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Abstract: Unmanned Aerial Vehicles (UAVs) are a novel technology for landform investigations,
monitoring, as well as evolution analyses of long−term repeated observation. However, impacted by
the sophisticated topographic environment, fluctuating terrain and incomplete field observations,
significant differences have been found between 3D measurement accuracy and the Digital Surface
Model (DSM). In this study, the DJI Phantom 4 RTK UAV was adopted to capture images of complex
pit-rim landforms with significant elevation undulations. A repeated observation data acquisition
scheme was proposed for a small amount of oblique-view imaging, while an ortho-view observation
was conducted. Subsequently, the 3D scenes and DSMs were formed by employing Structure
from Motion (SfM) and Multi-View Stereo (MVS) algorithms. Moreover, a comparison and 3D
measurement accuracy analysis were conducted based on the internal and external precision by
exploiting checkpoint and DSM of Difference (DoD) error analysis methods. As indicated by the
results, the 3D scene plane for two imaging types could reach an accuracy of centimeters, whereas
the elevation accuracy of the orthophoto dataset alone could only reach the decimeters (0.3049 m).
However, only 6.30% of the total image number of oblique images was required to improve the
elevation accuracy by one order of magnitude (0.0942 m). (2) An insignificant variation in internal
accuracy was reported in oblique imaging-assisted datasets. In particular, SfM-MVS technology
exhibited high reproducibility for repeated observations. By changing the number and position of
oblique images, the external precision was able to increase effectively, the elevation error distribution
was improved to become more concentrated and stable. Accordingly, a repeated observation method
only including a few oblique images has been proposed and demonstrated in this study, which could
optimize the elevation and improve the accuracy. The research results could provide practical and
effective technology reference strategies for geomorphological surveys and repeated observation
analyses in sophisticated mountain environments.

Keywords: UAV; DJI Phantom 4 RTK; pit-rim landforms; repeated observation; oblique imaging-
assisted; DSM of Difference

1. Introduction

As UAV technology makes strides and is increasingly developed, UAVs have become
progressively popularized and civilianized. In addition, UAV Remote Sensing (UAV-RS) is
being gradually achieved by employing UAVs as carriers with imaging or non-imaging
sensors to capture high-resolution remote sensing images, SAR images, as well as high-
precision laser point clouds [1–3]. Since low-altitude and small UAVs exhibit several
advantages (e.g., mobility, flexibility, low-cost, and rich data results) [4], they have been
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adopted to generate 3D scenes by integrating Structure from Motion (SfM) and Multi-
View Stereo (MVS) algorithms [5] for landslide disaster monitoring [6], flood hazard
assessment [7], geomorphological evolution analysis [8], as well as crop monitoring [9].

Geomorphology refers to various undulating forms in the earth’s surface, created
under constant shaping by internal and external geological forces. It is one of the critical
factors to explain and analyze the physical geographic environment [10]. UAVs have
been adopted extensively to capture images of different landforms in different periods.
The constructed 3D scenes, Digital Elevation Models (DEMs), and Digital Surface Models
(DSMs) are applied for rapid, non-contact geomorphological surveys, geomorphological
feature extraction and change analysis [11–14]. However, the accuracy of 3D-scene mea-
surement, elevation error and the error of the instrument are recognized as the basis for
ensuring qualitative and quantitative analyses of the geomorphological survey and its
morphological evolution under a long time series and repeated observations. As reported
by existing studies, 3D scene construction achieved by exploiting images acquired by UAVs
equipped with Global Navigation Satellite System (GNSS) with low positioning accuracy
fails to meet 3D measurement accuracy requirements [15], and the achieved data results
are of less significance to multi-phase geomorphological evolution analysis studies [16]. To
increase 3D-scene accuracy, Ground Control Points (GCPs) have been primarily applied as
a constraint to improve the exterior orientation elements of the original image in aerial tri-
angulation and to achieve absolute orientation [17,18]. Moreover, a data processing method
that integrates GCPs and UAV images is capable of monitoring centimeter-scale variations
of collapse erosion landform [19], open-pit mine dump erosion zone [20], as well as wetland
tidal flats [21]. Likewise, the measurement accuracy of relevant glacial landforms [22], out-
crop geology [23], and other studies can be met. However, the mountainous environment
of the Yunnan plateau is complicated, and different landscape types are located in a wide
variety of environments. Thus, GCPs are difficult to lay. An unreasonable GCPs layout
will reduce the accuracy of the 3D scene, rendering repeat observations impossible. For
complex terrain environments, UAVs equipped with a Real-Time Kinematic (RTK) system
can capture images, and exploit differential correction data provided by Continuously
Operating Reference Stations (CORS) to acquire high-precision positioning information [24]
and achieve aerial triangulation without GCPs [25,26]. On that basis, 3D scene accuracy
is improved to a greater extent, and operational risks and the dependence on GCPs are
reduced [27]. Most existing studies for 3D scene accuracy are based on combining different
data processing software and different GCPs layout schemes to accurately assess a single
image dataset by using checkpoints [28,29]. However, when RTK UAVs are adopted to
analyze the geomorphological evolution of long time series, the accuracy of the 3D scenes
of repeated observations may change significantly. Furthermore, the repeated observation
accuracy of RTK UAV has been rarely investigated, and its error analysis under no GCPs
constraint has been scarce on the complex mountain environment terrain.

Thus, under no GCPs constraint, for the same time as without a topographic variation
of complex mountain pit-rim landforms, DJI Phantom 4 RTK UAV was employed in this
study to repeat the observation with ortho-view at a fixed altitude and overlap while
adding repeated observation with a small number of oblique-view images by flight a
section. The 3D scene construction was achieved by applying SfM-MVS technology for
different datasets, obtained from repeated observations. By using checkpoints and DoD,
the accuracy analysis was conducted by comparing different datasets with each other for
internal and external precision.

2. Study Area

The study area is a typical circular pit-rim landscape at the southern edge of Dinosaur
Valley on the west side of Lufeng Jurassic Dinosaur Site Park in Lufeng, Chuxiong, Yunnan
(Figure 1a). The width is nearly 3 km from east to west, 10 km length from north to
south, and 4 km in diameter. It is surrounded by steep mountains that connect to form a
bar-shaped radial ridge in contrast to the central terrain. The complex pit-rim at the highest
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entrance in the northeast is the subject of the investigation (Figure 1b). The location of
this area has a significant downward gradient from the external structure, and significant
differences are identified in topography and features between the interior and exterior of the
ridge (Figure 1c). Thus, the study area could be a promising test area for geomorphological
data collection and repeated observation accuracy analyses.
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Figure 1. (a) Location of Lufeng; (b) Satellite image of the study area; (c) Complex pit-rim at the entrance.

3. Material and Methods
3.1. Data Acquisition
3.1.1. UAV Images Collection

The DJI Phantom 4 RTK (P4R) UAV was equipped with a multi-frequency and multi-
system high-precision RTK GNSS and an FC6310R camera (20-megapixel RGB sensor). It
was also equipped with an active stabilizing camera cradle head, which ensures sharp
images, to compensate for the unstable UAV flight conditions. Moreover, DJI GS RTK
ground station control software was applied for route planning and image-data acquisition
in the test area. Table 1 lists the specifications of the aircraft and camera.

The test area covered an area of 0.06 km2. The aerial survey campaign was conducted
on 21 July 2021. The UAV was set at a 200 m flight altitude directly above the take-off
point. To avoid missing image data and long flight time, the main route angle was set
to 68◦, and the direction of the route was set as perpendicular to the edge of the pit-rim.
The forward and the side overlap were 80%. Moreover, the RTK status was fixed to obtain
the differential signal returned from the CORS station to the UAV instantly. The traffic
conditions, UAV take-off and landing points were determined by the Google Earth platform
and through field research.
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Table 1. Aircraft and camera specifications.

UVA Specifications Camera Specifications

Aircraft DJI Phantom 4 RTK Sensor FC6310R

Take-off weight 1391 g Sensor format 1” (CMOS)
13.2 mm × 8.8 mm

Max flight speed 50 km/h (Positioning)
58 km/h (Attitude) Focal length 8.8 mm

Max flight time 30 min 35 mm equiv. focal length 24 mm
Max take-off altitude 6000 m Image resolution 5472 × 3648

Satellite positioning
systems

Asia GPS + BeiDou + Galileo
Field of View 84◦Other area GPS + GLONASS + Galileo

GNSS positioning
accuracy

Horizontal 1 cm + 1 ppm (RMS)
Pixel size 2.41 µmVertical 1.5 cm + 1 ppm (RMS)

First, the lens inclination angle was set to −90◦ to collect orthophotos. Subsequently, it
was set to −45◦, and the UAV was flown along a straight line connecting the last waypoint
to the center of the route-planning area to acquire partially oblique images (Figure 3a). The
lens direction was kept parallel to the straight-line direction. Several camera parameters
(e.g., ISO, exposure value and shutter) were automatically regulated by complying with the
real brightness of the scene at the time of flight. The UAV flight parameters were selected
as shown in Table 2.

Table 2. UAV flight parameters.

UAV Flight Parameters

Type of Image Orthophoto Oblique Image

Survey date July 2021
Flight altitude (m) 200 m

Ground Sampling Distance (GSD, cm/px) 5.48 cm/px
Image forward overlap (%) 80%

Image side overlap (%) 80%
Main route angle (◦) 68◦

Camera angle (◦) −90◦ −45◦

RTK status Fixed
Flight time (min, s) 10 min 35 s

Number of images captured 119 8

Three flights were conducted based on the identical flight parameters, two of which
were repeated observations, i.e., R1, R2, R3. Six datasets were developed by combining the
data types “orthophotos” (O1) or “oblique imaging-assisted” (O2) (Table 3). To be specific,
to distinguish different datasets, repeated observation numbers and image data types were
adopted to name the respective dataset, e.g., 80%_R1_O1 represents the orthophoto dataset
of the first observation, 80%_R2_O2 denotes the orthophotos and oblique imaging-assisted
dataset of the second observation. Using the 80%_R1_O1 image dataset as an example,
some orthophotos and oblique images are presented in Figure 2. The UAV type is shown
in Figure 3c.

Table 3. Characteristics of datasets resulting from the test setup.

Dataset Type of Image Number of Images Area (km2) Number of Tie-Points Mean Density of Tie-Points (pts/m2)

80%_R1_O1
orthophoto 119

0.0647 138,924 0.35
80%_R2_O1 0.0619 123,707 0.30
80%_R3_O1 0.0648 136,996 0.35
80%_R1_O2

Oblique image 127 (8 of oblique
images)

0.0660 144,410 0.36
80%_R2_O2 0.0671 128,634 0.30
80%_R3_O2 0.0666 144,407 0.36
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3.1.2. Checkpoint Acquisition

Influenced by the significant difference between the inside and outside of the pit-
rim landforms, the obvious feature points were adopted as checkpoints to analyze the
measurement accuracy comprehensively. Overall, 27 checkpoints (Figure 3b) were acquired
with the Hi-Target V90 RTK device (Figure 3d) by connecting to the CORS network, and
the coordinate system used was CGCS 2000. This RTK equipment achieved a planimetric
accuracy of ±8 mm + 1 ppm and an elevation measurement accuracy of ±15 mm + 1 ppm.

3.2. 3D Scene Construction Based on SfM-MVS

The 3D scene construction was achieved using SfM-MVS technology [30] in Agisoft
Metashape Professional 1.6.4 software. Under an identical data processing flow (Figure 4),
six datasets were processed (Table 3) to generate 3D scenes, DOMs, as well as a 0.1 m
resolution DSMs.

To begin with, in the SfM algorithm, the Scale Invariant Feature Transform (SIFT)
algorithm [31] was employed to extract the feature points on each image. The scale, position,
direction eigenvalues of the key points on the respective image were then determined.
Subsequently, in accordance with the key points on the overlapping images, image feature
matching was performed by combining the image attitude and spatial position information,
the camera focal length, as well as radial and tangential distortion model parameters.
Lastly, Bundle Block Adjustment (BBA) was performed [32]. The key point features and
camera parameter positions were optimized by minimizing the reprojection error between
the locations of key points on the image and the predicted locations [33], as an attempt to
generate a sparse point cloud with coordinate and color information.
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Figure 4. 3D scene construction process of SfM-MVS technology.

The MVS algorithm first iteratively diffused and filtered the sparse point cloud con-
tinuously to generate the dense point cloud and construct the 3D point cloud data [34].
Second, the dense point cloud was segmented into blocks, and the block point cloud was
constructed on an irregular three-dimensional grid. Subsequently, the white film data were
obtained from the grid data, and the optimal texture was automatically detected through
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the triangular network to automatically optimize texture mapping. Lastly, the 3D scene
consistent with the dense point cloud coordinate system was obtained.

3.3. Accuracy Assessment Methods
3.3.1. 3D scene Absolute Accuracy Assessment

To analyze the absolute accuracy of 3D scenes within a range of datasets, the deviation
between the measured value of the model and the checkpoint in 3D scenes was determined.
The mean error (Emean) and Root Mean Square Error (ERMSE) were adopted to quantify the
plane accuracy and elevation accuracy. The calculation formula as:

Emean =

n
∑

i=1
(X′i − Xi)

n
ERMSE =

√√√√√ n
∑

i=1
(X′i − Xi)

2

n
(1)

where n denotes the number of checkpoints; X′i represents the image solution value for
the respective direction of checkpoints; Xi denotes the measured value of the respective
direction of checkpoints; ERMSEx , ERMSEy , ERMSEz are the RMSE of each direction of
the checkpoint.

3.3.2. Internal and External Precision Assessment

The accuracy of the terrain 3D scene constructed by SfM-MVS technology was ana-
lyzed in terms of internal and external precision [30], which revealed the differences that
led to the sources of errors in 3D scenes and the mechanisms of their transmission features.
In this study, the internal precision was the error generated by the repeated observation
data in the SfM-MVS technology, while the external precision was the error caused by the
change of the number and position of the oblique images.

To be specific, the internal precision between pairs of repeated observations was com-
pared, while the dataset type remained unchanged, as follows: 80%_R1_O1 and 80%_R2_O1,
80%_R1_O1 and 80%_R3_O1, 80%_R2_O1 and 80%_R3_O1 for the orthophoto datasets,
80%_R1_O2 and 80%_R2_O2, 80%_R1_O2 and 80%_R3_O2, 80%_R2_O2 and 80%_R3_O2,
for the oblique imaging-assisted datasets. The external precision complied with the
80%_R2_O2 dataset to compare the numbers and location schemes of four different oblique
imaging datasets (Figure 5): (1) two images in the end or middle of the oblique flight route,
i.e., 80%_R2_2Photos and 80%_R2_2Photos(Mid). (2) Four images were selected at equal
intervals, i.e., 80%_R2_4Photos. (3) Six consecutive images were selected in the middle, i.e.,
80%_R2_6Photos.

Furthermore, before the quantitative analysis of the internal and external precision
of the repeated observation datasets, the different values of the checkpoint model values
in different 3D scenes should be compared, and the Emean and ERMSE for the respective
axial, plane, and the 3D should be calculated. Moreover, the DoD was able to visualize
the variations of surface morphology between DSMs in different periods and analyze the
elevation deviation [35]. Accordingly, DoD differences were processed in ArcMap, and the
histogram statistics were performed in accordance with the calculated results.
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Figure 5. 4 different oblique imaging numbers and location schemes, (a) 2 images in the end of
the oblique flight route, (b) 2 images in the middle of the oblique flight route, (c) 4 images at equal
intervals of the oblique flight route, (d) 6 consecutive images in the middle of the oblique flight route.
(Black points are orthophoto waypoints, red points are oblique imaging waypoints).

4. Results and Analysis
4.1. 3D Scene Absolute Accuracy Analysis

The 3D scene accuracy assessment results for different datasets were analyzed using
checkpoints (Table 4), which indicated that the magnitude of the plane error of the six
datasets was consistent, whereas the magnitude of the elevation error was significantly
different. Under the different image data types, the repeated observation error results
were constant.

For the three repeated observations of orthophoto datasets (O1), the average plane
error was 0.0445 m, the average 3D error was 0.3082 m, and the elevation error was
0.3049 m. For oblique imaging-assisted datasets (O2), the average plane error was 0.0339 m,
the average 3D error was 0.1005 m, the elevation error reached 0.0942 m, and the plane
and elevation errors were found to be within centimeters. In the orthophoto datasets (O1),
the elevation accuracy could only reach the decimeters. However, by adding the oblique
images (O2), in the three repeated observations, only the last (R3) elevation error reached
the decimeters, whereas the others (R1, R2) were within centimeters. The overall elevation
accuracy was improved by one order of magnitude.
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Both types of imaging datasets could achieve the plane accuracy of a centimeter
order of magnitude for complex mountainous terrain. Increasing the number of oblique
images could improve the overall elevation accuracy, reduce the fieldwork required, and
significantly improve work efficiency and safety.

Table 4. 3D scenes accuracy assessment results for different datasets.

Dataset
Error (m)

ERMSEx ERMSEy ERMSEz ERMSExy ERMSExyz

80%_R1_O1 0.0265 0.0338 0.2832 0.0430 0.2865
80%_R2_O1 0.0232 0.0380 0.2554 0.0445 0.2593
80%_R3_O1 0.0311 0.0340 0.3761 0.0461 0.3789

EMean 0.0269 0.0353 0.3049 0.0445 0.3082

80%_R1_O2 0.0240 0.0231 0.0968 0.0333 0.1024
80%_R2_O2 0.0191 0.0300 0.0683 0.0356 0.0770
80%_R3_O2 0.0182 0.0272 0.1175 0.0327 0.1220

EMean 0.0204 0.0267 0.0942 0.0339 0.1005

4.2. Internal Precision Analysis

To analyze the effect of UAV and SfM-MVS technology on the internal accuracy of
repeated observations, 3D scene checkpoint model values and DoD were analyzed for
repeated observations under the identical data type (Table 5).

Table 5. The difference results of 3D scene checkpoint model values of different datasets under the
identical data type.

Dataset 1 Dataset 2
Error (m)

ERMSEx ERMSEy ERMSEz ERMSExy ERMSExyz

80%_R2_O1 80%_R1_O1 0.0300 0.0289 0.0487 0.0416 0.0641
80%_R3_O1 80%_R1_O1 0.0281 0.0272 0.1058 0.0391 0.1128
80%_R3_O1 80%_R2_O1 0.0288 0.0290 0.1273 0.0409 0.1337

EMean 0.0290 0.0284 0.0939 0.0405 0.1035

80%_R2_O2 80%_R1_O2 0.0304 0.0301 0.0477 0.0427 0.0640
80%_R3_O2 80%_R1_O2 0.0240 0.0302 0.0521 0.0386 0.0648
80%_R3_O2 80%_R2_O2 0.0276 0.0339 0.0657 0.0437 0.0790

EMean 0.0273 0.0314 0.0552 0.0417 0.0693

Compared with the repeated observation results under the orthophoto datasets (O1),
which achieved the average plane error of 0.0405 m and the average 3D error of 0.1035 m,
the oblique imaging-assisted datasets (O2) had a mean plane error of 0.0417 m and an
average 3D error of 0.0693 m, for which the elevation deviation of repeated observations
was smaller.

Impacted by the obvious differences in elevation between different datasets, the
elevation error was able to fully reflect the stability of UAV and SfM-MVS technology for re-
peated observations. The correlation between repeated observations of orthophoto datasets
(O1) (Figure 5a) exceeded 0.84, the correlation between oblique imaging-assisted datasets
(O2) (Figure 6b) exceeded 0.80, and the correlation between 80%_R1_O1 and 80%_R1_O2
was 0.92, which revealed that the elevation error between repeated observations of P4R
UAV for the 3D reconstruction of terrain based on SfM-MVS technology was stable.

In addition, according to the DoD results of different datasets under repeated observa-
tions (Figure 7, Table 6), the mean absolute value of error between DSMs of orthophoto
datasets (O1) was 0.13 m and the mean standard deviation reached 0.2024 (Figure 7a–c).
For oblique imaging-assisted datasets (O2), the mean absolute value was 0.07 m, and the
mean standard deviation was 0.1914 (Figure 7d–f). Combined with the standard deviation
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and normal distribution curves (Figure 7), no significant difference was reported in the
dispersion of the internal precision error of repeated observations between the two imaging
data types. However, assisting the oblique images could reduce the error, and the internal
precision of repeated observation was stable.

Figure 6. The elevation error correlation results of different datasets under repeated observations,
Corr is the correlation coefficient, (a) represents the orthophoto datasets, (b) represents the oblique
imaging datasets.

Table 6. Statistics of DoD internal precision results of different datasets under repeated observations.

Dataset 1 Dataset 2
Error (m)

Std Dev
Minimum Maximum Mean

80%_R2_O1 80%_R1_O1 −9.0918 9.5442 −0.0594 0.2102
80%_R3_O1 80%_R1_O1 −8.4874 9.7025 0.1156 0.1814
80%_R3_O1 80%_R2_O1 −9.3218 9.4399 0.1749 0.2155

|Mean| 8.9670 9.5622 0.1166 0.2024

80%_R2_O2 80%_R1_O2 −9.0949 9.6071 −0.0750 0.1809
80%_R3_O2 80%_R1_O2 −8.3243 13.5428 0.0299 0.1816
80%_R3_O2 80%_R2_O2 −9.4950 13.8367 0.1049 0.2118

|Mean| 8.9514 12.3289 0.0700 0.1914
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Figure 7. DoD results of different datasets under repeated observations. Histograms (a–c) represent the orthophoto datasets
results. Histograms (d–f) represent the oblique imaging datasets.

4.3. External Precision Analysis

Before analyzing the effect of oblique imaging-assisted datasets on external precision,
the checkpoints error of 3D scenes with 4 different oblique imaging numbers and position
schemes were analyzed (Table 7). The plane error of the 4 schemes was better than 0.04 m,
reaching a centimeter order of magnitude, and the elevation error was better than 0.14 m.
Compared with the results of orthophoto datasets (O1), the elevation error was reduced by
2.28 times (0.3049 m to 0.1338 m) by adding 2 oblique images. A few oblique images could
effectively improve the elevation precision. Compared with the results of 2 oblique images,
the elevation error increases to 0.1385 m by adding 4 oblique images, and the method of
equal interval extraction of oblique images could not effectively reduce the elevation error.

Table 7. 3D scenes accuracy assessment results of 4 different oblique imaging numbers and posi-
tion schemes.

Dataset
Error (m)

ERMSEx ERMSEy ERMSEz ERMSExy ERMSExyz

80%_R2_2Photos 0.0264 0.0244 0.1338 0.0360 0.1385
80%_R2_2Photos(Mid) 0.0250 0.0225 0.1234 0.0336 0.1279

80%_R2_4Photos 0.0270 0.0223 0.1385 0.0350 0.1429
80%_R2_6Photos 0.0225 0.0205 0.1225 0.0305 0.1262

80%_R2_O2 0.0191 0.0300 0.0683 0.0356 0.0770

Using 80%_R2_O2 DSM as a reference, the DoD results of different schemes (Figure 8,
Table 8) revealed that the mean absolute values of elevation deviations between different
datasets ranged from 0.0415 m to 0.0772 m, the standard deviations ranged from 0.1208
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to 0.1518, and the number of oblique images gradually decreased from 6 to 2. When
2 oblique images were added, the average absolute value was 0.0772 m. When the positions
of the 2 images were changed, the average absolute value was 0.0489 m, and the absolute
value difference was insignificant, whereas the standard deviation increased to 0.1518, and
the error distribution was relatively discrete. When 4 oblique images were added, the
average absolute value was 0.0865 m. The scheme exerted the worst effect on elevation
optimization. The average absolute values of 6 and 2 oblique images were similar, and
the elevation error was the smallest. For the 3D reconstruction of a complex mountain
environment, the elevation accuracy could be optimized by adding 2 oblique images located
in the middle of the oblique route, which could also meet the precision requirements of a
correlation analysis.

Figure 8. DoD results of different oblique imaging numbers and location schemes. Histogram (a) represents the result
of 2 images in the end of the oblique flight route, histogram (b) represents the result of 2 images in the middle of the
oblique flight route, histogram (c) represents the result of 4 images at equal intervals of the oblique flight route, histogram
(d) represents the result of 6 consecutive images in the middle of the oblique flight route.
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Table 8. Statistics of DoD external precision results of different oblique imaging numbers and
location schemes.

Dataset 1 Dataset 2
Error (m)

Std Dev
Minimum Maximum Mean

80%_R2_2Photos

80%_R2_O2

−8.6395 9.2965 0.0772 0.1493
80%_R2_2Photos(Mid) −9.6110 9.1234 0.0489 0.1518

80%_R2_4Photos −9.5295 8.5393 0.0865 0.1244
80%_R2_6Photos −9.6611 8.4387 0.0415 0.1208

5. Discussion

At present, greater focus has been placed on the measurement accuracy analysis of
different types of UAVs under the constraints of GCPs in various fields. The measurement
accuracy is largely dependent of GCPs, whereas the possibility of RTK UAV measurement
without using GCPs is commonly overlooked. Thus, this study employed a repeated
observation method assisting a small number of oblique-view images while observing
the image from the ortho-view. In addition, the measurement accuracy of the RTK UAV
without GCPs was analyzed. To conduct a targeted analysis, a typical pit-rim landform
with significant differences in undulation at the southern edge of Lufeng Dinosaur Valley
was adopted as the test area for a comparative test study. As revealed by the elevation
deviation and histogram statistical results, which were obtained by checkpoint error and
DoD, the accuracy optimization feasibility of repeated observation 3D measurement results
of various data was obtained, displaying internal and external precision.

As indicated by the checkpoint error analysis, the plane error of the 3D scene under
the two types of datasets could reach centimeters, RTK UAV could effectively improve
the plane accuracy, and the effect was significant for sophisticated mountainous terrain
environments. However, the elevation values of the two imaging types were significantly
different, and the results of the oblique imaging-assisted datasets (O2) were better than
those of the orthophoto datasets (O1). Moreover, there was a vertical offset between the
DSMs, obtained by repeated observations, which partially attributed to the change of the
estimated focal length ( f ) in self-calibration. Table 9 lists the statistical results of the focal
length estimates for different datasets.

Table 9. The results of focal length estimates for different datasets.

Dataset f(Pix) Mean

80%_R1_O1 3707.94
3707.9480%_R2_O1 3707.94

80%_R3_O1 3707.94

80%_R1_O2 3707.94
3708.1480%_R2_O2 3708.23

80%_R3_O2 3708.24

Table 9 lists the same camera focal length estimates (3707.94 pix) obtained from re-
peated observations of the orthophoto datasets (O1), and the oblique imaging-assisted
datasets (O2), with an average value of 3708.14 pix. According to the checkpoint error
results, the addition of oblique images could be used across a larger range of perspec-
tives, and effectively regulate the estimated camera focal length in the solving process.
The estimation results of the oblique imaging-assisted datasets (O2) were found to be
more accurate.

Though the elevation deviation of the two image data types is significant, the elevation
error correlation is found to be more intense between the repeated observation datasets
of the respective image data type, where the internal accuracy is stable, and SfM-MVS
technology exhibits a high reproducibility for the 3D scene construction of terrain and its
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derived results. UAVs are capable of capturing high-resolution images with a considerable
amount of image information, and complete details of ground objects. Moreover, the
datasets obtained using SfM-MVS technology have low network roughness and provide
an optimized data perspective, which effectively reduces the size of the shadow [36].
Accordingly, SfM-MVS technology underpins an effective and quantitative change in the
monitoring of different landforms, while obtaining high-precision and high-quality results.
To be specific, Alfredsen et al. [37] successfully achieved feature-element extraction and
an accurate calculation of river ice. Pagan et al. [38] analyzed the historical evolution of
dunes and their relationship with coastal erosion. Yang et al. [39] analyzed the landslide
evolution by obtaining multi-period landslide images and extracting feature elements of
landslides in different periods.

By analyzing the external precision of different oblique imaging numbers and position
change schemes, the elevation error tends to decrease, and the error distribution is found to
be more concentrated and stable with an increase in the oblique imaging number. To further
analyze the effect of the image position on the external accuracy, the distance between
2 images was determined by complying with the Position and Orientation System (POS)
information, and the mean distance of the respective scheme was obtained. As impacted by
the change of image position, it also represents the change of overlap on the oblique route.
The overlap between images was calculated through the feature matching method [40].
The results are listed in Table 10.

Table 10. The mean image spacing and overlap results under different oblique imaging numbers and
position schemes.

Dataset Mean Image Spacing (m) Mean Image Overlap (%)

80%_R2_2Photos 268.6780 0
80%_R2_2Photos(Mid) 39.2523 83.16

80%_R2_4Photos 78.8377 66.89
80%_R2_6Photos 39.4021 85.18

80%_R2_O2 38.3829 84.58

Table 10 lists the mean image spacing and overlap results under different oblique
imaging numbers and position schemes. For the improved scheme of two middle and six
oblique images, the image spacing was less than 40 m, and the image overlap exceeded 80%.
For the two image schemes at both ends, under the significant image spacing, there was
found to be no certainty overlap. For the four images extracted with equal intervals, the
image spacing was doubled, and the overlap was reduced to less than 67%. Furthermore,
the image spacing impacts the elevation error. If the image overlap is not lower than the
preset parameter, the image distribution will be more concentrated, and the error reduced.
For the mentioned reasons, the elevation accuracy from the data acquisition method will
be optimized, and the overall 3D measurement accuracy will be effectively improved.

6. Conclusions

In this study, DJI Phantom 4 RTK UAV was employed to collect repeated observation
images of complex mountain pit-rim landforms via ortho-view, while adding a small
amount of repeated observation from oblique-view images. For various imaging datasets,
SfM-MVS technology was adopted to realize 3D scene construction. The comparative
analysis methods of checkpoint and DoD were employed to compare different datasets as
well as the 3D measurement accuracy of repeated redundant observation for the internal
and external precision. As indicated by the results of the checkpoint comparison, with
other parameters unchanged, regardless of whether it is a single orthophoto observation or
considering the 3D scene formed by oblique images, the plane error reaches centimeters,
whereas the elevation error is found to be significantly different. The average elevation
error of the 3D scene constructed by orthophoto datasets was 0.3049 m, while the average
elevation error of the oblique imaging datasets was only 0.0942 m, thereby the elevation
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accuracy was significantly improved, and the number of oblique images accounted for only
6.3% of the total number of images. This means that the proposed method of performing
RTK UAV orthophotography, while appropriately assisting oblique imaging acquisition
technology can effectively improve elevation accuracy in constructing 3D scenes of complex
surface environments. This method is capable of reducing the dependence on GCPs and the
field workload. Moreover, the empirical study indicates that the terrain 3D reconstruction
by using SfM-MVS technology exhibited effective reproduction. The repeated observation
elevation deviation of the oblique imaging was smaller, and the internal precision was
stable. When the number or location of oblique images were changed, the external precision
was effectively improved. The elevation error and standard deviation were gradually re-
duced, and the error distribution was more concentrated and stable. It is clear that with the
smaller distance between oblique images, the elevation accuracy can be further optimized.

This study primarily analyzed repeated observations under constant flight altitude,
the same overlap, as well as oblique-imaging data. However, UAVs are affected by the
natural environment when collecting images, which causes blurred images and inconsistent
color and thus affects the extraction of image feature points to a certain extent. The effects
of different flight altitudes, overlap and different oblique imaging collection methods on
the repeated observation accuracy require further analysis.
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