
Experience-dependent expression of miR132 regulates ocular
dominance plasticity

Paola Tognini1,2, Elena Putignano1,2, Alessandro Coatti1,2, and Tommaso Pizzorusso1,3

1Institute of Neuroscience CNR, via Moruzzi, 1 56100 PISA, ITALY
2Scuola Normale Superiore, 56100 PISA ITALY
3Dipartimento di Psicologia, Universita’ di Firenze, Via di San Salvi 12, Padiglione 26, 50135
Firenze, Italy

Abstract
MiR132 is a CREB induced microRNA involved in dendritic spine plasticity. We observed that
visual experience regulates histone post-translational modifications at a CRE locus important for
miR212/132 cluster transcription and miR132 expression in the visual cortex of juvenile mice.
Monocular deprivation reduced miR132 expression in the cortex contralateral to the deprived eye.
Counteracting miR132 reduction with infusion of chemically modified miR132 mimic
oligonucleotides completely blocked ocular dominance plasticity (ODP).

In the visual cortex, neural circuits show experience-dependent plasticity particularly during
a developmental sensitive period1. Several studies showed that CREB-mediated gene
transcription together with epigenetic mechanisms controlling histone post-translational
modifications are crucial for plasticity in the visual cortex and in other brain structures2,3.
MiR132 is a CREB regulated microRNA implicated in plasticity of dendrites and spines4-8.
We analyzed its role in visual cortical plasticity by investigating experience-dependent
regulation of miR132 expression, and miR132 involvement in ODP. Procedures used were
approved by the Italian Ministry of Public Health.

We first asked whether visual experience induces histone posttranslational modifications at
CRE loci important for transcription9 of the miR212/132 cluster in the visual cortex of mice
reared in complete darkness for 3 days from P24 (DR3d) and exposed to light for 20 min
(LR20m). Chromatin immunoprecipitation (ChIP) was performed using antibodies specific
for the visual experience regulated histone H3 acetylation (Lys9–14), phospho(Ser10)-
acetylation(Lys14)3, and methylation [Me2(Lys4)] (Suppl. Fig. 1). The CRE locus in the fos
promoter was used as a positive control (Suppl. Fig. 2). We found that visual stimulation
increased the presence of all the analyzed epigenetic marks on the CRE sequence located
close to miR132 sequence [Ac(Lys9-14)H3 DR3d n=16 vs LR20m n=16, t test p=0.035;
p(Ser10) Ac(Lys14)H3 n=10 DR3d vs n=10 LR20m, t test p=0.018; Me2(lys4)H3, DR3d
n=7 vs LR20m n=9, t test p=0.017] and in the fos promoter [Ac(Lys9-14)H3 DR3d n=16 vs
20min LR20m n=16, Mann-Withney rank sum test p=0.018; p(Ser10) Ac(Lys14)H3, DR3d
n=10 vs LR20m n=10, t test p=0.05; Me2(lys4)H3, DR3d n=10 vs LR20m n=12, t test
p=0.020]. By contrast, a significant increase of H3 acetylation, but not in
phosphoacetylation and dimethylation, was present on the two CREs located immediately 5′
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to the miR212 sequence [Ac(Lys9-14)H3, DR3d n=13 vs LR20m n=14, Mann- Withney
rank sum test p=0.04; p(Ser10)Ac(Lys14)H3, DR3d n=10 vs LR20m n=10, Mann- Withney
rank sum test p=0.88; Me2(lys4)H3, DR3d n=9 vs LR20m n=9, t test p= 0.379] (Fig. 1a–c).
Specificity of ChIP was controlled using normal rabbit and normal mouse IgG (Suppl. Fig.
3)

Visual experience also regulated the expression of the primary transcript of the miR212/132
cluster (pri-miR132), mirroring transcriptional regulation, and of mature miR132. Dark
rearing from birth (DRB, n=3–4) blocked the developmental increase of cortical pri-miR132
and miR132 occurring in standard reared mice (STR, n=3–6) (Fig. 1d; Pri-miR132: two way
ANOVA, only the age×rearing interaction was significant p=0.012. Post hoc Holm-Sidak
comparisons showed that DRB significantly reduced pri-miR132 expression at P20, P25,
P30 and P35 with respect to STR. Within the factor age, P15 differed from P25, and P7
differed from P20, P25, P30 and P35 in STR mice only. MiR132: two way ANOVA, only
the age×rearing interaction was significant p=0.003. Post hoc Holm-Sidak comparisons
showed that DRB significantly reduced miR132 expression at P25, P30 and P35 with
respect to ST. Within the factor age P7 differed from P25, P30, P35; P15 was different from
P30 and P35; P20 was different from P30 and P35 in STR mice only.). Moreover, by using
the same stimulation used for histone marks assessment, we found that DR3d downregulated
pri-miR132 and miR132 visual cortical levels (Fig. 1e; Pri-mir132, DR3d n=4 vs P27 STR
n=4 t test p<0.001. miR132, DR3d n=4 vs P27 STR n=4 Mann-Withney rank sum test
p=0.029). Light exposure of DR3d mice (n=6) for 105 min (LR105m n=6) induced a
pronounced increase in pri-miR132 and miR132 declining 7 h (LR7h n=4) after stimulation
(Fig. 1f; Pri-miR132, one way ANOVA p<0.001, post hoc Holm-Sidak test: LR105m vs
DR3d p<0.05, LR105m vs LR7h p<0.05, other comparisons not significantly different.
MiR132, one way ANOVA p=0.01, post hoc Holm-Sidak test: LR105m vs DR3d p<0.05,
LR105m vs LR7h p<0.05, other comparisons not significantly different). In adult mice,
visual induction of primiR132 levels was reduced (Suppl. Fig. 4). Enhancement of histone
acetylation levels by means of trichostatin A treatment increased pri-miR132 visual
induction in adults (Suppl. Fig. 4), indicating that histone marks are involved in experience-
dependent pri-miR132 transcription.

Experience-dependent plasticity of the visual cortex is classically tested using monocular
deprivation. To investigate a possible role of miR132 in ODP, we analyzed the effect of
monocular deprivation (3 days from P25; MD3d) on histone marks. MD3d caused a
significant decrease in H3 phosphoacetylation, a mark correlated with transcription and
plasticity10, at all CRE sites tested, and a trend for decreased H3 dimethylation (p=0.07) at
the miR132 CRE site (Fig. 2a and Suppl. Fig. 5) in the visual cortex contralateral to the
deprived eye. MD3d also reduced pri-miR132 (Fig. 2b, n=17, ctx ipsilateral to the deprived
eye vs contralateral, paired t test p<0.001) and miR132 expression (n= 17, ipsilateral vs
contralateral, paired t test p=0.013). Pri-miR132 and miR132 expression in left and right
cortex of nondeprived mice was not different (Pri-miR132, control nondeprived mice n=4,
right ctx vs left ctx paired t test p=0.09; miR132, control nondeprived mice n=4, right ctx vs
left ctx paired t test p=0.70). In situ hybridization (ISH, Fig. 2c) showed a significant
reduction of miR132 expression in both monocular and binocular visual cortex contralateral
to the deprived eye as compared to the ipsilateral cortex (n=4, one way RM-ANOVA
p<0.001, post-hoc Holm-Sidak test p<0.05 for both monocular and binocular cortex). We
then asked whether the miR132 downregulation induced by MD3d was required for ODP.
We increased miR132 levels in the deprived cortex of monocularly deprived mice and we
assessed ODP of cortical neurons. To increase miR132 levels we administered chemically
modified doublestrand miRNA mimic11. MiR132 mimic was able to reduce the expression
of p120rasGAP, a miR132 target12, in cell culture (Suppl. Fig. 6). MiR132 mimic was
infused by means of an osmotic minipump connected to a cannula located 3 mm. anterior to
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the visual cortex. Visualization of biotinylated miRNA mimic showed that it reached the
visual cortex (Suppl. Fig. 7). The treated cortex showed reduced levels of MeCP2 (Suppl.
Fig. 7), another miR132 target important for synaptic development13. Moreover, miR132
mimic induced an increase in the percentage of mushroom/stubby spines (Suppl. Fig. 8), a
miR132 action previously shown in vitro4.

ODP was analyzed by electrophysiological recordings in MD3d mice treated in the cortex
contralateral to the deprived eye with miR132 mimic or control miRNA. qPCR analysis
showed that miR132 mimic treatment brought miR132 levels back to non deprived levels
(Suppl. Fig. 9). The contralateral bias index (CBI) was used to report the strength of
deprived contralateral eye responses for each animal, and the ocular dominance score (ODS)
of each neuron was used to assess ocular dominance of cortical cells14. As expected, MD3d
untreated mice, or MD3d mice infused with control, showed a significant CBI decrease and
a shift of ODS distribution towards the ipsilateral non deprived eye. By contrast, MD3d
mice treated with miR132 mimic did not shift CBI or ODS (Fig. 2d,e; ODS: MD3d miR132
mimic vs. MD3d control miR and MD3d K-S test p<0.05; Nondeprived vs. MD3d control
miR and MD3d K-S test p<0.05; other comparisons not significantly different; CBI: one
way ANOVA p<0.001, post hoc Holm-Sidak test MD3d miR132 mimic vs MD3d control
miR and MD3d p<0.05; nondeprived vs MD3d and MD3d control miR p<0.05; other
comparisons not significantly different). MiR132 mimic infusion did not disrupt general
functional properties of visual cortical neurons (Suppl. Fig. 10). The lack of ODP in miR132
mimic treated mice was confirmed also recording visually evoked potentials (VEPs)3.
Contra/ipsi (C/I) ratio of VEP response amplitude was significantly reduced by MD3d in
mice infused with control or untreated. By contrast, MD3d was ineffective in altering C/I
ratio in miR132 mimic infused mice (Fig. 2f; one way ANOVA p=0.002, post hoc Holm-
Sidak test MD3d miR132 mimic vs MD3d control miR and MD3d p<0.05; nondeprived vs
MD3d control miR and MD3d p<0.05; other comparisons not significantly different).

These data indicate that miR132 is a molecular transducer of the action of visual experience
on developing visual cortical circuits, possibly acting through modulation of dendritic spine
plasticity

Supplementary Material
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Fig. 1. Visual stimulation induces histone mark modifications on specific CRE loci close to
miR132 coding sequence and activates mature and primary miR132 expression
a) Ac(Lys9-14)H3 ChIP showed visually-induced H3 acetylation at the CRE loci upstream
of miR132, miR212 and fos. * p<0.05.
b) p(Ser10)Ac(Lys14)H3 ChIP showed visually-induced H3 phosphoacetylation at the CRE
sequences upstream of miR132 and fos, but not miR212.
c) Me2(Lys4)H3 ChIP showed visually-induced H3 dimethylation at the CRE sequence
upstream of miR132 and fos, but not miR212.
d) Developmental expression of pri-miR132 and miR132 in the visual cortex of STR and
DRB mice. Pri-miR132 (left) and miR132 (right) expression significantly increased with age
in STR but not in DRB mice. * represents significant differences between STR and DRB.
e) DR3d decreased pri-miR132 (left) and miR132 (right) in visual cortex respect to age
matched mice (P27 STR).
f) Visual stimulation after DR3d increased pri-miR132 (left) and miR132 (right) levels. Data
are reported as mean ± SEM.
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Fig. 2. MiR132 downregulation after monocular deprivation regulates ODP in juvenile mice
a) Decreased p(Ser10)Ac(Lys14)H3 at CREmiR132 in the binocular visual cortex
contralateral (left ctx contra) to the deprived eye with respect to the ipsilateral cortex (right
ctx ipsi) in MD3d mice (n=13, p(Ser10)Ac(Lys14)H3, right ctx ipsi vs left ctx contra paired
t test p=0.015; Ac(Lys9–14)H3, right ctx ipsi vs left ctx contra signed rank test p=0.3;
Me2(Lys4)H3 n=16, paired t test p=0.07).
b) MD3d decreased pri-miR132 (left) and miR132 (right) expression in the binocular visual
cortex contralateral to the deprived eye.
c) ISH for mature miR132 in MD3d mice showed a reduction in the cortex contralateral to
the deprived eye (bar = 100 micron). MiR132 positive cell density in nondeprived mice
(shaded area, average ± SEM, n=4) was not different from MD3d mice (t-test, p>0.05).
d) Cumulative distribution of ODS in nondeprived (N=6, n=103 cells), MD3d (N=5, n=83),
MD3d treated with miR132 mimic (N=5, n=79 cells), and MD3d treated with control
miRNA (control miR) mice (N=5, n=95 cells).
e) CBI of nondeprived (n=6), MD3d (n=5), MD3d miR132 mimic (n=5), and MD3d control
miR (n=5) mice. Open circles = single animal data, black circles = average CBI ± SEM.
Mice N as in d.
f) C/I VEP ratio of nondeprived (n=5), MD3d (n=4), MD3d miR132 mimic (n=5), and
MD3d control miR (n=5) mice. Open circles = single animal data, black circles = average
ratio ± SEM. Error bars=SEM in a,b,c.
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