62.729476588 F,-72.0550478417,43.5599620915,-60.9944275282 F,-70.8527878946,45.2475399728,-65.2660348483 F,-74.6450467608,43.6339090428,-61.713520004 F,-73.4272195674,45.2864068873,-65.9720037942 F,-75.3592476554,44.4855648998,-64.2074796245 H,-62.3229065177,38.3240101877,-62.885920403 H,-60.3838399796,40.166522127,-62.5520289747 H,-59.9302505899,43.9073670386,-61.332362729 H,-57.4882007156,43.857237428,-60.7920933318 H,-55.9236258509,42.5891326967,-62.247067228 H,-56.7910889602,41.384729858,-64.2412336224 H,-59.2127850977,41.4610873189,-64.776542075

H,-59.8825420732,45.2622407565,-63.8212797917 H,-61.5890501556,47.2153830847,-64.5371365143 H,-63.2828143785,48.2096282204,-63.0467359618 H,-63.1266802333,50.6512228591,-63.4414969231 H,-63.9983455734,51.625359377,-65.5565441199 H,-64.9498601326,50.1274580565,-67.2988152346 H,-65.068842558,47.6884503703,-66.9070416987 H,-66.9003194981,47.4533341766,-65.1092010171 H,-68.7638547498,45.6074151962,-65.6444994029 H,-70.0392573566,41.714837778,-64.844053064 H,-72.2413786024,41.7849323096,-65.9666119942 H,-72.5401929872,43.1259152165,-68.040110103 H,-70.5968659493,44.3356967904,-69.0107994785 H,-68.3895187352,44.2330673442,-67.8981659075 H,-68.6741652284,40.2956368216,-66.202633075 H,-67.0755604931,38.3817537044,-65.2232153533 H,-62.0719131734,46.1869193973,-60.609292357 H,-62.5794021239,41.1484928252,-60.1687990587 H,-63.8132023947,48.2756325339,-60.831239156 H,-64.6988292994,39.435426899,-60.0823227523 H,-68.8215384285,48.6766003028,-62.3900769311 H,-69.6937706443,39.7629445657,-61.70929318 H,-70.7277764023,46.9180743295,-63.0729498883 H,-71.2103218027,41.7118602733,-62.7420355686 H,-64.7732385693,37.5315356765,-66.0009758609 H,-64.7680910516,38.0187041365,-61.744493022 H,-64.9279737352,35.5568737163,-61.4541911514 H,-65.0258416695,34.0785509532,-63.4495045214 H,-64.9396225037,35.0735440818,-65.7260330372 N,-63.2030810994,41.3871783833,-63.7932179827 N,-63.0343183928,44.2701696173,-64.066647641 N,-65.7870729916,44.3393069527,-64.9531352668 N,-65.9480723169,41.4578107604,-64.7164466503 N,-65.183695567,45.2690883907,-61.3775699083 N,-65.4565159085,42.5166036385,-61.1535147881 N,-67.8480457202,45.4711545694,-62.1478084739 N,-68.1151183973,42.7201738798,-61.9403658301 Ni,-66.6453592896,43.9926656031,-61.6790704279 O,-62.0078065329,43.5983263028,-60.8041674385

1-4. Examination of organized structures

Absorption spectroscopy. UV-visible absorption spectra were recorded on a Hitachi U-3500 spectrometer.

Atomic force microscopy (AFM). AFM measurements were carried out with an Olympus LEXT OLS3500 in a dynamic force mode (tapping mode) using a silicon (100) substrate.

Differential scanning calorimetry (DSC). The phase transitions were measured on a differential scanning calorimetry (Shimadzu DSC-60).

Polarizing optical microscopy (POM). POM measurements were carried out with a Nikon OPTIPHOT-POL polarizing optical microscope equipped with a Mettler FP82 HT hot stage.

Synchrotron X-ray diffraction analysis (XRD). High-resolution XRD analysis was carried out using a synchrotron radiation X-ray beam with the wavelengths of 1.00 Å, 0.71 Å (wide-angle XRD), and 0.83 Å (XRD for the sheared samples) on BL40B2 at SPring-8 (Hyogo, Japan). A large Debye-Scherrer camera with camera lengths of 541.6 mm for VT-XRD of **2H8** and **Au8**⁺-Cl⁻, 543.0 mm for VT-XRD of **Au8**⁺-BF₄⁻ and **Au8**⁺-PF₆⁻, 543.5 mm for VT-XRD of **2H12**, **Au12**⁺-Cl⁻, **Au12**⁺-BF₄⁻, **Au16**⁺-BF₄⁻, **Au16**⁺-PF₆⁻, **Au16**⁺-PF₆⁻, **Au16**⁺-PCCp⁻, and **Au16**⁺-PCCp⁻, 546.0 mm for VT-XRD of **2H16** and **Au16**⁺-Cl⁻, 541.8 mm for VT-XRD of **2H20**, **Au20**⁺-Cl⁻, **Au20**⁺-BF₄⁻, **Au20**⁺-PF₆⁻, and **Au20**⁺-PCCp⁻, and **Au16**⁺-Cl⁻, **Au20**⁺-Cl⁻, **Au12**⁺-PCCp⁻, **Au16**⁺-PCCp⁻, and **Au20**⁺-PCCp⁻, and **Au20**⁺-PCCp⁻, and **Au20**⁺-PCCp⁻, and **Au16**⁺-Cl⁻, **Au20**⁺-Cl⁻, **Au12**⁺-PCCp⁻, **Au16**⁺-PCCp⁻, and **Au20**⁺-PCCp⁻, and **5**41.8 mm for the XRD of **2H20**, **Au20**⁺-Cl⁻, **Au20**⁺-Cl⁻, **Au12**⁺-PCCp⁻ and **Au20**⁺-PCCp⁻, and **5**41.8 mm for the XRD for the sheared samples of **Au16**⁺-PCCp⁻ and **Au20**⁺-PCCp⁻ and **Au20**⁺-PCCp⁻, and **5**41.8 mm for the XRD for the sheared samples of **Au16**⁺-PCCp⁻ and **Au20**⁺-PCCp using an imaging plate as a detector. The diffraction patterns were obtained with a 0.01° step in 20 under 10 sec exposure time of X-ray beam. The samples were sealed in a quartz capillary for VT-XRD and inserted between two Kapton (polyimide) films for shearing. The initial precipitate samples were prepared by reprecipitation from the CH₂Cl₂/MeOH solution, otherwise indicated.

Figure S63 UV/vis absorption spectra of Au16⁺-Cl⁻, Au20⁺-BF₄⁻, and Au16⁺-PCCp⁻, Related to Figure 7. UV/vis absorption spectra of Au16⁺-Cl⁻ (black), Au20⁺-BF₄⁻ (red), and Au16⁺-PCCp⁻ (blue) in the solid state at r.t. cooling from isotropic liquids (Iso). Ion pairs Au16⁺-X⁻ (X⁻ = Cl⁻ and PCCp⁻) and Au20⁺-BF₄⁻ showed the λ_{max} at 425 nm with characteristic small bands: the Cl⁻ and BF₄⁻ ion pairs showed similar peaks at 535/576 nm (shoulder) and 539/577 nm, respectively, whereas Au16⁺-PCCp⁻ showed a blue-shifted shoulder peak of 527 nm. The shifted shoulder peaks were derived from the different stacking modes as ion-pairing assemblies. The large peak of Au20⁺-BF₄⁻ at 577 nm can be the result of the possible slipped stacking of porphyrin core unit due to the less ordered arrangement. In contrast, the blue-shifted shoulder of Au16⁺-PCCp⁻ is more similar to the Q band of the solution-state monomeric ion pairs as observed at 521 nm. The blue-shifted absorption compared to the Cl⁻ and BF₄⁻ ion pairs can be explained by the distinct alternate stacking of Au16⁺ and PCCp⁻, resulting in the monomer-state UV/vis absorption. These results showed that the ion pairs with Cl⁻ and BF₄⁻ probably form preferentially charge-segregated assemblies, whereas planar PCCp⁻ forms a charge-by-charge assembly. Au16⁺-PF₆⁻ is not shown due to the isotropic state at r.t. cooling from Iso.

Figure S64 Photograph of gel, Related to Figure 6.

Photograph of gel prepared from an octane solution of $Au16^+$ -PCCp⁻ (10 mg/mL). The gel of $Au16^+$ -PCCp⁻ was transformed to the solution state at 31 °C. Other ion pairs such as $Au16^+$ -Cl⁻, $Au16^+$ -BF₄⁻, and $Au16^+$ -PF₆⁻ did not show gelation behaviors.

Figure S65 Photographs of optical microscopy and AFM images, Related to Figure 6. Photographs of (i) optical microscopy (OM) and (ii) AFM images of (a) precipitate of **Au16**⁺-BF₄⁻ and (b) gel (xerogel) of **Au16**⁺-PCCp⁻ prepared from octane solutions (10 mg/mL).

Figure S66 Variable-temperature (VT) UV/vis absorption spectra of Au16⁺-PCCp⁻, Related to Figure 6. Variable-temperature (VT) UV/vis absorption spectra of Au16⁺-PCCp⁻ in octane (4 × 10⁻⁶ M) from (a) 20 to 100 °C and (b) 100 to -50 °C. Broader peak maxima were observed than those in CH_2Cl_2 solutions due to the formation of tightly bound ion pairs and resulting aggregations.

DSC thermographs of (a) **2H8**, (b) **2H12**, (c) **2H16**, (d) **2H20**, (e) **Au8**⁺-Cl⁻, (f) **Au12**⁺-Cl⁻, (g) **Au16**⁺-Cl⁻, (h) **Au20**⁺-Cl⁻, and (i) **Au8**⁺-BF₄⁻ at a scanning rate of 5 °C/min. Onset temperatures for transitions are described except for several transitions in (c) due to the board peaks. **2H8** as a liquid-like state was obtained by the evaporation from a CH₂Cl₂ solution. In the cooling processes of (b), unidentified peaks derived from machine operation (marked by asterisks) were observed.

DSC thermographs of (a) $Au12^+-BF_4^-$, (b) $Au16^+-BF_4^-$, (c) $Au20^+-BF_4^-$, (d) $Au8^+-PF_6^-$, (e) $Au12^+-PF_6^-$, (f) $Au16^+-PF_6^-$, (g) $Au20^+-PF_6^-$, (h) $Au8^+-PCCp^-$, (i) $Au12^+-PCCp^-$, (j) $Au16^+-PCCp^-$, and (k) $Au20^+-PCCp^-$ at a scanning rate of 5 °C/min. Onset temperatures for transitions are described except for several transitions in (a–c,e,f) due to the board peaks. In the cooling processes of (e), unidentified peaks derived from machine operation (marked by asterisks) were observed.

Figure S69 POM images of ion pairs, Related to Figure 7.

POM images of (a) **2H16** at 25 °C, (b) **2H20** at 35 °C, (c) **Au8**⁺-Cl⁻ at 80 °C, (d) **Au12**⁺-Cl⁻ at 50 °C, (e) **Au16**⁺-Cl⁻ at 100 °C, (f) **Au20**⁺-Cl⁻ at 50 °C, (g) **Au8**⁺-BF₄⁻ at 110 °C, (h) **Au20**⁺-BF₄⁻ at 35 °C, (i) **Au8**⁺-PF₆⁻ at 120 °C, (j) **Au12**⁺-PF₆⁻ at 105 °C, (k) **Au12**⁺-PCCp⁻ at 100 °C, (l) **Au16**⁺-PCCp⁻ at 280 °C, and (m) **Au20**⁺-PCCp⁻ at 250 °C obtained by cooling from isotropic liquids. The textures of (a)–(f), (h), and (j)–(l) were observed as mesophases, whereas those of (g) and (i) were observed as crystal states. **Au16**⁺-BF₄⁻ and **Au20**⁺-PF₆⁻ did not show POM textures between r.t. and isotropic state due to less ordered assembling states as seen in the XRD data of the crystalline phases (Figure S95,106). POM observations of **2H8**, **2H12**, **Au12**⁺-BF₄⁻, and **Au16**⁺-PF₆⁻ were not examined due to their isotropic state at r.t. and that of **Au8**⁺-PCCp⁻ was not examined due to the decomposition in the thermal process at high temperature.

Table S2 Summarized phase transition behaviors of ion-pairing assemblies, Related to Table 1.Crystalline states are shown in italic.The details of the packing structures such as XRD patterns of ion pairsare shown in Figure S71–120 and Table S3–19.

compounds	cooling ^a	heating ^a
2H8	lso ^b	lso ^b
2H12	lamellar –19 Iso	lamellar –9 Iso
2H16	lamellar 17º lamellar 26 Iso	lamellar 26º lamellar 32 Iso
2H20	lamellar 43 lamellar 49 Iso	lamellar 53 Iso
Au8⁺-Cl⁻	Colh 122 Iso	Col _h 144 ^d Iso
Au12 ⁺-Cl⁻	Col _h –22° Col _h 120 Iso	Col _h –20° Col _h 138 ^d Iso
Au16⁺-Cl⁻	Colh 37 Colh 109° Iso	Colh 40 Colh 111 Iso
Au20 ⁺-Cl⁻	Colh 53 Colh 57 Colh 61 Colh 70 Iso	Colh 60 Colh 65 Colh 73 Iso
Au8 +-BF ₄ -	Cr 138 Iso	Cr 162 lso
Au12 ⁺ -BF ₄ ⁻	amorphous –45° Iso	amorphous –45° Iso
Au16 ⁺ -BF ₄ ⁻	Colh 19 ^{c,f} Iso	Colh 20° Colh 61 Iso
Au20 ⁺ -BF ₄ ⁻	Colr 48° Colh 63 Iso	Colr 59° Colh 80 Iso
Au8 +-PF ₆ -	Cr 148 Iso	Cr 161 Iso
Au12 ⁺ -PF ₆ ⁻	Col_{ob} –42° Col_ob 75 Col_ob 105 ^d Iso	Col _{ob} –40 ^c Col _{ob} 113 Iso
$Au16^+-PF_6^-$	lamellar 10 Iso	lamellar 12º Iso
Au20 ⁺ -PF ₆ ⁻	lamellar 39 Iso	lamellar 51 Iso
Au8⁺-PCCp⁻	_9	_g
Au12⁺-PCCp⁻	_h	_h
Au16⁺-PCCp⁻	Colh 36 Colh 292 Iso	Colh 43 Colh 293 Iso
Au20⁺-PCCp⁻	Colr 61 Colh 260 Iso	Colr 67 Colh 262 Iso

^a Transition temperatures (°C, the onset of the peak) from DSC 1st cooling and 2nd heating scans (5 °C min⁻ ¹). ^b Evaluated from –100 °C to 50 °C. ^c Peak top temperatures due to the broad DSC peaks. ^d Transition temperatures from POM. ^e Transition temperatures from 2nd cooling. ^f Although there may be a transition at ~0 °C, the detailed examination on the possible mesophase was difficult. ^g Decomposed at 383 °C. ^h Slightly transformed to other species after the transition to Iso at >300 °C.

Figure S71 XRD patterns of 2H8, Related to Table 1.

XRD patterns of **2H8** at (a) 25 °C (1st heating), (b) -10 °C (1st cooling), (c) -50 °C (1st cooling), and (d) 25 °C (2nd heating). The initial liquid-like sample was obtained by evaporation from the CH₂Cl₂ solution.

Figure S72 XRD patterns of 2H12, Related to Table 1.

XRD patterns of **2H12** at (a) 25 °C (1st heating) and (b) –35 °C (1st cooling). The XRD pattern of (b) exhibits a lamellar structure (Figure S73).

Table S3 XRD peaks of 2H12, Related to Table 1.

XRD peaks of **2H12** at (b) –35 °C (1st cooling) (Figure S72). The peaks which can be indexed are represented.

	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
(b) 2H12	2.36	2.67	1.00	1.000	001
–35 °C (1st cooling)	4.69	1.34	0.50	0.500	002
lamellar	6.89	0.91	0.34	0.333	003

Figure S73 Possible packing model of 2H12, Related to Table 1. Possible packing model of **2H12** in a lamellar structure.

XRD patterns of **2H16** at (a) 25 °C (1st heating), (b) 36 °C (1st heating), (c) 65 °C (1st heating), (d) 22 °C (1st cooling), (e) 0 °C (1st cooling), and (f) 27 °C (2nd heating). The XRD patterns of (d–f) exhibit lamellar structures (Figure S75).

Table S4 XRD peaks of 2H16, Related to Table 1 and Figure 8.

XRD peaks of **2H16** at (d) 22 °C (1st cooling), (e) 0 °C (1st cooling), and (f) 27 °C (2nd heating) (Figure S74). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
(d) 2H16 22 °C (1st cooling) lamellar	1.04	6.06	1.00	1.000	001
	2.08	3.02	0.50	0.500	002
	3.12	2.01	0.33	0.333	003
	4.16	1.51	0.25	0.250	004
	5.22	1.20	0.20	0.200	005
	7.30	0.86	0.14	0.143	007
	1.05	6.00	1.00	1.000	001
	2.09	3.01	0.50	0.500	002
(e) 2H16	3.13	2.01	0.33	0.333	003
0 °C (1st cooling)	4.18	1.50	0.25	0.250	004
lamellar	5.23	1.20	0.20	0.200	005
	6.28	1.00	0.17	0.167	006
	7.33	0.86	0.14	0.143	007
	1.05	6.00	1.00	1.000	001
	2.09	3.01	0.50	0.500	002
(†) 2H16	3.13	2.01	0.33	0.333	003
27 °C (2nd heating)	4.17	1.51	0.25	0.250	004
lamellar	5.22	1.20	0.20	0.200	005
	7.33	0.86	0.14	0.143	007

Figure S75 Possible packing model of 2H16, Related to Table 1 and Figure 8. Possible packing model of **2H16** in a lamellar structure.

XRD patterns of **2H20** at (a) 25 °C (1st heating), (b) 80 °C (1st heating), (c) 45 °C (1st cooling), and (d) 25 °C (1st cooling). The XRD patterns of (a,c,d) exhibit lamellar structures (Figure S77).

Table S5 XRD peaks of 2H20, Related to Table 1.

XRD peaks of **2H20** at (a) 25 °C (1st heating), (c) 45 °C (1st cooling), and (d) 25 °C (1st cooling) (Figure S76). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	0.72	8.77	1.00	1.000	001
(a) 2H20	1.46	4.30	0.49	0.500	002
25 °C (1st heating)	2.16	2.91	0.33	0.333	003
lamellar	3.60	1.74	0.20	0.250	005
	4.36	1.44	0.16	0.167	006
	0.92	6.83	1.00	1.000	001
(c) 2H20	1.84	3.41	0.50	0.500	002
45 °C (Ist cooling)	2.77	2.27	0.33	0.333	003
lamellar	3.69	1.70	0.25	0.250	004
	0.94	6.67	1.00	1.000	001
	1.87	3.37	0.50	0.500	002
(d) 2H20	2.80	2.24	0.34	0.333	003
25 °C (1st cooling)	3.75	1.67	0.25	0.250	004
lamellar	4.71	1.33	0.20	0.200	005
	5.62	1.12	0.17	0.167	006
	6.58	0.95	0.14	0.143	007

Figure S77 Possible packing model of 2H20, Related to Table 1. Possible packing model of **2H20** in a lamellar structure.

XRD patterns of $Au8^+$ -Cl⁻ at (a) 25 °C (1st heating), (b) 150 °C (1st heating), (c) 166 °C (1st heating), (d) 190 °C (1st heating), (e) 80 °C (1st cooling), (f) 25 °C (1st cooling), (g) 80 °C (2nd heating), and (h) 150 °C (2nd heating). The XRD patterns of (a–c,e–g) exhibit Col_h structures (Figure S79).

Table S6 XRD peaks of Au8⁺-Cl⁻, Related to Table 1.

XRD peaks of Au8⁺-Cl⁻ at (a) 25 °C (1st heating), (b) 150 °C (1st heating), (c) 166 °C (1st heating), (e) 80 °C (1st cooling), (f) 25 °C (1st cooling), and (g) 80 °C (2nd heating) (Figure S78). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.59	2.43	1.00	1.000	100
	4.49	1.40	0.58	0.577	110
	5.19	1.21	0.50	0.500	200
	6.86	0.92	0.38	0.378	210
	7.77	0.81	0.33	0.333	300
(a) Au8 +-Cl⁻	8.98	0.70	0.29	0.289	220
25 °C (1st heating)	9.34	0.67	0.28	0.277	310
	10.36	0.61	0.25	0.250	400
a = 2.80 nm, $c = 0.36$ nm	11.32	0.56	0.23	0.229	320
$M = 2383.73, Z = 1$ for $\rho = 1.64$	13.76	0.46	0.19	0.189	420
	14.42	0.44	0.18	0.180	510
	15.76	0.40	0.16	0.164	430
	16.24	0.39	0.16	0.160	520
	17.64	0.36	_	_	001
	2.53	2.48	1.00	1.000	100
	4.40	1.43	0.58	0.577	110
	5.07	1.24	0.50	0.500	200
	6.71	0.94	0.38	0.378	210
	7.60	0.83	0.33	0.333	300
	8.78	0.72	0.29	0.289	220
(b) Au8 ⁺-Cl⁻	9.14	0.69	0.28	0.277	310
150 °C (1st heating)	10.13	0.62	0.25	0.250	400
Colh	11.04	0.57	0.23	0.229	320
<i>a</i> = 2.86 nm, <i>c</i> = 0.36 nm	11.61	0.54	0.22	0.218	410
$M = 2383.73, Z = 1$ for $\rho = 1.54$	12.67	0.50	0.20	0.200	500
	13.39	0.47	0.19	0.189	420
	14.09	0.45	0.18	0.180	510
	15.40	0.41	0.17	0.164	430
	15.81	0.40	0.16	0.160	520
	17.45	0.36	_	_	001
	2 53	2.48	1 00	1 000	100
	4 39	1 43	0.58	0.577	110
	5.06	1 24	0.50	0.500	200
	6 70	0.94	0.30	0.378	200
	7 59	0.83	0.30	0.373	300
(c) A::9+ CI-	8 78	0.03	0.33	0.289	220
(c) $Aub - Cl$	9.13	0.69	0.27	0.207	310
Col	10.12	0.67	0.20	0.277	400
COIh	10.12	0.02	0.25	0.200	400
a = 2.00 mm, $c = 0.30$ mm M = 2383.73 $7 = 1$ for $a = 1.54$	11.03	0.57	0.23	0.227	JZU 110
p = 1.54	11.00	0.34	0.22	0.210	410
	13.38	0.47	0.19	0.189	42U
	14.08	0.45	0.18	0.180	510
	15.38	0.41	0.17	0.164	430
	15.80	0.40	0.16	0.160	520
	17.35	0.36	-	-	001

Table S6 (Continued)

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.55	2.47	1.00	1.000	100
	4.42	1.42	0.58	0.577	110
(e) Au8 ⁺-CI⁻	5.10	1.23	0.50	0.500	200
80 °C (Ist cooling)	6.74	0.93	0.38	0.378	210
$COIh^{\circ}$	7.64	0.82	0.33	0.333	300
a = 2.65 mm	8.82	0.71	0.29	0.289	220
	9.17	0.69	0.28	0.277	310
	2.56	2.46	1.00	1.000	100
	4.42	1.42	0.58	0.577	110
(†) Au8 ⁺-C ⁻	5.10	1.23	0.50	0.500	200
25 °C (Ist cooling)	6.74	0.93	0.38	ratio (calc.) 1.000 0.577 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.250	210
	7.64	0.82	0.33	0.333	300
a = 2.65 mm	8.81	0.71	0.29	0.289	220
	9.18	0.68	0.28	0.277	310
	2.57	2.45	1.00	1.000	100
	4.44	1.41	0.58	0.577	110
(g) Au8 ⁺-Cl⁻	5.12	1.23	0.50	0.500	200
80 °C (2nd heating)	6.74	0.93	0.38	0.378	210
Col _h ^a	7.62	0.82	0.34	0.333	300
a = 2.83 nm	8.80	0.71	0.29	0.289	220
	9.14	0.69	0.28	0.277	310
	10.11	0.62	0.25	0.250	400

 ^{a}Z and ρ values are not given due to the unclear height value (c) in the XRD chart.

(a) Possible packing model of $Au8^+$ -Cl⁻ in a Col_h structure and (b) columnar stacking model of the cationic Au^{III} complex (shown by geometry-optimized $Au0^+$ instead of $Au8^+$). Porphyrin–Au^{III} complexes are stacked with the distance of 0.36 nm (001 peak). Diffraction peak at 0.53–0.54 nm can be ascribable to the arrangement of the peripheral aryl rings or coexisting Cl⁻. Arrangement of the anions in the model structure of (a) is not exactly determined.

XRD patterns of **Au12**⁺-Cl⁻ at (a) 25 °C (1st heating), (b) 90 °C (1st heating), (c) 120 °C (1st heating), (d) 150 °C (1st heating), (e) 170 °C (1st heating), (f) 180 °C (1st heating), (g) 100 °C (1st cooling), and (h) 20 °C (1st cooling). The XRD patterns of (a–e,g,h) exhibit Col_h structures (Figure S82). The broad peak around d = 1 nm is partially overlapped with other peaks.

Figure S81 XRD patterns of Au12⁺-Cl⁻, Related to Table 1.

XRD patterns of Au12⁺-Cl⁻ at (i) –60 °C (1st cooling), (j) 20 °C (2nd heating), and (k) 100 °C (2nd heating) (Figure labels are continued from Figure S80). The XRD patterns of (i–k) exhibit Col_h structures (Figure S82). The broad peak around d = 1 nm is partially overlapped with other peaks.

Table S7 XRD peaks of Au12⁺-Cl⁻, Related to Table 1.

XRD peaks of $Au12^+$ -Cl⁻ at (a) 25 °C (1st heating), (b) 90 °C (1st heating), (c) 120 °C (1st heating), (d) 150 °C (1st heating), (e) 170 °C (1st heating), (g) 100 °C (1st cooling), (h) 20 °C (1st cooling), (i) –60 °C (1st cooling), (j) 20 °C (2nd heating), and (k) 100 °C (2nd heating) (Figure S80,81). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.22	2.83	1.00	1.000	100
	3.85	1.63	0.58	0.577	110
	4.44	1.42	0.50	0.500	200
(a) Au12 ⁺-Cl⁻	5.89	1.07	0.38	0.378	210
25 °C (1st heating)	6.68	0.94	0.33	0.333	300
Colh	7.71	0.81	0.29	0.289	220
<i>a</i> = 3.27 nm, <i>c</i> = 0.36 nm	8.03	0.78	0.28	0.277	310
$M = 3057.03, Z = 1$ for $\rho = 1.54$	8.90	0.71	0.25	0.250	400
	9.70	0.65	0.23	0.229	320
	10.20	0.62	0.22	0.218	410
	17.52	0.36	-	-	001

Table S7 (Continued)

	q (nm⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.21	2.84	1.00	1.000	100
	3.82	1.65	0.58	0.577	110
	4.42	1.42	0.50	0.500	200
(b) Au12 ⁺-C ⁻	5.84	1.08	0.38	0.378	210
90 °C (1st heating)	6.62	0.95	0.33	0.333	300
Colh	7.64	0.82	0.29	0.289	220
a = 3.28 nm, $c = 0.36$ nm	7.96	0.79	0.28	0.277	310
$M = 3057.03, Z = 1$ for $\rho = 1.50$	8.83	0.71	0.25	0.250	400
	9.62	0.65	0.23	0.229	320
	10.11	0.62	0.22	0.218	410
	17.30	0.36	_	_	001
	2 20	2.86	1.00	1 000	100
	3.81	1.65	0.58	0.577	110
	4.40	1.03	0.50	0.500	200
(a) A::12+ CI-	5.82	1.45	0.38	0.378	200
(c) AUTZ \sim (1	5.62	0.05	0.30	0.370	210
120 C (Ist heating)	0.00	0.75	0.33	0.333	200
Col_{h}	7.02	0.82	0.29	0.209	220
a = 5.50 nm, $c = 0.57$ nm M = 2057.02, $7 = 1.6 m = 1.49$	7.93	0.79	0.28	0.277	310
M = 3037.03, Z = 1 for $p = 1.48$	8.79	0.71	0.25	0.250	400
	9.58	0.66	0.23	0.229	320
	10.07	0.62	0.22	0.218	410
	17.18	0.37	-	-	001
	2.18	2.89	1.00	1.000	100
	3.77	1.66	0.58	0.577	110
	4.36	1.44	0.50	0.500	200
(d) Au12 ⁺-Cl⁻	5.75	1.09	0.38	0.378	210
150 °C (1st heating)	6.53	0.96	0.33	0.333	300
Colh	7.54	0.83	0.29	0.289	220
<i>a</i> = 3.30 nm, <i>c</i> = 0.36 nm	7.85	0.80	0.28	0.277	310
$M = 3057.03, Z = 1$ for $\rho = 1.45$	8.70	0.72	0.25	0.250	400
	9.49	0.66	0.23	0.229	320
	9.97	0.63	0.22	0.218	410
	17.29	0.36	-	-	001
	2.19	2.87	1.00	1.000	100
	3.79	1.66	0.58	0.577	110
	4.37	1.44	0.50	0.500	200
(e) Au12 ⁺ -Cl ⁻	5.78	1.09	0.38	0.378	210
170 °C (1st heating)	6.55	0.96	0.33	0.333	300
	7.55	0.83	0.29	0.289	220
a = 3.37 nm	7.87	0.80	0.28	0.577 0.500 0.378 0.333 0.289 0.277 0.250 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.229 1.000 0.577 0.500 0.229 0.218 - -	310
	8.72	0.72	0.25	0.250	400
	9.51	0.67	0.23	0.229	320
	2.15	2.92	1.00	1.000	100
	3.74	1.68	0.58	0.577	110
	4.33	1.45	0.50	0.500	200
	5 70	1.45	0.30	0.300	200
(g) Au12 ⁺-Cl⁻	5.72	0.97	0.30	0.370	300
100 °C (1st cooling)	7 50	0.77	0.00	0.333	220
Col _h	7.30	0.04	0.27	0.207	220
a = 3.37 nm, c = 0.35 nm	1.17	0.70	0.28	0.277	310
$M = 3057.03, Z = 1$ for $\rho = 1.46$	8.66	0.73	0.25	0.250	400
	9.42	0.67	0.23	0.229	320
	9.91	0.63	0.22	0.218	410
	10.82	0.58	0.20	0.200	500
	17.80	0.35	_	-	001

Table S7 (Continued)

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.19	2.87	1.00	1.000	100
	3.79	1.66	0.58	0.577	110
	4.38	1.43	0.50	0.500	200
	5.79	1.09	0.38	0.378	210
(h) Au12 ⁺-Cl⁻	6.58	0.96	0.33	0.333	300
20 °C (1st cooling)	7.60	0.83	0.29	0.289	220
Colh	7.90	0.80	0.28	0.277	310
a = 3.32 nm, $c = 0.35$ nm	8.77	0.72	0.25	0.250	400
$M = 3057.03, Z = 1$ for $\rho = 1.54$	9.51	0.66	0.23	0.229	320
	10.00	0.63	0.22	0.218	410
	10.96	0.57	0.20	0.200	500
	18.13	0.35	-	_	001
	2.24	2.80	1.00	1.000	100
	3.89	1.62	0.58	0.577	110
	4.48	1.40	0.50	0.500	200
	5.93	1.06	0.38	0.378	210
(i) Au12 ⁺ -Cl [−]	6.72	0.93	0.33	0.333	300
–60 °C (1st cooling)	7.77	0.81	0.29	0.289	220
Colh ^b	8.08	0.78	0.28	0.277	310
a = 3.32 nm	8 96	0.70	0.25	0.250	400
	9.77	0.64	0.23	0.229	320
	10.25	0.61	0.20	0.218	410
	11 13	0.56	0.20	0.200	500
	2.19	2.87	1.00	1.000	100
	3.80	1.65	0.58	0.577	100
	4 40	1.03	0.50	0.500	200
	5 79	1.45	0.30	0.378	200
(j) Au12 ⁺-Cl⁻	6 59	0.95	0.30	0.370	300
20 °C (2nd heating)	7 58	0.75	0.55	0.335	220
Colh	7.30	0.85	0.27	0.207	310
a = 3.32 nm, $c = 0.35$ nm	9.75	0.80	0.20	0.277	400
$M = 3057.03, Z = 1$ for $\rho = 1.54$	0.73	0.72	0.23	0.230	320
	10.02	0.63	0.23	1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 0.229 0.218 0.200 - 1.000 0.577 0.500 0.218 0.200 - 1.000 0.577 0.500 0.378 0.229 0.218 0.229 0.218 0.200 1.000 0.577 0.500 0.229 0.218 0.200 - 1.000 0.577 0.500 0.229 0.218 0.200 - 1.000 0.577 0.500 0.229 0.218 0.229 0.218 0.200 - 0.250 0.250	410
	10.02	0.05	0.22	0.210	410 500
	18.14	0.35	0.20	1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 0.229 0.218 0.200 - 1.000 0.577 0.500 0.218 0.200 - 1.000 0.577 0.500 0.378 0.229 0.218 0.200 1.000 0.577 0.500 0.378 0.229 0.218 0.200 - 1.000 0.577 0.250 0.229 0.218 0.200 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289	001
	2 17	2 90	1.00	1 000	100
	2.17	2.70	0.59	0.577	110
	3.73	1.07	0.50	0.577	200
	5 70	1.40	0.00	0.300	200
(k) Au12 ⁺-Cl⁻	5.75	1.10	0.30	0.370	210
100 °C (2nd heating)	0.50	0.97	0.33	0.333	220
Colh	7.50	0.04	0.27	0.207	220
a = 3.35 nm, c = 0.35 nm	7.8U	0.70	0.28	0.277	310
$M = 3057.03$, Z = 1 for $\rho = 1.48$	ö.6/	0.72	0.25	0.250	400
	7.43	0.67	0.23	0.229	320
	9.92	0.63	0.22	0.218	410
	10.83	0.58	0.20	0.200	500
	17.80	0.35	-	-	001

^a Z and ρ values are not given due to the unclear height value (c) in the XRD chart. ^b The diffraction peak which corresponds to 001 was observed at the wide-angle region (Figure S83).

Figure S82 Possible packing model of Au12⁺-Cl⁻, Related to Table 1.

(a) Possible packing model of $Au12^+$ -Cl⁻ in a Col_h structure and (b) columnar stacking model of the cationic Au^{III} complex (shown by geometry-optimized $Au0^+$ instead of $Au12^+$). Porphyrin–Au^{III} complexes are stacked with the distance of 0.35–0.37 nm (001 peak). Diffraction peak at 0.51–0.55 nm can be ascribable to the arrangement of peripheral aryl rings or coexisting Cl⁻. Arrangement of the anions in the model structure of (a) is not exactly determined.

Wide-angle XRD of **Au12**⁺-Cl⁻ at 100 °C (1st cooling). Wide-angle XRD clearly suggests the existence of the diffraction peak at 0.35 nm (Figure S80,81). The diffraction peak at 0.35 nm is derived from the stacking of porphyrin–Au^{III} complexes in the Col_h packing structure (Table S7 and Figure S82).

Figure S84 XRD patterns of Au16⁺-Cl⁻, Related to Table 1 and Figure 8.

XRD patterns of **Au16**⁺-Cl⁻ at (a) 25 °C (1st heating), (b) 60 °C (1st heating), (c) 140 °C (1st heating), (d) 100 °C (1st cooling), (e) 35 °C (1st cooling), (f) 32 °C (1st cooling), (g) 10 °C (1st cooling), and (h) 39 °C (2nd heating). The XRD patterns of (b,d–h) exhibit Col_h structures (Figure S86). The broad peak around d = 1 nm is partially overlapped with other peaks.

Figure S85 XRD patterns of Au16⁺-Cl⁻, Related to Table 1 and Figure 8.

XRD patterns of **Au16**⁺-Cl⁻ at (i) 41 °C (2nd heating) and (j) 60 °C (2nd heating) (Figure labels are continued from Figure S84). The XRD patterns of (i,j) exhibit Col_h structures (Figure S86). The broad peak around d = 1 nm is partially overlapped with other peaks.

Table S8 XRD peaks of Au16⁺-Cl⁻, Related to Table 1 and Figure 8.

XRD peaks of Au16⁺-Cl⁻ at (b) 60 °C (1st heating), (d) 100 °C (1st cooling), (e) 35 °C (1st cooling), (f) 32 °C (1st cooling), (g) 10 °C (1st cooling), (h) 39 °C (2nd heating), (i) 41 °C (2nd heating), and (j) 60 °C (2nd heating) (Figure S84,85). The peaks which can be indexed are represented.^a

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.98	3.18	1.00	1.000	100
	3.43	1.83	0.58	0.577	110
	3.96	1.59	0.50	0.500	200
	5.25	1.20	0.38	0.378	210
	5.94	1.06	0.33	0.333	300
(b) Au16 ⁺ -Cl ⁻	6.86	0.92	0.29	0.289	220
60 °C (Ist heating)	7.14	0.88	0.28	0.277	310
Col_{h}	7.93	0.79	0.25	0.250	400
a = 3.67 nm, $c = 0.35$ nm M = 2720.22, $7 = 1$ for $a = 1.49$	8.63	0.73	0.23	0.229	320
M = 3730.33, Z = 1101 p = 1.46	9.08	0.69	0.22	0.218	410
	9.89	0.64	0.20	0.200	500
	10.28	0.61	0.19	0.192	330
	10.42	0.60	0.19	0.189	420
	17.46	0.36	_	ratio (calc.) 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 0.229 0.218 0.200 0.192 0.189 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 0.229 0.218 0.200 0.192 0.189 0.277 0.250 0.229 0.218 0.200 0.192 0.189 0.218 0.200 0.192 0.189 0.180	001
	1.94	3.23	1.00	1.000	100
	3.37	1.87	0.58	0.577	110
	3.89	1.61	0.50	0.500	200
	5.15	1.22	0.38	0.378	210
	5.84	1.08	0.33	0.333	300
(d) Au16 ⁺-Cl⁻	6.74	0.93	0.29	0.289	220
100 °C (1st cooling)	7.02	0.90	0.28	0.277	310
Colh	7.78	0.81	0.25	0.250	400
<i>a</i> = 3.73 nm, <i>c</i> = 0.36 nm	8.49	0.74	0.23	0.229	320
$M = 3730.33, Z = 1$ for $\rho = 1.44$	8.91	0.71	0.22	0.218	410
	9.73	0.65	0.20	0.200	500
	10.11	0.62	0.19	0.192	330
	10.29	0.61	0.19	0.189	420
	10.83	0.58	0.18	0.180	510
	17.65	0.36	-	-	001

Table S8 (Continued)

	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.99	3.16	1.00	1.000	100
	3.47	1.81	0.57	0.577	110
	3.99	1.57	0.50	0.500	200
	5.29	1.19	0.38	0.378	210
	6.00	1.05	0.33	0.333	300
(e) Au16 ⁺-Cl⁻	6.96	0.90	0.29	0.289	220
35 °C (1st cooling)	7.21	0.87	0.28	0.277	310
Colh	7.98	0.79	0.25	0.250	400
a = 3.65 nm, c = 0.35 nm	8.77	0.72	0.23	0.229	320
$M = 3730.33$, $Z = 1$ for $\rho = 1.55$	9.16	0.69	0.22	0.218	410
· · · · · · · · · · · · · · · · · · ·	9.97	0.63	0.20	0.200	500
	10.48	0.60	0.19	0.192	330
	10.64	0.59	0.19	0.189	420
	11.22	0.56	0.18	0.180	510
	18.04	0.35	_	-	001
	2.00	3.14	1.00	1.000	100
	3.48	1.81	0.57	0.577	110
	4.02	1.56	0.50	0.500	200
	5.32	1.18	0.38	0.378	210
	6.03	1.04	0.33	0.333	300
(f) Au16 ⁺ -Cl ⁻	6.96	0.90	0.29	0.289	220
32 °C (1st cooling)	7.23	0.87	0.28	0.277	310
Colh	8.02	0.78	0.25	0.250	400
a = 3.63 nm, c = 0.35 nm	8.76	0.72	0.23	0.229	320
$M = 3730.33, Z = 1$ for $\rho = 1.56$	9.19	0.68	0.22	0.218	410
	10.02	0.63	0.20	0.200	500
	10.42	0.60	0.19	0.192	330
	10.63	0.59	0.19	0.189	420
	11.21	0.56	0.18	0.180	510
	18.07	0.35	_	_	001
	2.01	3.12	1.00	1.000	100
	3.49	1.80	0.58	0.577	110
	4.03	1.56	0.50	0.500	200
	5.33	1.18	0.38	0.378	210
	6.03	1.04	0.33	0.333	300
(a) Au16 ⁺-Cl⁻	6.97	0.90	0.29	0.289	220
10 °C (1st cooling)	7.27	0.86	0.28	0.277	310
Colh	8.06	0.78	0.25	0.250	400
a = 3.61 nm, c = 0.35 nm	8.78	0.72	0.23	0.229	320
$M = 3730.33, Z = 1$ for $\rho = 1.57$	9.23	0.68	0.22	0.218	410
·	10.06	0.62	0.20	0.200	500
	10.48	0.60	0.19	0.192	330
	10.69	0.59	0.19	0.189	420
	11.19	0.56	0.18	0.180	510
	18.03	0.35	_	_	001

Table S8 (Continued)

	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.00	3.14	1.00	1.000	100
	3.49	1.80	0.57	0.577	110
	4.01	1.57	0.50	0.500	200
	5.32	1.18	0.38	0.378	210
	6.06	1.04	0.33	0.333	300
(h) Au16 ⁺-Cl⁻	7.00	0.90	0.29	0.289	220
39 °C (2nd heating)	7.22	0.87	0.28	0.277	310
Colh	7.99	0.79	0.25	0.250	400
<i>a</i> = 3.63 nm, <i>c</i> = 0.35 nm	8.78	0.72	0.23	0.229	320
$M = 3730.33, Z = 1$ for $\rho = 1.55$	9.16	0.69	0.22	0.218	410
	9.99	0.63	0.20	0.200	500
	10.53	0.60	0.19	0.192	330
	10.66	0.59	0.19	0.189	420
	11.25	0.56	0.18	0.180	510
	17.94	0.35	-	_	001
	2.00	3.14	1.00	1.000	100
	3.49	1.80	0.57	0.577	110
	3.99	1.57	0.50	0.500	200
	5.32	1.18	0.38	0.378	210
	5.99	1.05	0.33	0.333	300
(i) Au16 ⁺-Cl⁻	6.99	0.90	0.29	0.289	220
41 °C (2nd heating)	7.22	0.87	0.28	0.277	310
Colh	7.98	0.79	0.25	0.250	400
<i>a</i> = 3.63 nm, <i>c</i> = 0.35 nm	8.79	0.71	0.23	0.229	320
$M = 3730.33$, $Z = 1$ for $\rho = 1.55$	9.16	0.69	0.22	0.218	410
	9.97	0.63	0.20	0.200	500
	10.48	0.60	0.19	0.192	330
	10.68	0.59	0.19	0.189	420
	11.29	0.56	0.18	0.180	510
	17.98	0.35	_	-	001
	1.95	3.21	1.00	1.000	100
	3.39	1.85	0.58	0.577	110
	3.92	1.60	0.50	0.500	200
	5.18	1.21	0.38	0.378	210
	5.88	1.07	0.33	0.333	300
(j) Au16 ⁺-Cl⁻	6.78	0.93	0.29	0.289	220
60 °C (2nd heating)	7.06	0.89	0.28	0.277	310
Colh	7.84	0.80	0.25	0.250	400
<i>a</i> = 3.71 nm, <i>c</i> = 0.35 nm	8.54	0.74	0.23	0.229	320
$M = 3730.33, Z = 1$ for $\rho = 1.47$	8.97	0.70	0.22	0.218	410
	9.80	0.64	0.20	0.200	500
	10.18	0.62	0.19	0.192	330
	10.35	0.61	0.19	0.189	420
	10.92	0.58	0.18	0.180	510
	17.81	0.35	_	_	001

^a The diffraction peak which corresponds to 001 was clearly observed at the wide-angle region (Figure S87).

Figure S86 Possible packing model of Au16⁺-Cl⁻, Related to Table 1 and Figure 8.

(a) Possible packing model of $Au16^+$ -Cl⁻ in a Col_h structure and (b) columnar stacking model of the cationic Au^{III} complex (shown by geometry-optimized $Au0^+$ instead of $Au16^+$). Porphyrin–Au^{III} complexes are stacked with the distance of 0.35–0.36 nm (001 peak). Diffraction peak at 0.51–0.55 nm can be ascribable to the arrangement of peripheral aryl rings or coexisting Cl⁻. Arrangement of the anions in the model structure of (a) is not exactly determined.

Figure S87 Wide-angle XRD of Au16⁺-Cl⁻, Related to Table 1 and Figure 8.

Wide-angle XRD of **Au16**⁺-Cl⁻ at 100 °C (1st cooling). Wide-angle XRD clearly suggests the existence of the diffraction peak at 0.36 nm (Figure S84,85). The diffraction peak at 0.36 nm is derived from the stacking of porphyrin–Au^{III} complexes in the Col_h packing structure (Table S8 and Figure S86).

XRD patterns of **Au20**⁺-Cl⁻ at (a) 25 °C (1st heating), (b) 62 °C (1st heating), (c) 65 °C (1st heating), (d) 70 °C (1st heating), (e) 130 °C (1st heating), (f) 62 °C (1st cooling), (g) 58 °C (1st cooling), and (h) 54 °C (1st cooling). The XRD patterns of (a,b) and (c,d,f–h) exhibit lamellar and Col_h structures, respectively (Figure S90). The broad peak around d = 1 nm is partially overlapped with other peaks.

Figure S89 XRD patterns of Au20⁺-Cl⁻, Related to Table 1.

XRD patterns of Au20⁺-Cl⁻ at (i) 25 °C (1st cooling), (j) 62 °C (2nd heating), (k) 70 °C (2nd heating), and (l) 100 °C (2nd heating) (Figure labels are continued from Figure S88). The XRD patterns of (i–l) exhibit lamellar and Col_h structures, respectively (Figure S90). The broad peak around d = 1 nm is partially overlapped with other peaks.

Table S9 XRD peaks of Au20⁺-Cl⁻, Related to Table 1.

XRD peaks of **Au20**⁺-Cl⁻ at (a) 25 °C (1st heating), (b) 62 °C (1st heating), (c) 65 °C (1st heating), (d) 70 °C (1st heating), (f) 62 °C (1st cooling), (g) 58 °C (1st cooling), (h) 54 °C (1st cooling), (i) 25 °C (1st cooling), (j) 62 °C (2nd heating), (k) 70 °C (2nd heating), and (l) 100 °C (2nd heating) (Figure S88,89). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.70	3.70	1.00	1.000	001
(a) Au20 +-Cl⁻	3.39	1.85	0.50	0.500	002
25 °C (1st heating)	5.09	1.23	0.33	0.333	003
lamellar	6.81	0.92	0.25	0.250	004
	8.67	0.72	0.20	0.200	005
	1.71	3.68	1.00	1.000	001
(b) Au20 ⁺-Cl⁻	3.41	1.84	0.50	0.500	002
62 °C (1st heating)	5.12	1.23	0.33	0.333	003
lamellar	6.84	0.92	0.25	0.250	004
	8.72	0.72	0.20	0.200	005

Table S9 (Continued)

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.78	3.54	1.00	1.000	100
	3.09	2.04	0.58	0.577	110
	3.56	1.77	0.50	0.500	200
(c) Au20⁺-Cl⁻	4.71	1.33	0.38	0.378	210
65 °C (1st heating)	5.34	1.18	0.33	0.333	300
Colh	6.19	1.02	0.29	0.289	220
a = 4.08 nm, c = 0.35 nm	6.41	0.98	0.28	0.277	310
M = 4403.62, Z = 1 for ρ = 1.44	7.12	0.88	0.25	0.250	400
	7.76	0.81	0.23	0.229	320
	8.14	0.77	0.22	0.218	410
	17.85	0.35	-	-	001
	1.77	3.56	1.00	1.000	100
	3.06	2.05	0.58	0.577	110
	3.53	1.78	0.50	0.500	200
	4.68	1.34	0.38	0.378	210
	5.30	1.19	0.33	0.333	300
(d) Au20 ⁺ -Cl ⁻	6.12	1.03	0.29	0.289	220
70 °C (1st heating)	6.37	0.99	0.28	0.277	310
	7.06	0.89	0.25	0.250	400
a = 4.11 nm, $c = 0.35$ nm M = 4402.42, $7 = 1$ for $a = 1.42$	7.70	0.82	0.23	0.229	320
M = 4403.62, 2 = 1.101 p = 1.43	8.09	0.78	0.22	0.218	410
	8.83	0.71	0.20	0.200	500
	9.34	0.67	0.19	0.189	420
	9.82	0.64	0.18	0.180	510
	17.99	0.35	-	-	001
	1.75	3.58	1.00	1.000	100
	3.04	2.07	0.58	0.577	110
	3.50	1.79	0.50	0.500	200
(f) A.:. 20+ CI-	4.64	1.35	0.38	0.378	210
(1) $Auzo' - Ci$	5.26	1.19	0.33	0.333	300
	6.09	1.03	0.29	0.289	220
a = 4.14 nm	6.32	0.99	0.28	0.277	310
a – 4. 14 mm	7.01	0.90	0.25	0.250	400
	7.64	0.82	0.23	0.229	320
	8.03	0.78	0.22	0.218	410
	8.77	0.72	0.20	0.200	500
	1.78	3.54	1.00	1.000	100
	3.11	2.02	0.57	0.577	110
	3.56	1.77	0.50	0.500	200
(g) Au20 ⁺ -Cl [−]	4.76	1.32	0.37	0.378	210
58 °C (1st cooling)	5.35	1.17	0.33	0.333	300
Col _h ª	6.44	0.98	0.28	0.277	310
<i>a</i> = 4.08 nm	7.14	0.88	0.25	0.250	400
	7.85	0.80	0.23	0.229	320
	8.14	0.77	0.22	0.218	410
	9.38	0.67	0.19	0.189	420

Table S9 (Continued)

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.78	3.54	1.00	1.000	100
	3.12	2.01	0.57	0.577	110
	3.57	1.76	0.50	0.500	200
	4.78	1.32	0.37	0.378	210
	5.36	1.17	0.33	0.333	300
54 °C (1st cooling)	6.44	0.98	0.28	0.277	310
	7.15	0.88	0.25	0.250	400
a = 4.00 mm	7.84	0.80	0.23	0.229	320
	8.17	0.77	0.22	0.218	410
	8.90	0.71	0.20	0.200	500
	9.43	0.67	0.19	0.189	420
	1.80	3.49	1.00	1.000	100
	3.12	2.01	0.58	0.577	110
	3.60	1.74	0.50	0.500	200
(i) A20 + Cl-	4.77	1.32	0.38	0.378	210
(i) $Auzor-Ci$	5.40	1.16	0.33	0.333	300
	6.50	0.97	0.28	0.277	310
a = 4.03 nm	7.20	0.87	0.25	0.250	400
	7.86	0.80	0.23	0.229	320
	8.23	0.76	0.22	0.218	410
	9.02	0.70	0.20	0.200	500
	9.43	0.67	0.19	0.189	420
	1.78	3.54	1.00	1.000	100
	3.14	2.00	0.58	0.577	110
	3.56	1.77	0.50	0.500	200
(j) Au20 ⁺ -Cl [−]	4.80	1.31	0.38	0.378	210
62 °C (2nd heating)	5.33	1.18	0.33	0.333	300
Col _h ª	6.44	0.98	0.28	0.277	310
a = 4.03 nm	7.12	0.88	0.25	0.250	400
	7.90	0.80	0.23	0.229	320
	8.95	0.70	0.20	0.218	500
	9.41	0.67	0.19	0.200	420
	1.75	3.58	1.00	1.000	100
	3.04	2.07	0.58	0.577	110
	3.50	1.79	0.50	0.500	200
	4.64	1.35	0.38	0.378	210
	5.26	1.19	0.33	0.333	300
(k) Au20 ⁺-Cl⁻	6.08	1.03	0.29	0.289	220
70 °C (2nd heating)	6.32	0.99	0.28	0.277	310
	7.01	0.90	0.25	0.250	400
a = 4.14 nm	/.64	0.82	0.23	0.229	320
	8.04	0.78	0.22	0.218	410
	8.//	0.72	0.20	0.200	500
	9.12	0.69	0.19	0.192	330
	9.28	0.68	0.19	0.189	420
	9.75	0.64	0.18	0.180	510

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.75	3.58	1.00	1.000	100
	3.03	2.07	0.58	0.577	110
	3.50	1.79	0.50	0.500	200
	4.63	1.36	0.38	0.378	210
	5.25	1.20	0.33	0.333	300
(I) Au20+-Cl-	6.06	1.04	0.29	0.289	220
100 °C (2nd heating)	6.31	1.00	0.28	0.277	310
Colh	7.00	0.90	0.25	0.250	400
a = 4.14 nm, c = 0.35 nm	7.63	0.82	0.23	0.229	320
M = 4403.62, Z = 1 for ρ = 1.41	8.03	0.78	0.22	0.218	410
	8.76	0.72	0.20	0.200	500
	9.10	0.69	0.19	0.192	330
	9.26	0.68	0.19	0.189	420
	9.75	0.64	0.18	0.180	510
	18.03	0.35	_	-	001

^a The diffraction peak which corresponds to 001 was observed at the wide-angle region (Figure S91).

Possible packing models of $Au20^+$ -Cl⁻ in (a) lamellar, (b) Col_h structures, and (c) columnar stacking model of the cationic Au^{III} complex (shown by geometry-optimized $Au0^+$ instead of $Au20^+$). Porphyrin–Au^{III} complexes are stacked with the distance of 0.35 nm (001 peak). Diffraction peak at 0.48–0.52 nm can be ascribable to the arrangement of peripheral aryl rings or coexisting Cl⁻. Arrangement of the anions in the model structure of (b) is not exactly determined.

Wide-angle XRD of Au20⁺-Cl⁻ at 58 °C (1st cooling). Wide-angle XRD clearly suggests the existence of the diffraction peak at 0.35 nm (Figure S88,89). The diffraction peak at 0.35 nm is derived from the stacking of porphyrin–Au^{III} complexes in the Col_h packing structure (Table S9 and Figure S90).

XRD patterns of $Au8^+$ -BF₄⁻ at (a) 25 °C (1st heating), (b) 150 °C (1st heating), (c) 190 °C (1st heating), (d) 120 °C (1st cooling), (e) 25 °C (1st cooling), and (f) 150 °C (2nd heating). Complicated peak patters were obtained for (a,b,d–f), suggesting the highly crystalline states.

Figure S93 XRD patterns of Au12⁺-BF₄⁻, Related to Table 1.

XRD patterns of $Au12^+-BF_4^-$ at (a) 25 °C (1st heating), (b) 70 °C (1st heating), (c) -10 °C (1st cooling), (d) - 65 °C (1st cooling), and (e) 25 °C (2nd heating). The XRD pattern of (a) exhibits a Col_r structure (Figure S94).

Table S10 XRD peaks of Au12⁺-BF₄⁻, Related to Table 1.

XRD peaks of $Au12^+-BF_4^-$ at (a) 25 °C (1st heating) (Figure S93). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.00	3.15	1.00	1.000	200
	2.08	3.03	0.96	0.962	110
	2.68	2.34	0.74	0.739	210
	3.07	2.05	0.65	0.667	300
	3.99	1.58	0.50	0.500	400
(a) Au12 ⁺ -BF4 ⁻	4.18	1.50	0.48	0.481	220
25 °C (Ist heating)	4.74	1.33	0.42	0.424	320
COI_r	4.85	1.29	0.41	0.400	500
a = 6.29 nm, b = 3.45 nm	5.98	1.05	0.33	0.333	600
	6.82	0.92	0.29	0.295	430
	7.96	0.79	0.25	0.254	340
	8.34	0.75	0.24	0.241	440
	9.48	0.66	0.21	0.208	350

Figure S94 Possible packing model of $Au12^+-BF_4^-$, Related to Table 1. Possible packing model of $Au12^+-BF_4^-$ in a Col, structure.

XRD patterns of Au16⁺-BF₄⁻ at (a) 25 °C (1st heating), (b) 50 °C (1st heating), (c) 100 °C (1st heating), (d) 35 °C (1st cooling), (e) –30 °C (1st cooling), and (f) 45 °C (2nd heating). The XRD patterns of (a) and (b,e,f) exhibit Col_t and Col_h structures, respectively (Figure S96).

Table S11 XRD peaks of Au16⁺-BF₄⁻, Related to Table 1.

XRD peaks of Au16⁺-BF₄⁻ at (a) 25 °C (1st heating), (b) 50 °C (1st heating), (e) –30 °C (1st cooling), and (f) 45 °C (2nd heating) (Figure S95). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.95	3.22	1.00	1.000	100
	2.73	2.30	0.72	0.707	110
(a) Au16 ⁺ -BF ₄ ⁻	3.91	1.61	0.50	0.500	200
25 °C (1st heating)	5.54	1.13	0.35	0.354	220
COl_t	5.88	1.07	0.33	0.333	300
a = 5.22 nm, $c = 0.36$ nm M = 2791.49, $7 = 1.6$ for $a = 1.40$	7.39	0.85	0.26	0.250	400
M = 3781.08, Z = 1101 p = 1.00	8.68	0.72	0.22	0.224	420
	16.49	0.38	-	-	001
	1.92	3.28	1.00	1.00	100
(b) Au16 ⁺ -BF ₄ ⁻	3.41	1.84	0.56	0.577	110
50 °C (1st heating)	3.82	1.65	0.50	0.500	200
Colh ^a	5.17	1.22	0.37	0.378	210
<i>a</i> = 3.78 nm	6.02	1.04	0.32	0.333	300
	6.78	0.93	0.28	0.289	220
(e) Au16 ⁺ -BF ₄ ⁻	2.01	3.13	1.00	1.00	100
–30 °C (1st cooling)	3.43	1.83	0.59	0.577	110
Colh ^a	3.90	1.61	0.52	0.500	200
<i>a</i> = 3.61 nm	5.80	1.08	0.35	0.333	300
(f) Au16 ⁺-BF₄⁻	1.95	3.22	1.00	1.00	100
	3.41	1.84	0.57	0.577	110
45 °C (2nd heating)	3.89	1.62	0.50	0.500	200
Col _h ª	5.16	1.22	0.38	0.378	210
<i>a</i> = 3.72 nm	5.96	1.05	0.33	0.333	300
	6.71	0.94	0.29	0.289	220

 ^{a}Z and ρ values are not given due to the unclear height value (c) in XRD chart.

Possible packing models of $Au16^+-BF_4^-$ in (a) Col_t and (b) Col_h structures. Arrangement of the anions in the model structures of (a) and (b) is not exactly determined.

XRD patterns of Au20⁺-BF₄⁻ at (a) 25 °C (1st heating), (b) 58 °C (1st heating), (c) 66 °C (1st heating), (d) 75 °C (1st heating), (e) 90 °C (1st heating), (f) 110 °C (1st heating), (g) 52 °C (1st cooling), and (h) 35 °C (1st cooling). The XRD patterns of (a–d,g) and (h) exhibit Col_h and Col_r structures, respectively (Figure S99).

Figure S98 XRD patterns of Au20⁺-BF₄⁻, Related to Table 1 and Figure 8. XRD patterns of Au20⁺-BF₄⁻ at (i) –10 °C (1st cooling), (j) 25 °C (2nd heating), (k) 65 °C (2nd heating), and (l) 90 °C (2nd heating) (Figure labels are continued from Figure S97). The XRD patterns of (k) and (i,j) exhibit Col_h and Col_r structures, respectively (Figure S99).

Table S12 XRD peaks of Au20⁺-BF₄⁻, Related to Table 1 and Figure 8.

XRD peaks of $Au20^+$ -BF₄⁻ at (a) 25 °C (1st heating), (b) 58 °C (1st heating), (c) 66 °C (1st heating), (d) 75 °C (1st heating), (g) 52 °C (1st cooling), (h) 35 °C (1st cooling), (i) –10 °C (1st cooling), (j) 25 °C (2nd heating), and (k) 65 °C (2nd heating) (Figure S97,98). The peaks which can be indexed are represented.

3 3 3		• • • • • •			
	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	0.98	6.44	1.00	1.000	100
(a) Au20 ⁺ -BF ₄ ⁻	1.70	3.70	0.57	0.577	110
25 °C (1st heating)	2.06	3.05	0.47	0.500	200
Col _h	2.69	2.34	0.36	0.378	210
<i>a</i> = 7.43 nm, <i>c</i> = 0.40 nm	3.05	2.06	0.32	0.333	300
$M = 4454.97, Z = 2$ for $\rho = 0.80$	5.09	1.23	0.19	0.192	330
	15.90	0.40	-	-	001
	0.99	6.36	1.00	1.000	100
(b) Au20 ⁺ -BF ₄ ⁻	1.70	3.70	0.58	0.577	110
58 °C (1st heating)	2.08	3.02	0.47	0.500	200
Colh	2.63	2.39	0.37	0.378	210
<i>a</i> = 7.35 nm, <i>c</i> = 0.40 nm	3.10	2.03	0.32	0.333	300
$M = 4454.97, Z = 2$ for $\rho = 0.76$	5.14	1.22	0.19	0.192	330
	15.90	0.40	-	-	001
	1.02	6.15	1.00	1.000	100
(c) Au20 ⁺ -BF ₄ ⁻	1.77	3.56	0.58	0.577	110
66 °C (1st heating)	2.06	3.05	0.50	0.500	200
Colh	2.60	2.42	0.39	0.378	210
a = 7.11 nm, c = 0.42 nm	3.12	2.01	0.33	0.333	300
$M = 4454.97, Z = 2$ for $\rho = 0.80$	5.22	1.20	0.20	0.192	330
	14.83	0.42	_	_	001

Table S12 (Continued)

	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.05	5.96	1.00	1.000	100
	1.75	3.58	0.60	0.577	110
(d) Au20 ⁺ -BF ₄ ⁻	2.08	3.02	0.51	0.500	200
75 °C (1st heating)	2.57	2.45	0.41	0.378	210
Colh	3.14	2.00	0.34	0.333	300
a = 6.88 nm, c = 0.42 nm	3.47	1.81	0.30	0.289	220
$M = 4454.97, Z = 2$ for $\rho = 0.87$	4.60	1.37	0.23	0.229	320
	5.26	1.19	0.20	0.200	500
	15.11	0.42	-	_	001
	1.82	3.45	1.00	1.000	100
(g) Au20 ⁺ -BF ₄ ⁻	3.05	2.06	0.60	0.577	110
52 °C (1st cooling)	3.45	1.82	0.53	0.500	200
Col _h	4.65	1.35	0.39	0.378	210
a = 3.98 nm, $c = 0.42$ nm	5.17	1.21	0.35	0.333	300
$M = 4454.97, Z = 1$ for $\rho = 1.30$	15.00	0.42	_	_	001
	1.73	3.63	1.00	1.000	200
(b) Δu20 ⁺-BE₄⁻	1.84	3.41	0.94	0.941	110
$35 ^{\circ}\text{C}$ (1st cooling)	3.05	2.06	0.57	0.565	310
Col. (c2mm)	3.44	1.83	0.50	0.500	400
a = 7.26 nm $b = 3.88 nm$	3.65	1.72	0.47	0.471	220
c = 0.42 nm	4.65	1.35	0.37	0.365	420
$M = 4454.97, Z = 2$ for $\rho = 1.27$	5 16	1 22	0.34	0 333	600
	15.09	0.42	_	_	001
	1.72	3.65	1.00	1.000	200
(i) A.:20+ PE	1.86	3 39	0.93	0.927	110
(1) Auzo - Br 4 -10 °C (1st cooling)	3.05	2.06	0.56	0.562	310
	3 44	1.83	0.50	0.500	400
$Col_r (c2mm)$ a = 7.30 nm, b = 3.82 nm, c = 0.42 nm	3.47	1.00	0.47	0.464	220
	4.63	1.71	0.37	0.361	420
$M = 4454.97$, $Z = 2$ for $\rho = 1.29$	5 15	1.00	0.33	0 333	600
	15 11	0.42	-	-	001
	1 73	3.63	1.00	1 000	200
	1.75	3.05	0.94	0.030	110
(j) $\mathbf{Auzo}^{-}\mathbf{DF}_{4}$	3.06	2.05	0.57	0.565	310
25 C (znd neating)	2.44	1.02	0.57	0.500	400
a = 7.26 nm $b = 3.86 nm$	3.44	1.05	0.30	0.300	400 220
c = 0.42 pm	J.UJ A 40	1.72	0.+/	0.407	420
M = 4454.97 $7 = 2$ for $a = 1.28$	4.0J 5 14	1.30	0.37	0.304	420
p = 1.20	J. 10 15 12	0.42	0.34	0.333	000
	1.02	0.42	- 1.00	-	400
(k) Au20 ⁺ -BF ₄ ⁻	1.82	3.45	1.00	1.000	100
65 °C (2nd heating)	3.05	2.06	0.60	0.577	110
Colh	3.46	1.82	0.53	0.500	200
a = 3.98 nm, c = 0.41 nm	4.64	1.35	0.39	0.378	210
$M = 4454.97, Z = 1$ for $\rho = 1.31$	5.18	1.21	0.35	0.333	300
· · · · ·	15.20	0.41	-	-	001

Figure S99 Possible packing models of Au20⁺-BF₄[−], Related to Table 1 and Figure 8.

Possible packing models of $Au20^+-BF_4^-$ in (a) $Col_h (Z = 1)$ and (b) $Col_r (c2mm)$ structures. The assemblies of $Au20^+-BF_4^-$ were discussed in detail in the manuscript due to the ambiguous packing modes of $Au8^+-BF_4^-$, $Au12^+-BF_4^-$, and $Au16^+-BF_4^-$. Arrangement of the anions in the model structures of (a) and (b) is not exactly determined.

XRD patterns of Au8⁺-PF₆⁻ at (a) 25 °C (1st heating), (b) 150 °C (1st heating), (c) 190 °C (1st heating), (d) 130 °C (1st cooling), (e) 25 °C (1st cooling), and (f) 150 °C (2nd heating). Complicated peak patters were obtained for (a,b,d–f), suggesting the highly crystalline states.

XRD patterns of Au12⁺-PF₆⁻ at (a) 25 °C (1st heating), (b) 60 °C (1st heating), (c) 80 °C (1st heating), (d) 100 °C (1st heating), (e) 130 °C (1st heating), (f) 100 °C (1st cooling), (g) 50 °C (1st cooling), and (h) 0 °C (1st cooling). The XRD patterns of (a–d,f–h) exhibit Col_{ob} structures (Figure S103).

Figure 102 XRD patterns of $Au12^+-PF_6^-$, Related to Table 1.

XRD patterns of $Au12^+$ -PF₆⁻ at (i) –70 °C (1st cooling), (j) 25 °C (2nd heating), (k) 60 °C (2nd heating), and (l) 100 °C (2nd heating) (Figure labels are continued from Figure S101). The XRD patterns of (i–l) exhibit Col_{ob} structures (Figure S103). XRD pattern at (i) –70 °C shows the sharp diffraction around 0.4 nm derived from frost.

Table S13 XRD peaks of Au12⁺-PF₆⁻, Related to Table 1.

XRD peaks of $Au12^+$ -PF₆⁻ at (a) 25 °C (1st heating), (b) 60 °C (1st heating), (c) 80 °C (1st heating), (d) 100 °C (1st heating), (f) 100 °C (1st cooling), (g) 50 °C (1st cooling), (h) 0 °C (1st cooling), (i) –70 °C (1st cooling), (j) 25 °C (2nd heating), (k) 60 °C (2nd heating), and (l) 100 °C (2nd heating) (Figure S101,102). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.24	2.80	1.00	1.000	110
	2.63	2.39	0.85	0.854	200
	3.10	2.03	0.72	0.741	2-10
(a) Au12 ⁺ -PF ₆ ⁻	3.77	1.66	0.59	0.594	120
25 °C (1st heating)	4.01	1.57	0.56	0.570	300
Col _{ob}	4.22	1.49	0.53	0.537	3 ⁻ 10
a = 4.80 nm, b = 3.66 nm,	4.55	1.38	0.49	0.500	220
$c = 0.73 \text{ nm}, \ \gamma = 94.4^{\circ}$	5.07	1.24	0.44	0.446	3-20
$M = 3166.54, Z = 2$ for $\rho = 0.82$	5.28	1.19	0.42	0.427	400
	6.62	0.95	0.34	0.342	500
	6.95	0.90	0.32	0.326	040
	8.60	0.73	-	-	001

Table S13 (Continued)

	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.19	2.87	1.00	1.000	1-10
	2.62	2.40	0.84	0.837	200
(b) Au12 ⁺ -PF ₆ ⁻	3.04	2.06	0.72	0.711	2-10
60 °C (1st heating)	3.72	1.69	0.59	0.582	020
Col _{ob}	4.00	1.57	0.55	0.558	300
a = 4.83 nm, $b = 3.36$ nm,	4.55	1.38	0.48	0.486	310
$c = 0.74 \text{ nm}, \ \gamma = 95.3^{\circ}$	5.01	1.25	0.44	0.423	3-20
$M = 3166.54, Z = 2$ for $\rho = 0.88$	5.26	1.19	0.42	0.418	400
	6.59	0.95	0.33	0.326	420
	8.50	0.74	_	_	001
	2 17	2 90	1.00	1 000	1-10
	2.62	2.70	0.83	0.828	200
	3.04	2.40	0.03	0.710	200
(C) $Au12^{-}FF_6$	3.04	1 70	0.71	0.586	020
ou C (Tst heating)	2.00	1.70	0.57	0.500	200
COl_{ob}	3.99	1.30	0.54	0.545	300
a = 4.83 nm, b = 3.37 nm,	4.30	1.40	0.50	0.503	2 20
$c = 0.73 \text{ nm}$, $\gamma = 96.2^{\circ}$	4.66	1.35	0.47	0.466	310
$M = 3166.54, Z = 2$ for $\rho = 0.89$	4.94	1.27	0.44	0.438	220
	5.17	1.22	0.42	0.421	400
	8.66	0.73	-	-	001
	2.17	2.90	1.00	1.000	1-10
	2.62	2.40	0.83	0.828	200
	3.01	2.09	0.72	0.710	2 ⁻ 10
	3.76	1.67	0.58	0.580	020
(d) Au12 ⁺ -PF ₆ ⁻	3.63	1.60	0.55	0.552	300
100 °C (1st heating)	4.18	1.50	0.52	0.520	3 ⁻ 10
Col _{ob}	4.31	1.46	0.50	0.500	2-20
a = 4.83 nm, b = 3.38 nm,	4.45	1.41	0.49	0.479	310
c = 0.73 nm, γ = 95.3°	4.67	1.34	0.46	0.453	220
$M = 3166.54, Z = 2$ for $\rho = 0.89$	5.15	1.22	0.42	0.414	400
	6.47	1.15	0.40	0.386	030
	6.25	1.01	0.35	0.337	230
	6.62	0.95	0.33	0.328	5-10
	8.66	0.73	_	_	001
	2.18	2.89	1.00	1.000	1-10
(†) Au12 ⁺ -PF ₆ ⁻	2.60	2.41	0.84	0.836	200
100 °C (1st cooling)	2.96	2.12	0.73	0.717	2-10
Col _{ob}	3.76	1.67	0.58	0.569	020
<i>a</i> = 4.86 nm, <i>b</i> = 3.31 nm,	3.95	1.59	0.55	0.557	300
$c = 0.74 \text{ nm}, \gamma = 97.1^{\circ}$	4.19	1.50	0.52	0.519	120
$M = 3166.54, Z = 2$ for $\rho = 0.89$	8.52	0.74	_	_	001
	2 19	2.87	1.00	1 000	110
	2.17	2.07	0.83	0.833	200
(g) Au12 ⁺-PF ₆ ⁻	2.03	2.37	0.05	0.000	200 020
50 °C (1st cooling)	J.U4 2 72	2.07	0.72	0.700	020
Col _{ob}	3.72	1.07	0.37	0.307	2 20
a = 4.85 nm, b = 4.11 nm,	4.00	1.57	0.55	0.548	3 TU 1-20
<i>c</i> = 0.74 nm, <i>γ</i> = 99.3°	4.56	1.38	0.48	0.473	1 30
$M = 3166.54, Z = 2$ for $\rho = 0.73$	5.01	1.25	0.44	0.435	130
	6.59	0.95	0.33	0.336	110
	8.51	0.74	-	-	001

Table S13 (Continued)

	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.28	2.76	1.00	1.000	1-10
	2.64	2.38	0.86	0.862	200
(h) Au12 ⁺-PF₀ [_]	3.13	2.01	0.73	0.712	2 ⁻ 10
0 °C (1st cooling)	3.80	1.65	0.60	0.597	020
Col _{ob}	4.02	1.56	0.57	0.575	300
a = 4.76 nm, b = 3.30 nm,	4.56	1.38	0.50	0.500	2-20
<i>c</i> = 0.73 nm, <i>γ</i> = 92.2°	4.87	1.29	0.47	0.482	220
$M = 3166.54, Z = 1$ for $\rho = 0.92$	5.32	1.18	0.43	0.431	400
	6.63	0.95	0.34	0.343	420
	8.65	0.73	_	_	010
	2.39	2.63	1.00	1.000	110
(i) Au12 ⁺-PF₅ [−]	2.60	2.41	0.92	0.918	200
-70 °C (1st cooling)	3.17	1.98	0.75	0.750	2-10
Colob	3.82	1.65	0.63	0.613	020
a = 4.83 nm, b = 3.22 nm.	4.53	1.39	0.53	0.520	2-20
$c = 0.71 \text{ nm}, \gamma = 92.4^{\circ}$	5.07	1.24	0.47	0.459	400
$M = 3166.54, Z = 2$ for $\rho = 0.96$	6.49	0.97	0.37	0.360	420
	8.90	0.71	_	_	001
	2.24	2.80	1.00	1.000	200
	2.63	2.39	0.85	0.854	110
(i) Au12 +_PE	3.02	2.08	0.74	0.736	2-10
$()$ Aut 2 - 1 δ 25 °C (2nd heating)	3 77	1.66	0.59	0 577	3-10
	4.54	1.38	0.49	0.493	020
a = 5.62 nm $b = 2.77 nm$	4.74	1.33	0.47	0.469	120
$c = 0.72 \text{ nm}, \nu = 95.2^{\circ}$	5.07	1 24	0 44	0.459	2-20
$M = 3166.54, Z = 2$ for $\rho = 0.95$	5.28	1.19	0.42	0.427	220
	6.60	0.95	0.34	0.333	600
	8 78	0.72	_	-	001
	2 19	2.87	1.00	1 000	110
	2.17	2.07	0.84	0.837	200
	3.04	2.40	0.72	0.706	020
(k) Au12 ⁺ –PF ₆ ⁻	3.71	1 70	0.72	0.590	220
60 °C (2nd heating)	4 00	1.57	0.57	0.570	310
Col _{ob}	4.00	1.37	0.55	0.474	130
a = 4.87 nm, b = 4.11 nm,	4.37	1.37	0.46	0.471	030
c = 0.73 nm, γ = 99.6°	4.70 5.00	1.32	0.40	0.4/1	230
$M = 3166.54, Z = 2$ for $\rho = 0.73$	5.00	1.20	0.44	0.449	400
	6 58	0.96	0.42	0.336	420
	8 59	0.73	0.55	0.000	001
	0.37	2.00	1.00	1 000	1-10
	2.17	2.70	0.83	0.828	200
	2.02	∠.4∪ 2.12	0.03	0.020	200
(l) Au12 ⁺ -PF ₆ ⁻	2.70	2.12	0.73	0.717	2 10
100 °C (2nd heating)	3.70	1.07	0.50	0.303	300
Col _{ob}	J.7J 1 J1	1.37	0.55	0.002	300 2-20
a = 4.85 nm, b = 3.31 nm,	4.31	1.40	0.50	0.300	2 20
<i>c</i> = 0.73 nm, <i>γ</i> = 98.0°	4.07	1.04	0.40	0.471	31U 220
$M = 3166.54, Z = 2$ for $\rho = 0.73$	4.72	1.20 1.20	0.44	0.439	220
	5.14	1.22	0.42	0.220	400
	0.61	0.95	0.33	0.330	5 IU
	8.65	0.73	-	-	001

Figure S103 Possible packing models of Au12⁺-PF₆⁻, Related to Table 1. Possible packing models of Au12⁺-PF₆⁻ in an Col_{ob} structure.

Figure S104 XRD patterns of Au16⁺-PF₆⁻, Related to Table 1.

XRD patterns of Au16⁺-PF₆⁻ at (a) 25 °C (1st heating), (b) 31 °C (1st heating), (c) 60 °C (1st heating), and (d) –30 °C (1st cooling). The XRD patterns of (a,b) and (d) exhibit Col_h and lamellar structures, respectively (Figure S105).

Table S14 XRD peaks of Au16⁺-PF₆⁻, Related to Table 1.

XRD peaks of $Au16^+$ -PF₆⁻ at (a) 25 °C (1st heating), (b) 31 °C (1st heating), and (d) –30 °C (1st cooling) (Figure S104). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.00	3.15	1.00	1.000	100
	3.46	1.82	0.58	0.577	110
(a) Au16 ⁺ -PF ₆ ⁻	3.98	1.58	0.50	0.500	200
25 °C (1st heating)	5.97	1.05	0.33	0.333	300
$\operatorname{Colh}^{\circ}$	8.61	0.73	0.23	0.229	320
a = 5.65 mm	9.05	0.69	0.22	0.218	410
	11.06	0.57	0.18	0.180	510

Table S14 (Continued)

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.00	3.15	1.00	1.000	100
	3.46	1.82	0.58	0.577	110
(b) $Au16^+-PF_6^-$	3.98	1.58	0.50	0.500	200
31 °C (1st heating)	5.97	1.05	0.33	0.333	300
$\operatorname{COI}_{h^{\circ}}$	8.60	0.73	0.23	0.229	320
a = 5.05 mm	9.08	0.69	0.22	0.218	410
	10.99	0.57	0.18	0.180	510
(d) Au16 ⁺ -PF ₆ [−]	2.02	3.11	1.00	1.000	001
-30 °C (1st cooling)	3.96	1.59	0.51	0.500	002
lamellar					

 $^{*}Z$ and ρ values are not given due to the unclear height value (c) in XRD chart.

Figure S105 Possible packing models of Au16⁺-PF₆⁻, Related to Table 1. Possible packing models of Au16⁺-PF₆⁻ in (a) Col_h and (b) lamellar structures.

Figure S106 XRD patterns of Au20⁺-PF₆⁻, Related to Table 1. XRD patterns of Au20⁺-PF₆⁻ at (a) 25 °C (1st heating), (b) 52 °C (1st heating), (c) 80 °C (1st heating), and (d) 25 °C (1st cooling). The XRD patterns of (a,b) and (d) exhibit Col_r and lamellar structures, respectively (Figure S107).

Table S15 XRD peaks of Au20⁺-PF₆⁻, Related to Table 1.

XRD peaks of $Au20^+$ -PF₆⁻ at (a) 25 °C (1st heating), (b) 52 °C (1st heating), and (d) 25 °C (1st cooling) (Figure S106). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	0.64	9.86	1.00	1.000	110
	0.87	7.19	0.73	0.729	200
(a) $Au20^+ - PF_6^-$	1.27	4.95	0.50	0.500	220
25 °C (Ist heating)	1.79	3.51	0.36	0.352	410
$colr^{\circ}$	2.61	2.41	0.24	0.246	530
a = 14.37 mm, b = 13.34 mm	3.18	3.18 1.98 0.20 0.198 3.55 1.77 0.18 0.181	0.198	640	
	3.55	1.77	0.18	0.181	810
	0.64	9.86	1.00	1.000	110
	0.87	7.19	0.73	0.729	200
(b) Au20 ⁺ -PF ₆ ⁻	1.27	4.95	0.50	0.500	220
52 °C (1st heating)	1.79	3.51	0.36	0.352	410
	2.61	2.41	0.24	0.246	530
a = 14.37 nm, $b = 13.54$ nm	3.25	1.93	0.20	0.198	640
	3.55	1.77	0.18	0.181	810
(d) Au20 ⁺ -PF ₆ ⁻	1.77	3.56	1.00	1.000	001
25 °C (1st cooling)	3.51	1.79	0.50	0.500	002
lamellar	5.27	1.19	0.33	0.333	003

 ^{s}Z and ρ values are not given due to the unclear height value (c) in XRD chart.

Figure S107 Possible packing models of $Au20^+-PF_6^-$, Related to Table 1. Possible packing models of $Au20^+-PF_6^-$ in (a) Col_r and (b) lamellar structures.

Figure S108 XRD patterns of Au8⁺-PCCp⁻, Related to Table 1. XRD patterns of **Au8**⁺-PCCp⁻ at 25 °C (1st heating). The XRD pattern exhibits a Col_r structure (Figure S109).

Table S16 XRD peaks of Au8⁺-PCCp⁻, Related to Table 1.

XRD peaks of $Au8^+$ -PCCp⁻ at 25 °C (1st heating) (Figure S108). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.79	2.25	1.00	1.000	110
	3.07	2.05	0.91	0.908	200
Au8⁺-PCCp⁻	4.63	1.36	0.60	0.599	020
	5.16	1.22	0.54	0.540	310
25 °C (1st heating)	5.57	1.13	0.50	0.500	220
$Col_r (p2gg)$	6.14	1.02	0.45	0.454	400
a = 4.10 hm, $b = 2.70$ hm,	7.12	0.88	0.39	0.390	130
M = 2538 43 7 = 2 for a = 1.17	7.70	0.82	0.36	0.366	230
w = 2330.43, 2 = 2101 p = 1.17	8.02	0.78	0.35	0.348	510
	8.35	0.75	0.33	0.333	330
	9.19	0.68	_	_	001

Figure S109 Possible packing model of Au8⁺-PCCp⁻, Related to Table 1. Possible packing model of Au8⁺-PCCp⁻ in a Col_r (p2gg) structure.

XRD patterns of $Au12^+$ -PCCp⁻ at (a) 25 °C (1st heating), (b) 100 °C (1st heating), (c) 300 °C (1st heating), (d) 25 °C (1st cooling), (e) –20 °C (1st cooling), (f) 100 °C (2nd heating), (g) 200 °C (2nd heating), and (h) 300 °C (2nd heating). The XRD patterns of (a,e) and (b–d,f–h) exhibit Col_r and Col_h structures, respectively (Figure S111).

Table S17 XRD peaks of Au12⁺-PCCp⁻, Related to Table 1.

XRD peaks of Au12⁺-PCCp⁻ at (a) 25 °C (1st heating), (b) 100 °C (1st heating), (c) 300 °C (1st heating), (d) 25 °C (1st cooling), (e) –20 °C (1st cooling), (f) 100 °C (2nd heating), (g) 200 °C (2nd heating), and (h) 300 °C (2nd heating) (Figure S110). The peaks which can be indexed are represented.^a

			-		
	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.27	2.77	1.00	1.000	010
	2.69	2.33	0.84	0.841	110
	2.92	2.15	0.78	0.778	200
	3.53	1.78	0.64	0.614	210
(a) Au12 ⁺-PCCp⁻	4.35	1.45	0.52	0.519	300
25 °C (1st heating)	4.54	1.38	0.50	0.500	020
Colr	5.28	1.19	0.43	0.421	220
a = 4.31 nm, b = 2.77 nm,	6.37	0.99	0.36	0.360	320
<i>c</i> = 0.80 nm	7.05	0.89	0.32	0.326	130
$M = 3211.72, Z = 2$ for $\rho = 1.10$	7.82	0.80	_	_	001
	8.61	0.73	0.26	0.264	520
	9.26	0.68	0.24	0.247	140
	10.57	0.59	0.21	0.210	440
	12.80	0.49	0.18	0.178	450
	2.42	2.59	1.00	1.000	100
	4.20	1.50	0.58	0.577	110
	4.85	1.29	0.50	0.500	200
(b) Δu12 +-PCCn-	6.42	0.98	0.38	0.378	210
$100 ^{\circ}\text{C}$ (1st heating)	7 27	0.86	0.33	0.333	300
	8 41	0.75	0.29	0.289	220
a = 2.99 nm $c = 0.69 nm$	8 75	0.73	0.29	0.207	310
M = 321172 $7 = 1$ for $a = 0.99$	9.05	0.69	0.20	0.277	001
	9.69	0.65	0.25	0.250	400
	10 56	0.85	0.23	0.230	320
	18 10	0.00	0.25	0.227	002
	2.25	0.35	1.00	1 000	100
	2.35	2.08	1.00	1.000	100
	4.08	1.54	0.58	0.577	110
	4.71	1.33	0.50	0.500	200
(c) Au12 ⁺ -PCCp [−]	6.23	1.01	0.38	0.378	210
300 °C (1st heating)	7.06	0.89	0.33	0.333	300
	8.15	0.77	0.29	0.289	220
a = 3.09 nm, c = 0.71 nm	8.48	0.74	0.28	0.277	310
$M = 3211.72, Z = 1$ for $\rho = 0.91$	8.84	0.71	_	-	001
	9.40	0.67	0.25	0.250	400
	10.24	0.61	0.23	0.229	320
	17.68	0.36	_	_	002
	2.53	2.49	1.00	1.000	100
(d) Au12 +-PCCn-	4.37	1.44	0.58	0.577	110
(0) π $12 - CCp$ 25 °C (1st cooling)	5.05	1.25	0.50	0.500	200
	6.68	0.94	0.38	0.378	210
a = 2.87 nm $c = 0.69 nm$	7.58	0.83	0.33	0.333	300
M = 321172 $T = 1$ for $a = 1.09$	8.76	0.72	0.29	0.289	220
p = 1.07	9.14	0.69	-	-	001
	18.25	0.34	_	-	002

Table S17 (Continued)

	q (nm⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.35	2.68	1.00	1.000	110
	2.62	2.40	0.90	0.897	200
(e) Au12 ⁺ -PCCp ⁻	4.04	1.55	0.58	0.571	120
–20 °C (1st cooling)	4.64	1.35	0.51	0.500	220
	5.97	1.05	0.39	0.392	130
a = 4.80 nm, b = 3.23 nm,	6.40	0.98	0.37	0.360	420
c = 0.68 nm	7.40	0.85	0.32	0.308	520
M = 3211.72, 2 = 210r p = 1.01	8.04	0.78	0.29	0.285	240
	9.21	0.68	-	0.571 0.500 0.392 0.360 0.308 0.285 - 1.000 0.577 0.500 0.378 0.333 0.289 - 0.250 0.229 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 0.250 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 0.550 0.378 0.333 0.289 0.277 - 0.550 0.378 0.333 0.289 0.378 0.333 0.289 0.378 0.333 0.289 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.378 0.333 0.289 0.378 0.333 0.289 0.378 0.333 0.289 0.277 - 0.250 0.229 - 0.250 0.378 0.333 0.289 0.378 0.333 0.289 0.378 0.333 0.289 0.378 0.333 0.289 0.378 0.333 0.289 0.277 - 0.250 0.229 - - 0.250 0.229 0.277 - 0.250 0.229 0.277 - 0.250 0.229 - 0.250 0.277 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.229 - 0.250 0.2577 0.500 0.378 0.500 0.378 0.500 0.378 0.500 0.378 0.500 0.378 0.378 0.3500 0.378 0.3500 0.378 0.3500 0.378 0.3500 0.378 0.3500 0.378 0.3500 0.378 0.378 0.3500 0.378 0.3500 0.378 0.378 0.3500 0.378 0.378 0.3500 0.378	001
	2.48	2.53	1.00	1.000	100
	4.29	1.46	0.58	0.577	110
	4.96	1.27	0.50	0.500	200
(f) Au12 ⁺ -PCCp [−]	6.55	0.96	0.38	0.378	210
100 °C (1st cooling)	7.43	0.85	0.33	0.333	300
	8.59	0.73	0.29	0.289	220
a = 2.92 nm, c = 0.69 nm	9.08	0.69	-	_	001
$M = 3211.72, Z = 1$ for $\rho = 1.04$	9.89	0.64	0.25	0.250	400
	10.77	0.58	0.23	0.229	320
	18.10	0.35	_	-	002
	2.42	2.59	1.00	1.000	100
	4.20	1.50	0.58	0.577	110
	4.84	1.30	0.50	0.500	200
(q) Au12 ⁺-PCCp⁻	6.41	0.98	0.38	0.378	210
200 °C (1st cooling)	7.27	0.88	0.33	0.333	300
Colh	8.40	0.75	0.29	0.289	220
<i>a</i> = 2.99 nm, <i>c</i> = 0.70 nm	8.74	0.72	0.28	0.277	310
<i>M</i> = 3211.72, <i>Z</i> = 1 for <i>ρ</i> = 0.98	8.96	0.70	_	-	001
	9.67	0.65	0.25	0.250	400
	10.56	0.60	0.23	0.229	320
	17.92	0.35	_	- 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 0.250 0.229 - 1.000	002
	2.38	2.64	1.00	1.000	100
	4.12	1.52	0.58	0.577	110
	4.75	1.32	0.50	0.500	200
(h) Au12 ⁺-PCCp⁻	6.29	1.00	0.38	0.378	210
300 °C (1st cooling)	7.13	0.88	0.33	0.333	300
Colh	8.24	0.76	0.29	0.289	220
<i>a</i> = 3.05 nm, <i>c</i> = 0.71 nm	8.58	0.73	0.28	0.277	310
$M = 3211.72, Z = 1$ for $\rho = 0.93$	8.84	0.71	_	_	001
·	9.48	0.66	0.25	0.250	400
	10.33	0.61	0.23	0.229	320
	17.68	0.36	_	_	002

^a The diffraction peaks which corresponded to 002, 003, and 004 were observed at the wide-angle region (Figure S112).

Figure S111 Possible packing models of Au12⁺-PCCp⁻, Related to Table 1. Possible packing models of **Au12**⁺-PCCp⁻ in (a) Col_r and (b) Col_h structures.

Figure S112 Wide-angle XRD of Au12⁺-PCCp⁻, Related to Table 1.

Wide-angle XRD of $Au12^+$ -PCCp⁻ at 200 °C (1st cooling). The diffraction peak at 0.70 nm is derived from the alternate stacking of porphyrin–Au^{III} complex and PCCp⁻ in the Col_h packing structure (Table S17 and Figure S110,111). Highly ordered charge-by-charge assembly affords higher-order diffractions derived from (001) peak.

XRD patterns of Au16⁺-PCCp⁻ at (a) 25 °C (1st heating), (b) 48 °C (1st heating), (c) 100 °C (1st heating), (d) 280 °C (1st heating), (e) 330 °C (1st heating), (f) 280 °C (1st cooling), (g) 200 °C (1st cooling), and (h) 100 °C (1st cooling). The XRD patterns of (a–d,f–h) exhibit Col_h structures (Figure S115).

Figure S114 XRD patterns of Au16⁺-PCCp⁻, Related to Table 1 and Figure 8. XRD patterns of Au16⁺-PCCp⁻ at (i) 0 °C (1st cooling), (j) 100 °C (2nd heating), (k) 200 °C (2nd heating), and (l) 280 °C (2nd heating) (Figure labels are continued from Figure S113). The XRD patterns of (i–l) exhibit Col_h structures (Figure S115).

Table S18 XRD peaks of Au16⁺-PCCp⁻, Related to Table 1 and Figure 8.

XRD peaks of $Au16^+$ -PCCp⁻ at (a) 25 °C (1st heating), (b) 48 °C (1st heating), (c) 100 °C (1st heating), (d) 280 °C (1st heating), (f) 280 °C (1st cooling), (g) 200 °C (1st cooling), (h) 100 °C (1st cooling), (i) 0 °C (1st cooling), (j) 100 °C (2nd heating), (k) 200 °C (2nd heating), and (l) 280 °C (2nd heating) (Figure S113,114). The peaks which can be indexed are represented.^a

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.23	2.81	1.00	1.000	100
	3.95	1.59	0.56	0.577	110
	4.47	1.41	0.50	0.500	200
	6.07	1.04	0.37	0.378	210
(a) $Au16^{-}PCCp^{-}$	6.72	0.93	0.33	0.333	300
25 C (Tst heating)	7.68	0.82	0.29	0.289	220
2 - 325 pm = 0.48 pm	7.97	0.79	0.28	0.277	310
M = 3885.02 $Z = 1$ for $a = 1.04$	8.97	0.70	0.25	0.250	400
w = 5003.02, 2 = 1.01 p = 1.04	9.26	0.68	-	-	001
	9.93	0.63	0.22	0.229	320
	10.48	0.60	0.21	0.218	410
	11.86	0.53	0.19	0.189	420

Table S18 (Continued)

	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.19	2.87	1.00	1.000	100
	3.80	1.65	0.58	0.577	110
	4.38	1.43	0.50	0.500	200
(b) Au16 ⁺-PCCp⁻	5.80	1.08	0.38	0.378	210
48 °C (1st heating)	6.56	0.96	0.33	0.333	300
Colh	7.59	0.83	0.29	0.289	220
a = 3.32 nm, $c = 0.69$ nm	7.89	0.80	0.28	0.277	310
$M = 3885.02, Z = 1$ for $\rho = 0.99$	8.75	0.72	0.25	0.250	400
	9.15	0.69	-	-	001
	18.22	0.35	-	_	002
	2.15	2.92	1.00	1.000	100
	3.74	1.68	0.58	0.577	110
	4.33	1.45	0.50	0.500	200
	5.72	1.10	0.38	0.378	210
(c) Au16 ⁺-PCCp⁻	6.49	0.97	0.33	0.333	300
100 °C (1st heating)	7.49	0.84	0.29	0.289	220
Colh	7.79	0.81	0.28	0.277	310
a = 3.37 nm, c = 0.69 nm	8.65	0.73	0.25	0.250	400
$M = 3885.02, Z = 1$ for $\rho = 0.95$	9.10	0.69	_	_	001
	9.39	0.67	0.23	0.229	320
	9.87	0.64	0.22	0.218	410
	18.14	0.35	_	_	002
	2.09	3.01	1.00	1.000	100
	3.62	1.74	0.58	0.577	110
	4.18	1.50	0.50	0.500	200
	5.53	1.14	0.38	0.378	210
(d) Au16 ⁺-PCCp⁻	6.26	1.00	0.33	0.333	300
280 °C (1st heating)	7.23	0.87	0.29	0.289	220
Colh	7.52	0.84	0.28	0.277	310
<i>a</i> = 3.48 nm, <i>c</i> = 0.71 nm	8 34	0.75	0.25	0.250	400
$M = 3885.02, Z = 1$ for $\rho = 0.87$	8.89	0.71	-	-	001
	9.06	0.69	0.23	ratio (calc.) 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 -	320
	9.51	0.66	0.23	0.218	410
	17 71	0.36	_	-	002
	2 10	2 99	1.00	1 000	100
	3.64	1 73	0.58	0.577	100
	4 20	1.75	0.50	0.500	200
	4.20 5 54	1.30	0.30	0.300	200
(f) Au16 ⁺-PCCp⁻	2.30	1.15	0.00	0.370	210
280 °C (1st cooling)	7.24	0.07	0.33	0.000	300 320
Col _h	7.20	0.07	0.27	0.207	220
<i>a</i> = 3.46 nm, <i>c</i> = 0.71 nm	7.30	0.00	0.20	0.277	310
$M = 3885.02, Z = 1 \text{ for } \rho = 0.88$	ö.41	0.75	0.25	0.250	400
	8.88	0./1	-	-	001
	9.13	0.69	0.23	1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.2218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.2218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - - 0.229 0.218 - - - 0.229 0.218 - - - - 0.229 0.218 - - - - - - - - - - - - -	320
	9.62	0.65	0.22		410
	17.71	0.36	-	-	002

Table S18 (Continued)

	q (nm⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.13	2.95	1.00	1.000	100
	3.68	1.71	0.58	0.577	110
	4.26	1.48	0.50	0.500	200
	5.63	1.12	0.38	0.378	210
(g) Au16 ⁺ -PCCp [−]	6.40	0.98	0.33	0.333	300
200 °C (1st cooling)	7.37	0.85	0.29	0.289	220
	7.68	0.82	0.28	0.277	310
a = 3.40 nm, c = 0.70 nm	8.53	0.74	0.25	0.250	400
$M = 3885.02, Z = 1$ for $\rho = 0.92$	8.97	0.70	_	-	001
	9.26	0.68	0.23	0.229	320
	9.76	0.64	0.22	0.218	410
	17.93	0.35	_	_	002
	2.18	2.89	1.00	1.000	100
	3.77	1.66	0.58	0.577	110
	4.37	1.44	0.50	0.500	200
	5.78	1.09	0.38	0.378	210
(h) Au16 ⁺-PCCp⁻	6.55	0.96	0.33	0.333	300
100 °C (1st cooling)	7.57	0.83	0.29	0.289	220
Colh	7.87	0.80	0.28	0.277	310
<i>a</i> = 3.33 nm, <i>c</i> = 0.69 nm	8.74	0.72	0.25	0.250	400
$M = 3885.02, Z = 1$ for $\rho = 0.97$	9.10	0.69	_	_	001
	9.48	0.66	0.23	ratio (calc.) 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 0.229 0.218 0.229 0.218 0.229 0.218 0.229 0.218 0.229 0.218 0.229 0.218 0.229 0.218 0.229 0.218 0.229 0.218 0.229 0.218	320
	10.00	0.63	0.20	0.218	410
	18.13	0.35	-	0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277	002
	2 31	2 72	1.00	1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.200 - 0.229 0.218 - 0.229 0.218 - <td< td=""><td>100</td></td<>	100
(i) A::14+ DCC=-	3.88	1.62	0.60	0.577	100
(i) Auto-recep	3.00	1.02	0.00	0.500	200
Cal	4.03	1.30	0.30	0.300	200
conh	6.22	0.00	0.37	0.378	210
A = 3.14 mm, $C = 0.07$ mm M = 3885.02 $Z = 1$ for $a = 1.12$	0.90	0.90	0.33	0.333	200
m = 3003.02, 2 = 1101 p = 1.12	7.00	0.01	0.30	0.209	220
	0.22	0.77	0.28	1.000 0.577 0.500 0.378 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 0.229 0.218	310
	2.18	2.89	1.00	1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.2218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - - 0.229 0.218 - - - 0.229 0.218 - - - - - - - - - - - - -	100
	3.//	1.66	0.58	0.577	110
	4.36	1.44	0.50	0.500	200
(j) Au16 ⁺-PCCp⁻	5.78	1.09	0.38	0.378	210
100 °C (2nd heating)	6.54	0.96	0.33	0.333	300
Colh	7.55	0.83	0.29	0.289	220
<i>a</i> = 3.33 nm, <i>c</i> = 0.69 nm	7.87	0.80	0.28	0.277	310
$M = 3885.02, Z = 1$ for $\rho = 0.97$	8.74	0.72	0.25	0.250	400
	9.08	0.69	_	1.000 0.577 0.500 0.378 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.250 - 0.229 0.218 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.218 - - 0.229 0.2218 - - 0.229 0.2218 - - 0.229 0.2218 - - 0.229 0.2218 - - 0.229 0.2218 - - 0.229 0.2218 - - 0.229 0.2218 - - 0.229 0.2218 - - 0.229 0.2218 - - 0.229 0.2218 - - 0.229 0.2218 - - - 0.229 0.2218 - - - 0.229 0.2218 - - - 0.229 0.2218 - - - 0.229 0.2218 - - - 0.229 0.2218 - - - 0.229 0.2218 - - - 0.229 0.2218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.2218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - 0.229 0.218 - - - - 0.229 0.218 - - - - - - - - - - - - -	001
	9.47	0.66	0.23		320
	9.94	0.63	0.22	0.218	410
	18.14	0.35	-	-	002
	2.13	2.95	1.00	1.000	100
	3.68	1.71	0.58	0.577	110
	4.26	1.48	0.50	0.500	200
(k) Au14+ DCC	5.64	1.11	0.38	0.378	210
(K) AUIO'- $PCCP^{-}$	6.40	0.98	0.33	0.333	300
	7.37	0.85	0.29	0.289	220
	7.69	0.82	0.28	0.277	310
a = 3.40 nm, $c = 0.70$ nm	8.53	0.74	0.25	0.250	400
$101 = 3885.02, Z = 1$ for $\rho = 0.92$	8.97	0.70	-	_	001
	9.26	0.68	0.23	0.229	320
	9.76	0.64	0.22	0.218	410
	17.90	0.35	_	_	002
		0.00			

Table S18 (Continued)

	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.10	2.99	1.00	1.000	100
	3.64	1.73	0.58	0.577	110
	4.20	1.50	0.50	0.500	200
	5.55	1.13	0.38	0.378	210
(I) Au16 ⁺ -PCCp ⁻	6.31	1.00	0.33	0.333	300
280 °C (2nd heating)	7.27	0.86	0.29	0.289	220
	7.58	0.83	0.28	0.277	310
a = 3.46 nm, $c = 0.71$ nm M = 2885.02, $Z = 1.6ar$, $c = 0.89$	8.41	0.75	0.25	0.250	400
M = 3665.02, 2 = 1 for p = 0.86	8.87	0.71	-	-	001
	9.14	0.69	0.23	0.229	320
	9.61	0.65	0.22	0.218	410
	18.71	0.36	-	_	002

^a The diffraction peaks which corresponded to 002, 003, and 004 were observed at the wide-angle region (Figure S116).

Figure S115 Possible packing model of Au16⁺-PCCp⁻, Related to Table 1 and Figure 8. Possible packing model of Au16⁺-PCCp⁻ in a Col_h structure.

Figure S116 Wide-angle XRD of Au16⁺-PCCp⁻, Related to Table 1 and Figure 8. Wide-angle XRD of **Au16⁺-**PCCp⁻ at 280 °C (1st cooling). The diffraction peak at 0.70 nm is derived from the alternate stacking of porphyrin–Au^{III} complex and PCCp⁻ in the Col_h packing structure (Table S18 and Figure S113–115). Highly ordered charge-by-charge assembly affords higher-order diffractions derived from (001) peak.

XRD patterns of Au20⁺-PCCp⁻ at (a) 25 °C (1st heating), (b) 100 °C (1st heating), (c) 200 °C (1st heating), (d) 250 °C (1st heating), (e) 280 °C (1st heating), (f) 250 °C (1st cooling), (g) 200 °C (1st cooling), and (h) 100 °C (1st cooling). The XRD patterns of (a–d,f–h) exhibit Col_h structure (Figure S119).

Figure S118 XRD patterns of Au20⁺-PCCp⁻, Related to Table 1. XRD patterns of Au20⁺-PCCp⁻ at (i) 25 °C (1st cooling), (j) 100 °C (2nd heating), (k) 200 °C (2nd heating), and (l) 250 °C (2nd heating) (Figure labels are continued from Figure S117). The XRD patterns of (i) and (j–l) exhibit Col_r and Col_h structures, respectively (Figure S119).

Table S19 XRD peaks of Au20⁺-PCCp⁻, Related to Table 1.

XRD peaks of **Au20**⁺-PCCp⁻ at (a) 25 °C (1st heating), (b) 100 °C (1st heating), (c) 200 °C (1st heating), (d) 250 °C (1st heating), (f) 250 °C (1st cooling), (g) 200 °C (1st cooling), (h) 100 °C (1st cooling), (i) 25 °C (1st cooling), (j) 100 °C (2nd heating), (k) 200 °C (2nd heating), and (l) 250 °C (2nd heating) (Figure S117,118). The peaks which can be indexed are represented.^a

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	2.14	2.94	1.00	1.000	100
	3.75	1.67	0.57	0.577	110
(a) $Au20^+$ -PCCp ⁻	4.27	1.47	0.50	0.500	200
25 °C (1st heating)	5.74	1.10	0.37	0.378	210
	6.40	0.98	0.33	0.333	300
a = 5.39 nm, $c = 0.67$ nm M = 4559.22, $7 = 1$ for $a = 1.14$	7.27	0.86	0.29	0.289	220
m = 4336.32, 2 = 1101 p = 1.14	7.77	0.81	0.28	0.277	310
	9.41 0.67	001			
	1.97	3.19	1.00	1.000	110
	3.42	1.83	0.57	0.577	110
	3.95	1.59	0.50	0.500	200
(b) Au20 ⁺-PCCp⁻	5.23	1.20	0.38	0.378	210
100 °C (1st heating)	5.93	1.06	0.33	0.333	300
Colh	6.85	0.92	0.29	0.289	220
<i>a</i> = 3.69 nm, <i>c</i> = 0.69 nm	7.12	0.88	0.28	0.277	310
$M = 4558.32, Z = 1$ for $\rho = 0.93$	7.90	0.80	0.25	0.250	400
	8.61	0.73	0.23	0.229	320
	9.11	0.69	-	-	001
	18.14	0.35	-	-	002

Table S19 (Continued)

	q (nm-1)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.93	3.25	1.00	1.000	100
	3.35	1.88	0.58	0.577	110
	3.86	1.63	0.50	0.500	200
(c) Au20 ⁺ -PCCp ⁻	5.11	1.23	0.38	0.378	210
200 °C (1st heating)	5.79	1.08	0.33	0.333	300
Colh	6.70	0.94	0.29	0.289	220
<i>a</i> = 3.75 nm, <i>c</i> = 0.70 nm	6.97	0.90	0.28	0.277	310
$M = 4558.32, Z = 1$ for $\rho = 0.89$	7.72	0.81	0.25	0.250	400
	8.42	0.75	0.23	0.229	320
	8.96	0.70	-	-	001
	17.90	0.35	-	-	002
	1.91	3.29	1.00	1.000	100
	3.31	1.90	0.58	0.577	110
	3.83	1.64	0.50	0.500	200
(d) Au20 ⁺-PCCp⁻	5.06	1.24	0.38	0.378	210
250 °C (1st heating)	5.74	1.10	0.33	0.333	300
Col _h	6.63	0.95	0.29	0.289	220
<i>a</i> = 3.79 nm, <i>c</i> = 0.71 nm	6.90	0.91	0.28	0.277	310
$M = 4558.32, Z = 1$ for $\rho = 0.86$	7.65	0.82	0.25	0.250	400
	8.34	0.75	0.23	0.229	320
	8.91	0.71	-	-	001
	17.80	0.35	-	-	002
	1.93	3.25	1.00	1.000	100
	3.36	1.87	0.58	0.577	110
	3.86	1.63	0.50	0.500	200
(f) $Au20^+$ -PCCp ⁻	5.11	1.23	0.38	0.378	210
250 °C (1st cooling)	5.79	1.08	0.33	0.333	300
2 = 3.75 nm $c = 0.71 nm$	6.71	0.94	0.29	0.289	220
M = 4558 32 $7 = 1$ for $a = 0.88$	6.97	0.90	0.28	0.277	310
w = 4550.52, 2 = 1101 p = 0.00	8.42	0.75	0.23	0.229	320
	8.87	0.71	-	-	001
	17.69	0.36	-	-	002
	1.96	3.21	1.00	1.000	100
	3.38	1.86	0.58	0.577	110
(g) Au20 ⁺ –PCCp ⁻	3.90	1.61	0.50	0.500	200
200 °C (1st cooling)	5.16	1.22	0.38	0.378	210
Colh	5.85	1.07	0.33	0.333	300
a = 3.71 nm, c = 0.70 nm	6.75	0.93	0.29	0.289	220
$M = 4558.32, Z = 1$ for $\rho = 0.91$	7.05	0.89	0.28	0.277	310
	8.96	0.70	-	-	001
	17.89	0.35	-	_	002
(h) Au20 ⁺-PCCp⁻	1.99	3.16	1.00	1.000	100
100 °C (1st cooling)	3.45	1.82	0.58	0.577	110
Colh	3.99	1.58	0.50	0.500	200
a = 3.64 nm, c = 0.68 nm	5.26	1.19	0.38	0.378	210
$M = 4558.32, Z = 1$ for $\rho = 0.96$	9.18	0.68	-	-	001

Table S19 (Continued)

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.91	3.29	1.00	1.000	200
(i) Au20 ⁺ -PCCp ⁻	2.15	2.92	0.89	0.890	110
25 °C (1st cooling)	3.42	1.83	0.56	0.554	310
Col_r (c2mm)	3.88	1.62	0.49	0.500	400
a = 6.57 nm, b = 3.26 nm,	5.18	1.21	0.37	0.371	510
C = 0.07 nm M = 4558 32, Z = 2 for a = 1.03	6.97	0.90	0.27	0.277	620
W = 4556.52, Z = 2101 p = 1.05	9.09	0.69	-	-	001
	1.99	3.16	1.00	ratio (calc.) 1.000 0.890 0.554 0.500 0.371 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.229	100
	3.45	1.82	0.58	0.577	110
(j) Au20 ⁺ -PCCp [−]	3.99	1.58	0.50	0.500	200
100 °C (2nd heating)	5.26	1.19	0.38	0.378	210
	5.99	1.05	0.33	0.333	300
a = 3.64 nm, c = 0.69 nm	6.90	0.91	0.29	0.289	220
$M = 4558.32, Z = 1$ for $\rho = 0.95$	7.17	0.88	0.28	0.277	310
	9.09	0.69	-	-	001
	1.97	3.19	1.00	1.000	100
	3.38	1.86	0.58	0.577	110
(k) Au20 ⁺-PCCp⁻	3.91	1.61	0.50	0.500	200
200 °C (2nd heating)	5.16	1.22	0.38	0.378	210
Colh	5.86	1.07	0.34	0.333	300
<i>a</i> = 3.69 nm, <i>c</i> = 0.70 nm	6.75	0.93	0.29	0.289	220
$M = 4558.32, Z = 1 \text{ for } \rho = 0.92$	7.03	0.89	0.28	0.277	310
	9.02	0.70	_	ratio (calc.) 1.000 0.890 0.554 0.500 0.371 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 - 1.000 0.577 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.500 0.378 0.333 0.289 0.277 0.229	001
	17.92	0.35	-		002
	1.93	3.25	1.00	1.000	100
	3.36	1.87	0.58	0.577	110
	3.88	1.62	0.50	0.500	200
(I) Au20 ⁺ -PCCp [−]	5.13	1.23	0.38	0.378	210
250 °C (2nd heating)	5.82	1.08	0.33	0.333	300
	6.72	0.94	0.29	0.289	220
a = 3./5 nm, $c = 0./0$ nm	6.99	0.90	0.28	0.277	310
$N = 4558.32, Z = 1$ for $\rho = 0.89$	8.48	0.74	0.23	0.229	320
	13.04	0.48	_	_	001
	17.73	0.35	_	_	002

^a The diffraction peaks which corresponded to 002, 003, and 004 were observed at the wide-angle region (Figure S120).

Figure S119 Possible packing models of Au20⁺-PCCp⁻, Related to Table 1. Possible packing models of Au20⁺-PCCp⁻ in (a) Col_h and (b) Col_r (c2mm) structures.

Figure S120 Wide-angle XRD of Au20⁺-PCCp⁻, Related to Table 1. Wide-angle XRD of **Au20**⁺-PCCp⁻ at 250 °C (1st cooling). The diffraction peak at 0.70 nm is derived from the alternate stacking of porphyrin–Au^{III} complex and PCCp⁻ in the Col_h packing structure (Table S19 and Figure S117–119). Highly ordered charge-by-charge assembly affords higher-order diffractions derived from (001) peak.

Figure S121 XRD peaks of xerogel, Related to Figure 6.

XRD peaks of xerogel obtained from an octane gel (10 mg/mL) of **Au16**⁺-PCCp⁻. The XRD pattern exhibits a Col_r structure (Figure S122).

Table S20 XRD peaks of xerogel, Related to Figure 6.

XRD peaks of xerogel obtained from an octane gel (10 mg/mL) of $Au16^+$ -PCCp⁻ (Figure S121). The peaks which can be indexed are represented.

	q (nm ⁻¹)	d-spacing (nm)	ratio	ratio (calc.)	hkl
	1.98	3.26	1.00	1.000	200
Au16⁺-PCCp⁻	2.56	2.45	0.75	0.750	110
25 °C	3.04	2.06	0.60	0.655	210
$\operatorname{Col}_r(p2gg)$	3.86	1.63	0.47	0.499	220
a = 4.90 nm, $b = 4.36$ nm,	5.84	1.07	0.31	0.327	420
c = 0.75 nm	8.64	0.73	_	-	001
M = 3003.02, 2 = 2101 p = 0.03	17.11	0.37	_	_	002

Figure S122 Possible packing model of xerogel, Related to Figure 6.

Possible packing model of xerogel obtained from an octane gel (10 mg/mL) of $Au16^+$ -PCCp⁻ in a Col_r (p2gg) structure.

Figure S123 Summary for the XRD measurements of sheared ion-pairing assemblies of Au20⁺-PCCp⁻, Related to Figure 9.

Summary for the XRD measurements of sheared ion-pairing assemblies of $Au20^+$ -PCCp⁻ (Figure S125,126): cartoons for (a) the shearing experiment, for which the sample was sheared between two Kapton (polyimide) films, and (b) the orientations of domains (yellow cylinders) (top) and the packing mode inside of the domains (bottom) for (i) the mesophase as the original state, (ii) the sheared sample at 230 °C, (iii) that upon cooling to r.t., and (iv) that upon heating to 100 °C. Here, the detailed investigation for $Au20^+$ -PCCp⁻ was conducted due to the appearance of two different assembling structures as the mesophase and crystalline states. In the mesophase as the original state, domains consisting of a Col_h structure were non-oriented with multiple domains ((i)). By shearing in one direction, domains were aligned along the sheared direction ((ii)). An anisotropic orientation caused by shearing was maintained even at 100 °C as the Col_h mesophase ((iv)) (Figure S126) after the phase transition from Col_r at r.t. ((iii)) (Figure S125). The retention of the domain orientations during thermal processes suggested the contributions during thermal processes was also observed in the assemblies. Such retention of the domain orientations during thermal processes was also substituents exhibiting dipoles (Grigoriadis et al., 2010; Haase et al., 2011).

XRD patterns of Au16⁺-PCCp⁻ sheared between Kapton (polyimide) films at ca. 250 °C and cooled to r.t. (1st cooling): (a) 2D XRD diffraction pattern with an arrow indicating sheared direction, (b) a diagram of meridional (sheared) direction (90° ± 20°) of 2D XRD, (c) a diagram of equatorial direction (0° ± 20°) of 2D XRD, and (d) a combined diagram including meridional (sheared) (red) and equatorial (blue) directions. 2D XRD diffraction pattern image is slightly tilted due to the sample setting conditions. The diffractions at the smaller angle region assignable to the hexagonal packing increased in the equatorial direction (blue line in (c,d)), whereas the diffractions at the wider angle region including the 001 peak (0.68 nm) enhanced in the meridional direction (red in (b,d)). The 001 (0.68 nm) peak is assignable to the repeating distance of identical π -electronic charged species in the assembly comprising alternately arranged π -electronic ions (charge-by-charge assembly). These results clearly suggest that the hexagonally assembled charge-by-charge columnar assembly is highly oriented by shearing. The enhanced diffraction peak for halo at the angle of ~±20° based on meridional (sheared) direction can be ascribable to the charge-by-charge columnar assembly with the arrangement of laterally rotating porphyrin–Au^{III} complexes with a rotating angle of ~20° (Pisula et al., 2007).

XRD patterns of Au20⁺-PCCp⁻ sheared between Kapton (polyimide) films at ca. 230 °C and cooled to r.t. (1st cooling): (a) 2D XRD diffraction pattern with an arrow indicating sheared direction, (b) a diagram of meridional (sheared) direction (90° ± 20°), (c) a diagram of equatorial direction (0° ± 20°), and (d) a combined diagram including meridional (sheared) (red) and equatorial (blue) directions. 2D XRD diffraction pattern image is slightly tilted due to the sample setting conditions. Diffractions of asterisk indicate the diffractions from Kapton film. The diffractions at the smaller angle region assignable to the rectangular packing increased in the equatorial direction (blue line in (c,d)), whereas the diffractions at the wider angle region including the 001 peak (0.68 nm) enhanced in the meridional direction (red in (b,d)). The 001 (0.68 nm) peak is assignable to the repeating distance of identical π -electronic charged species in the assembly comprising alternately arranged π -electronic ions (charge-by-charge assembly). These results clearly suggest that the rectangularly assembled charge-by-charge columnar assembly is highly oriented by shearing (Figure S123b). The enhanced diffraction peak for halo at the angle of ~±20° based on meridional (sheared) direction can be ascribable to the charge-by-charge columnar assembly with the arrangement of laterally rotating porphyrin–Au^{III} complexes with a rotating angle of ~20° (Pisula et al., 2007).

XRD patterns of Au20⁺-PCCp⁻ sheared between Kapton (polyimide) films at ca. 230 °C, cooled to r.t., and heated to 100 °C (2nd heating): (a) 2D XRD diffraction pattern with an arrow indicating sheared direction, (b) a diagram of meridional (sheared) direction (90° \pm 20°), (c) a diagram of equatorial direction (0° \pm 20°), and (d) a combined diagram including meridional (sheared) (red) and equatorial (blue) directions. 2D XRD diffraction pattern image is slightly tilted due to the sample setting conditions. Diffractions of asterisk indicate the diffractions from Kapton film. The diffractions at the smaller angle region assignable to the hexagonal packing increased in the equatorial direction (blue line in (c,d)), whereas the diffractions at the wider angle region including the 001 peak (0.68 nm) enhanced in the meridional direction (red in (b,d)). The 001 (0.68 nm) peak is assignable to the repeating distance of identical π -electronic charged species in the assembly comprising alternately arranged π -electronic ions (charge-by-charge assembly). These results clearly suggest that the hexagonally assembled columnar charge-by-charge assembly is highly oriented by shearing. In addition, anisotropic orientation caused by shearing was maintained at 100 °C as a Col_h mesophase after the phase transition from Col_r at r.t. (Figure S123b).

2. Supplemental references

- Che, C.M., Sun, R.W.Y., Yu, W.Y., Ko, C.B., Zhu, N., and Sun, H. (2003). Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem. Commun. 1718–1719.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H. Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng,G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. *Gaussian 09*, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
- Grigoriadis, C., Haase, N., Butt, H.J., Müllen, K., and Floudas, G. (2010). Negative Thermal Expansion in Discotic Liquid Crystals of Nanographenes. Adv. Mater. 22, 1403–1406.
- Haase, N., Grigoriadis, C., Butt, H.J., Müllen, K., and Floudas, G. (2011). Effect of Dipole Functionalization on the Thermodynamics and Dynamics of Discotic Liquid Crystals. J. Phys. Chem. B *115*, 5807–5814.
- Kabuto, C., Akine, S., Nemoto, T., Kwon, E. (2009). Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses. J. Cryst. Soc. Jpn. 51, 218–224.
- Maruyama, S., Sato, K., and Iwahashi, H. (2010). Room Temperature Liquid Porphyrins. Chem. Lett. 39, 714–716.
- Nowak-Król, A., Gryko, D., and Gryko, D.T. (2010). *Meso*-Substituted Liquid Porphyrins. Chem. Asian J. 5, 904–909.
- Pisula, W., Tomović, Ž., Watson, M.D., Müllen, K., Kussmann, J., Ochsenfeld, C., Metzroth, T., and Gauss, J. (2007). Helical Packing of Discotic Hexaphenyl Hexa-*peri*-hexabenzocoronenes: Theory and Experiment. J. Phys. Chem. B *111*, 7481–7487.
- Sakai, T., Seo, S., Matsuoka, J., and Mori, Y. (2013). Synthesis of Functionalized Tetracyanocyclopentadienides from Tetracyanothiophene and Sulfones. J. Org. Chem. 78, 10978–10985.
- Sasano, Y., Yasuda, N., and Maeda, H. (2017). Deprotonated *meso*-hydroxyporphyrin as a stable π -electronic anion: the building unit of an ion-pairing assembly. Dalton Trans. 46, 8924–8928.
- Stähler, C., Shimizu, D., Yoshida, K., Furukawa, K., Herges, R., and Osuka, A. (2017). Stable Ni^{II} Porphyrin *meso*-Oxy Radical with a Quartet Ground State. Chem. Eur. J. *23*, 7217–7220.
- Timkovich, R., and Tulinsky, A. (1977). Coordination and Geometry of Gold in Chloro($\alpha,\beta,\gamma,\delta$ -tetraphenylporphinate)gold(III). Inorg. Chem. 16, 962–963.
- Yasuda, N., Murayama, H., Fukuyama, Y., Kim, J. E., Kimura, S., Toriumi, K., Tanaka, Y., Moritomo, Y., Kuroiwa, Y., Kato, K., Tanaka, H., and Takata, M. (2009). X-ray diffractometry for the structure determination of a submicrometre single powder grain. J. Synchrotron Rad. 16, 352–357.
- Yasuda, N., Fukuyama, Y., Toriumi, K., Kimura, S., and Takata, M. (2010). Submicrometer Single Crystal Diffractometry for Highly Accurate Structure Determination. AIP Conf. Proc. *1234*, 147–150.
- Wakita, K. Yadokari-XG, Software for Crystal Structure Analyses, 2001.