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Abstract: A machine learning approach is applied to Raman spectra of cells from the MIA PaCa-2
human pancreatic cancer cell line to distinguish between tumor repopulating cells (TRCs) and parental
control cells, and to aid in the identification of molecular signatures. Fifty-one Raman spectra from
the two types of cells are analyzed to determine the best combination of data type, dimension size,
and classification technique to differentiate the cell types. An accuracy of 0.98 is obtained from
support vector machine (SVM) and k-nearest neighbor (kNN) classifiers with various dimension
reduction and feature selection tools. We also identify some possible biomolecules that cause the
spectral peaks that led to the best results.

Keywords: tumor repopulating cell (TRC); support vector machine (SVM); k-nearest neighbor (kNN);
principal component analysis (PCA); Raman spectroscopy; pancreatic cancer

1. Introduction

Pancreatic adenocarcinoma, accounting for about 93% of pancreatic cancers, is one of the most
aggressive and deadly cancers, with a 5 year survival rate of about 9%, which is primarily due to drug
resistance or metastasis, as well as late-stage diagnoses [1–3]. Drug resistance or metastasis is attributed
to the presence of tumor repopulating cells (TRCs) or stem cell-like cancer cells [4–6], which are a
subpopulation of self-renewing cells within malignant tumors that are highly tumorigenic [7,8]. TRCs
are still not fully understood, and no known reliable biomarkers are available to detect or track these
self-renewing cells. Gaining knowledge of TRCs can assist in a better understanding of tumorigenesis
and tumor resistance to therapy [9].

Nondestructive, minimally invasive tools are needed to distinguish between the highly tumorigenic
TRCs, normal cancer cells, and healthy tissues with a high sensitivity, specificity, and reliability. For this
reason, clinical spectroscopy techniques have been growing in popularity amongst researchers,
especially Raman spectroscopy [10]. This is because Raman spectroscopy is a nondestructive technique
requiring little or no sample preparation that can be applied in vivo or in vitro. Moreover, it provides
qualitative and quantitative information about the chemical structure and composition of the sample
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via an analysis of the inelastic scattering from discrete vibrational and rotational transitions in
molecules [10,11].

Machine learning originated from artificial intelligence research and is a rapidly growing field
that shows great promise in medical research, due to its ability to detect patterns in complex datasets
that humans would likely miss [12]. Researchers tested the feasibility of using machine learning
algorithms to predict the probability of pancreatic cancer patients relapsing by following resection with
prior induction polychemotherapy and chemoradiation. The algorithms used were logistic regression,
decision tree, random forest, support vector machine (SVM), and k-nearest neighbors (kNN), and they
attained a highest accuracy of 71% using a logistic regression [13].

Here, the supervised machine learning classifiers, kNN and SVM, will be utilized. kNN locates a
user-selected number (k) of the nearest neighbors to a sample, and classifies the sample as belonging to
the same class as its neighbors by taking a majority vote of those k neighbors [12]. Note that kNN
does not build a model that can be referred to later but must compare each new instance to the full
training set [12]. This can lead to heavy computational demands, but kNN has been shown to do
relatively well in a high dimension space with a small sample size, making it of particular interest in
these studies [14–16].

SVMs utilize linear algebra manipulations to locate a hyperplane that maximally separates the
classes in a sample space. A sample’s support vector represents its relationship to the hyperplane,
and the SVM simply identifies a new sample’s support vector and classifies it based on that information.
SVMs build a model that can be quickly referred back to, so it can be computationally expensive
in the model building process, but the later classification is relatively computationally inexpensive.
A powerful tool utilized by SVMs is the kernel trick. A kernel is a mathematical manipulation of
the sample space than can distort the space in such a way as to make it easier, or in some cases
merely possible, to find a hyperplane to separate the classes. Examples of standard kernels are linear-,
polynomial-, sigmoid-, and radial-based (e.g., Gaussian) [12]. All these kernels have been applied to
the data in this study for comparison and optimization.

In this work, we applied machine learning and dimension reduction techniques to the Raman
spectra of TRCs and parental control cells from the MIA PaCa-2 pancreatic cancer cell line to search
for reliable diagnostic molecular signatures and to determine the molecules that lead to the best
differentiation of these types of cells. Combining machine learning with Raman spectroscopy to
delineate between TRCs and control pancreatic cancer cells is quite novel if not a first in this field.

2. Methodology

2.1. Feature Selection and Classification

One of the most significant problems encountered during the classification of complex spectroscopic
data, including Raman spectra, in biological samples is the overfitting or underfitting of the models due
to the “large dimension-small sample size” problem [15–18]. While a medical study might produce a
couple of hundred samples, each wavenumber that is measured during Raman data collection serves as
a dimension in the sample space that could consist of thousands of dimensions. Dimension reduction
is a technique to address this problem that is actually two different techniques: dimension elimination
and dimension selection [16,19]. It plays a vital role in the performance of the classification algorithms.

Dimension elimination is the process of discarding unwanted data with minimal analysis.
This could involve eliminating quiet or always noisy regions of a spectrum. For example, in biological
samples, the Raman fingerprint region of the skeletal vibrations tends to lie between the wavenumbers
600 and 1800 cm−1, with the high energy signals of biologicals appearing in the region of 2500–3400 cm−1

due to the independent motions of hydrogen atoms [20]. The O-H bond of water tends to appear as a
broad peak around 3350 cm−1 [21], and the region between 1800 and 2500 cm−1 tends to be relatively
silent [20], so selective targeting of the Raman range is possible. Therefore, instead of scanning from
250 to 3500 cm−1 for ~2950 dimensions, selective scanning from 600 to 1800 cm−1 and 2500–3400 cm−1
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provides the pertinent information while limiting the dimension size to ~1900 (dimension count based
on the approximation of wave numbers acquired from a diffraction grating with a groove density of
600 g/mm). It is also possible to reduce the dimensions by only considering the values of the spectrum
that coincide with the local maxima (i.e., peaks). Both techniques are utilized in this work, and the
peaks vs. continuous spectrum results are compared.

Dimension selection is a more analytical process and requires a logical analysis of the relevance of
each feature to determine which dimensions have the highest correlation to the class of the sample.
There are many techniques already in use or in development to accomplish this task. However, for this
work, only four—T-statistic (t) [14], MIT correlation (w) [14], RELIEF (r) [18], and principal component
analysis (PCA) [22,23], as seen in Table 1—were considered.

Table 1. Statistical feature selection methods. The µk
j are the mean of the ith feature for the kth

class, and σk
j are for the standard deviation of the same. In the RELIEF (r) algorithm the xi are the

individual features.

Method Description

t-statistic [14] t
(
x j

)
=

∣∣∣∣µ0
j−µ

1
j

∣∣∣∣√ (
σ1j

)2
n1

+
(σ0j )

2

n0

MIT Correlation [14] w
(
x j

)
=

∣∣∣∣µ0
j−µ

1
j

∣∣∣∣
σ1

j+σ
0
j

RELIEF [18]
weight(xi) =

∣∣∣xi −miss(xi)
∣∣∣− ∣∣∣xi − hit(xi)

∣∣∣
hit(xi) = nearest neighbor of xi from same class

miss(xi) = nearest neighbor of xi from opposite class

PCA

zk = ∝k·x
-reshapes the space into fewer dimensions capturing the maximum variance.
∝k is the kth eigenvector of the covariance matric of x, and zk is the projection

of x in ∝k dimension.

The t and w feature selection methods provide statistical measures of each wavenumber’s
(dimension’s) correlation to the class in which the sample belongs. Each feature (dimension) is given a
score, and the features with the highest scores are chosen [14].

The r technique from Marchiori, 2005, uses a machine learning algorithm to determine the nearest
neighbor to each sample from both classes for a specific feature. Each dimension is given a weight
based on its distance to its nearest neighbor from each class with respect to the feature in question.
The higher the r-score, the better the feature is at maximizing interclass distance and minimizing the
intraclass distance [18].

PCA reshapes a sample space with dependent variables into an independent space that still
contains all the total variances of the original space. It accomplishes this by finding the eigenspace of
the covariance matrix of the original samples. It is useful in that it creates a linearly independent basis,
and in that, most of the variance usually occurs over many fewer variables. By choosing the number
of principal components or the percentage of the overall variance desired, PCA can be manipulated
to provide a useful representation of the original data in far fewer dimensions [22,23]. Each of these
techniques was run individually for a varied set of features, and PCA was also run in combination
with t, w, and r (e.g., PCA on 4, 5, 10, 15, 150 dimensions chosen by t, w, and r).

2.2. Accuracy Metrics

The accuracy reported in this study was determined using the results of a k-fold cross-validation
(CV) scheme, where the dataset was broken up into k subsets and the classifier ran k iterations. At each
iteration, a different subset was held out for testing while the rest of the subsets were used to train
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the model, and the results from each iteration were averaged to provide the CV accuracy score and
standard deviation [15]. The Python package, sklearn.metrics, was used to acquire these CV scores.

Model overfitting is a common problem in the classification of complex datasets [24]. This is
when the model “memorizes” the training data and is therefore not generalizing the data. One way to
evaluate if a model is overfitting is to compare the training accuracy to the testing accuracy. Overfitting
occurs when the training accuracy is higher than the testing accuracy [25]. For these reasons, the CV
training accuracy was also used in this analysis.

3. Experimental Approach

3.1. Sample Preparation

MIA PaCa-2 cells, purchased from ATCC (ATCC® CRL-1420), were routinely cultured on gelatin
(Sigma-Aldrich) coated 6-well tissue-culture dishes (Eppendorf) with a complete medium containing
10% fetal bovine serum and 2.5% horse serum at 37 ◦C with 5% CO2. Cells were passaged when they
reached 80–90% confluency. For experiments, cells were trypsinized, centrifuged for 3 min, and were
resuspended in a 1 mL complete culture medium. Fibrin gel of 90 Pa stiffness was prepared as described
before [8]. Briefly, Salmon fibrinogen and thrombin (Searun Holdings) were used for fabricating the
3D fibrin gel cell culture. The stock fibrinogen was diluted to 2 mg/mL with T7 buffer (50 mM Tris,
150 mM NaCl, pH 7.4). The fibrinogen and cell solution were mixed at a ratio of 1:1 to a final fibrinogen
concentration of 1 mg/mL (required for 90 Pa gel). One thousand cells in the fibrinogen/cell solution
mixture were seeded in each of the wells of thrombin-activated 96 well plates. The 96 well plate was
placed into a 37 ◦C cell culture incubator for 15 min for gel polymerization. Finally, 200 µL of cell
culture medium was added to every well. Cells were fed with fresh culture medium every two to three
days. TRCs were isolated from 3D fibrin gels after ten days for experiments.

The sample holder for the Raman assay was fabricated by creating 5 mm diameter × 1.3 mm
deep chambers in an aluminum plate. A Metrohm P-SERS (Printed-Surface Enhanced Raman
Spectroscopy) silver substrate (Metrohm; 607506100) was cut into small pieces and placed inside
the chamber of the aluminum plate. The chamber was incubated with 5 µg/mL fibronectin solution
(Sigma-Aldrich; F1141-1MG) at 37 ◦C for at least 1 h for an efficient adsorption of fibronectin on the
surface of the substrate. The substrate was subsequently washed with phosphate buffer saline (PBS)
(Thermo Fisher; 1,0010-023). The parental control cells and TRCs were plated on the surface at a density
of 5000 cells/substrate in a 30 µL droplet. The surrounding surface was covered with double-sided
tape and a No. 0 glass coverslip was placed on top of the chamber to create a seal. Finally, the chamber
was completely sealed off around the edge with Scotch® tape to contain biohazard cellular materials.
The samples were sealed to prevent the contamination of the samples, exposure of the user to the
samples, and evaporation to the open air.

Despite the cells being anchored (fixed) on a substrate using a cell adhesion molecule (fibronectin),
the spectral signature of fibronectin should very minimally affect the ability to discern the difference
between TRCs and control cells, since the experimental designs and procedures of both TRCs and
control cells were identical.

3.2. Data Collection

After the cells were harvested, they were analyzed using a modular Raman microscope
system (Horiba iHR550 imaging spectrometer in conjunction with an Olympus BX41 microscope)
immediately to minimize excessive cell decay. Near-infrared (NIR) light at a wavelength of ~785 nm
(Toptica Photonics single-frequency laser iBeam-Smart-785-S-WS) was used as the excitation light
source to minimize the autofluorescence from biological samples.

Many optimization procedures were addressed to improve the signal-to-noise ratio (autofluorescence)
and reproducibility of the Raman signal. First, a SERS substrate that provided the maximum Raman
signal was selected. Note that prior to the current experimental approach, a preliminary data collection
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was attempted using a spontaneous Raman technique (without a SERS substrate) and with gold and
silver SERS substrates. Both of the SERS substrates allowed the procedure to perform several orders of
magnitude stronger than without, where the enhancement factors can be as much as million-fold [26,27],
and the silver substrate appeared to yield a better signal to noise ratio than the gold (more than an order
of magnitude) [28]. Additionally, dominant Raman peaks (728 cm−1 (C-C stretching, proline (collagen
assignment)), 1092 cm−1 (PO2

−D), etc.) [29] used for optimization were determined by comparing
the sample spectra to spectra of the SERS substrate alone and of the substrate with fibronectin but
without cells, allowing these background contributions to be minimized in the sample spectra. Second,
the distance between the sample and the objective lens was set to yield a maximum peak intensity.
Finally, a suitable objective lens and depth of camber were set to minimize Raman emission from the
glass coverslip.

The laser is relatively more stable in power and wavelength at a higher power configuration
(~80 mW); however, the high intensity of laser light could potentially damage the samples after a
prolonged and focused use in one spot, so a filter (~50%) was used at the microscope entrance to reduce
the power to ~40 mW, and, as shown in Section 4, the results indicate that this power setting was not
an issue.

As the cells are more likely to be on the fibronectin, the Raman probing locations on the sample
were determined by locating the fibronectin using the charge-coupled device (CCD) camera of the
Raman microscope. Owing in small part to the cells themselves being difficult to resolve with
the current setup and without cell staining, preliminary data had been collected for the individual
noncellular components used in the sample preparation as mentioned above. Optimization included
looking for signals that were not attributable to the noncellular components of the sample.

The spectra were collected after signal optimization using a 20×magnification objective lens for
ten 15 s scans over the desired range to produce one spectrum. Then the stage was moved laterally
by the two horizontal axes, moving to other locations within the deposition area. This process was
repeated for a total of at least three different spots on each of the 13 different samples before moving to
the next.

3.3. Data Preprocessing and Analysis

Different data types, feature reduction techniques, and classifier types were varied, where all
possible combinations of these were investigated for normalized and non-normalized spectra (Figure 1).
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Figure 1. All possible variable combinations were used for the classification.

To minimize the influence of any residual autofluorescence and enhance the signal to noise ratio,
a baseline correction was implemented by fitting the baseline section-by-section with a semiautomated
polynomial function using an in-house built program.

For raw and background-removed spectra, each wavenumber (dimension) had a measured value,
but for the peak data, only the wavenumbers that corresponded to a local maximum had a nonzero
value. If any spectrum had a peak at a particular dimension, then that wavenumber was used in the
analysis. If the other spectra had a peak at that wavenumber the value was recorded; otherwise, a
value of zero was assigned to that dimension.
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4. Results and Discussion

Prior to conducting this experiment, the nondestructive nature of Raman spectroscopy with
small sample volumes exposed to focused laser light was first confirmed. Two successive spectra
were acquired from control cells that were exposed to the laser light at the same location and under
the aforementioned parameters (except dramatically increasing the actual exposure time to at least
~10 min) and no discernible changes were detected in the successive spectra beyond that attributable
to the fluctuations or movements of cellular components within the cells and the inherent uncertainty
of Raman scattering, as can be seen in Figure 2.
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For the initial results, 51 Raman spectra were collected from 13 samples: eight parental controls
for 37 spectra and five TRCs for 14 spectra. The limited number of TRC samples was due to the
long growth times (10 days) involved in producing these cells. Figure 3 shows the average Raman
spectra of control cells and TRCs with shaded error bands (shown for clarity and to display the high
variation in the Raman spectrum with measurements—averaged data was not used in the ML analysis),
and Figure 4 shows a raw Raman spectrum and the background removed version of a single location
for control cells and TRCs. Figure 5 shows three non-normalized instances of control and TRC Raman
spectra to demonstrate the significant variation in spectra from the same class of cells.

Life 2020, 10, x FOR PEER REVIEW 6 of 14 

Prior to conducting this experiment, the nondestructive nature of Raman spectroscopy with 
small sample volumes exposed to focused laser light was first confirmed. Two successive spectra 
were acquired from control cells that were exposed to the laser light at the same location and under 
the aforementioned parameters (except dramatically increasing the actual exposure time to at least 
~10 min) and no discernible changes were detected in the successive spectra beyond that attributable 

to the fluctuations or movements of cellular components within the cells and the inherent uncertainty 
of Raman scattering, as can be seen in Figure 2. 

Figure 2. Two individual spectra acquired at the same location from a sample of control cells. 

For the initial results, 51 Raman spectra were collected from 13 samples: eight parental controls 
for 37 spectra and five TRCs for 14 spectra. The limited number of TRC samples was due to the long 
growth times (10 days) involved in producing these cells. Figure 3 shows the average Raman spectra 
of control cells and TRCs with shaded error bands (shown for clarity and to display the high variation 
in the Raman spectrum with measurements—averaged data was not used in the ML analysis), and 
Figure 4 shows a raw Raman spectrum and the background removed version of a single location for 
control cells and TRCs. Figure 5 shows three non-normalized instances of control and TRC Raman 
spectra to demonstrate the significant variation in spectra from the same class of cells. 

 

Figure 3. Average Raman spectra with shaded error bands: (a) Control Cells (b) tumor repopulating 
cells (TRCs). 

Figure 3. Average Raman spectra with shaded error bands: (a) Control Cells (b) tumor repopulating
cells (TRCs).



Life 2020, 10, 181 7 of 13
Life 2020, 10, x FOR PEER REVIEW 7 of 14 

Figure 4. Raw and Background-Removed spectra of surface enhanced Raman spectroscopy (SERS) 
from a single location of a sample: (a) Control cells and (b) TRCs. Left axis for background removed 
and right axis for raw data. 

Figure 5. Comparison of three spectra from the same type of cells to demonstrate variation present 
within the same sample (S##) but with different location (L##) and for different samples (S##): (a) 
Control and (b) TRC. 

In Figure 6, normalized TRC and control cell spectra are compared. Figure 6a shows a case where 
the normalization is with respect to different peaks (the maximum peak values occurred at two 
different wavenumbers for TRCs and Controls), while Figure 6b shows the normalization over the 
same peak. This serves to demonstrate that there is no single peak with which to normalize 
consistently; therefore, all normalization in this work is to the maximum peak of each spectrum. 

 
Figure 6. TRC and Control spectra normalization: (a) TRC and Control normalized to different peaks 
and (b) normalization to the same peak. 

The top classifier accuracies for 60 or fewer dimensions of non-normalized data are presented in 
Table 2. While Figure 7 demonstrates that normalization improved the kNN classification results, 
Figure 8 shows that non-normalized SVMs and kNNs with PCA both perform better in the range of 
20 to 75 dimensions with less standard deviation. Since PCA includes normalization, any prior 

Figure 4. Raw and Background-Removed spectra of surface enhanced Raman spectroscopy (SERS)
from a single location of a sample: (a) Control cells and (b) TRCs. Left axis for background removed
and right axis for raw data.

Life 2020, 10, x FOR PEER REVIEW 7 of 14 

Figure 4. Raw and Background-Removed spectra of surface enhanced Raman spectroscopy (SERS) 
from a single location of a sample: (a) Control cells and (b) TRCs. Left axis for background removed 
and right axis for raw data. 

Figure 5. Comparison of three spectra from the same type of cells to demonstrate variation present 
within the same sample (S##) but with different location (L##) and for different samples (S##): (a) 
Control and (b) TRC. 

In Figure 6, normalized TRC and control cell spectra are compared. Figure 6a shows a case where 
the normalization is with respect to different peaks (the maximum peak values occurred at two 
different wavenumbers for TRCs and Controls), while Figure 6b shows the normalization over the 
same peak. This serves to demonstrate that there is no single peak with which to normalize 
consistently; therefore, all normalization in this work is to the maximum peak of each spectrum. 

 
Figure 6. TRC and Control spectra normalization: (a) TRC and Control normalized to different peaks 
and (b) normalization to the same peak. 

The top classifier accuracies for 60 or fewer dimensions of non-normalized data are presented in 
Table 2. While Figure 7 demonstrates that normalization improved the kNN classification results, 
Figure 8 shows that non-normalized SVMs and kNNs with PCA both perform better in the range of 
20 to 75 dimensions with less standard deviation. Since PCA includes normalization, any prior 

Figure 5. Comparison of three spectra from the same type of cells to demonstrate variation present
within the same sample (S##) but with different location (L##) and for different samples (S##): (a) Control
and (b) TRC.

In Figure 6, normalized TRC and control cell spectra are compared. Figure 6a shows a case where
the normalization is with respect to different peaks (the maximum peak values occurred at two different
wavenumbers for TRCs and Controls), while Figure 6b shows the normalization over the same peak.
This serves to demonstrate that there is no single peak with which to normalize consistently; therefore,
all normalization in this work is to the maximum peak of each spectrum.
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The top classifier accuracies for 60 or fewer dimensions of non-normalized data are presented
in Table 2. While Figure 7 demonstrates that normalization improved the kNN classification results,
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Figure 8 shows that non-normalized SVMs and kNNs with PCA both perform better in the range
of 20 to 75 dimensions with less standard deviation. Since PCA includes normalization, any prior
normalization would be redundant computationally. Normalization without PCA also caused the SVM
algorithm to perform poorly, so normalization is not present in any of the best combinations of Table 2.

Table 2. Best Classifier Feature Selection using peaks for Low Dimensions. Highlighted rows
show over-fitting.

Classifier Reduction Method Dimensions CV Acc. CV StdDev Training CV Training Stdev

SVM t-score 35 0.982 0.064 0.911 0.018

kNN k = 1 t-score + PCA = 3 35 0.982 0.064 1 0

kNN k = 3 t-score + PCA = 3 40 0.982 0.064 0.980 0.005

kNN k = 1 t-score + PCA = 3 45 1 0 1 0

SVM t-score 45 0.982 0.064 0.937 0.024

kNN k = 1 MIT + PCA = 3 45 0.982 0.064 1 0

kNN k = 1 t-score + PCA = 3 50 0.982 0.064 1 0

kNN k = 1 MIT + PCA = 3 55 0.982 0.064 1 0

SVM MIT 55 0.982 0.064 0.876 0.024

kNN k = 3 MIT + PCA = 3 60 0.982 0.064 0.979 0.008
Life 2020, 10, x FOR PEER REVIEW 9 of 14 

 
Figure 7. k-Nearest Neighbor (kNN) k = 1 with w selected peaks cross validation scores for 1 to 75 
dimensions that demonstrate normalized data obtain better results with this classifier. 

 

 
Figure 8. Shows normalized k-Nearest Neighbor (kNN) k = 1 underperforming non-normalized kNN 
+ principal component analysis (PCA) and support vector machine (SVM) in the range of over 20 
dimensions. All peaks selected with w. 

In the results shown in Table 2, all the combinations, except one, achieved an accuracy of 0.982. 
This uniformity of results is not a sign of an error in the analysis, but is, instead, the result of the small 
sample size and the CV technique used. To allow for more involved metrics later on, the code was 
written to have at least one of each class in every test subset, so the 14 TRCs restricted the number of 
subsets for the CV (the option of leave one out cross-validation (LOOCV) was intentionally avoided 
in this work). With this CV configuration, each subset has two to three parental control cells and 
exactly one TRC.  

The 0.982 accuracy is from a 14-fold CV with 13 accuracies of 1.0 and one accuracy of 0.75 for a 
test subset of three parental control and one TRC. There were 34 combinations of tools that led to this 
accuracy. Five combinations had CV scores of 0.976 where there were 13 accuracies of 1.0, and a 
0.6667 accuracy for a test subset with two parental control and one TRC. So, the small sample size 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70

Cr
os

s V
al

id
at

io
n 

A
cc

ur
ac

y

Dimensions

Normalized Non-Normalized

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70

Cr
os

s V
al

id
at

io
n 

A
cc

ur
ac

y

Dimensions

kNN k = 1 Normalized kNN k = 1 PCA SVM Non-Normalized

Figure 7. k-Nearest Neighbor (kNN) k = 1 with w selected peaks cross validation scores for 1 to
75 dimensions that demonstrate normalized data obtain better results with this classifier.

While all the top results in Table 2 are for peak data, the best background-removed data result
had an accuracy of 0.85 with a sigmoid SVM for w + PCA. RELIEF did not perform as well as the
other selection techniques with the best results for r + PCA with a sigmoid SVM on peak data yielding
an accuracy of up to 0.93. An in-depth investigation that involves computational theories of data
handling (binning), statistical analysis, and a study of matrix effects for peak shifts is required to
understand why the peaks data performed better than the others in this work. This approach may lead
to a better understanding and improve the performance of the data-driven spectroscopy in various
fields, including for biomedical applications.

Table 2 also contains the training accuracy as an indicator of the overfitting of the models,
as mentioned before. The shaded rows are runs where the training score exceeded the testing score,
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and this occurred for both t + PCA and w + PCA for the dimensions presented, but only for specific
dimension counts.
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Figure 8. Shows normalized k-Nearest Neighbor (kNN) k = 1 underperforming non-normalized kNN
+ principal component analysis (PCA) and support vector machine (SVM) in the range of over 20
dimensions. All peaks selected with w.

In the results shown in Table 2, all the combinations, except one, achieved an accuracy of 0.982.
This uniformity of results is not a sign of an error in the analysis, but is, instead, the result of the small
sample size and the CV technique used. To allow for more involved metrics later on, the code was
written to have at least one of each class in every test subset, so the 14 TRCs restricted the number of
subsets for the CV (the option of leave one out cross-validation (LOOCV) was intentionally avoided in
this work). With this CV configuration, each subset has two to three parental control cells and exactly
one TRC.

The 0.982 accuracy is from a 14-fold CV with 13 accuracies of 1.0 and one accuracy of 0.75 for
a test subset of three parental control and one TRC. There were 34 combinations of tools that led to
this accuracy. Five combinations had CV scores of 0.976 where there were 13 accuracies of 1.0, and a
0.6667 accuracy for a test subset with two parental control and one TRC. So, the small sample size and
CV metric give the appearance of artificially static accuracies, but with a larger dataset, the apparent
discreteness would be diminished.

With the feature selection tools, it would be interesting to look at the different combinations
applied to the reduced dimensions already chosen. In other words, to find the best classifier results for
a few hundred dimensions, and then run all the combinations on that reduced dataset. This would be
especially interesting with r, as this method has been shown to do well at identifying artificial markers
in other studies [18], but did not perform well here.

After completing the data reduction and classification algorithms, the reduced dimensions for
promising classifier results can be referenced to indicate which peaks led to the best results. Figure 9a
shows the parental control and TRC spectra from 350 to 1800 cm−1 with markers for the dimensions
chosen by w and t for the 55 dimension runs, as this is the region in Table 2 where the better reduction
tool shifts from t to w. Figure 9b is a magnified section of the original, showing the region from 1115 to
1665 cm−1, while Table 3 represents a literature search for the possible causes of the selected peaks in
Figure 9b.
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Figure 9. Raman spectra with t-score (t) and MIT (w) chose 55 dimensions. (a) Whole spectrum from
350 to 1800 m−1 and (b) zoomed-in region from 1115 to 1665 cm−1. w and t peaks are plotted over
different curves for clarity.

Table 3. Possible Molecular Source of Peaks from 1115 to 1665 cm−1 that were obtained from various
literature references [29]. Note the grouping of Amide III and Amide I on either end of this range.

Wavenumber (cm−1) T-Score MIT Possible Source Reference

1116.4 X X CH2,6 in-plane bend and C1-Cα-Hα bend [30]

1201.5 X Amide III (proteins)
Amide III: C-N stretching and N-H bending

[31]
[32,33]

1221.1 X Amide III (β-sheet)
Amide III (proteins)

[34]
[31,35]

1234.2 X X A concerted ring mode [36]

1237.9 X Amide III & CH2 wagging: glycine
backbone and proline side chains [37]

1267.6 X X C-H (lipid in healthy tissue)
Amide III (collagen assignment) [33]

1272.3 X CHα′ rocking [30]

1290.7 X Cytosine [38]

1420.5 X
CH2 (lipid and protein)

DNA/RNA
Deoxyribose (B, Z-marker)

[35,39]
[31]
[38]

1488.2 X Guanine (N7)
Collagen

[38]
[40]

1578.9 X Guanine (N3)
Guanine, adenine

[38]
[31]

1610.4 X X Cytosine (NH2) [38]

1614.8 X Tyrosine [41]

1634.0 X Amide I [37]

1637.5 X Amide I [42,43]

1650.5 X X Amide I [33,44]

1654.9 X
Amide I

C==C stretching
Collagen

[34,37,45,46]
[46]
[47]

1660.9 X X
Amide I

C==C (lipids, fatty acids)
Ceramide backbone

[31,48,49]
[31,50,51]

[51]

1664.4 X X Amide I [41]
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The points in Figure 9b show signs of clustering of the Amide I and Amide III bands and also
tyrosine and collagen selected as essential markers in distinguishing between Control and TRC cells,
and this is illustrated in Table 3.

5. Conclusions

This work illuminates the potential of Raman spectroscopy in conjunction with statistical analysis
and machine learning classification techniques to aid in the study of pancreatic cancer. The classification
algorithms studied, with the chosen dimension reduction regimes, led to significant accuracy results in
the comparison of parental control cells and TRCs.

It was shown that kNN and SVM techniques could both obtain an accuracy greater than 0.98 when
differentiating the cell types with 35 to 60 dimensions of background removed and non-normalized,
peak-selected data without overfitting of the models. SVM would seem to be a better candidate for
further study, as it was able to achieve its accuracies without the addition of PCA, unlike kNN.

The practice of preserving the dimensions selected led to the observation of clustering in the
biologically active Raman regions, which will lead to further targeting of the spectra, specifically in the
1100 to 1700 cm−1 region. This will increase the data collected in exciting regions while still reducing
the overall dimensionality of the data and guide investigators toward the right questions to ask when
looking at the biology within cells with different methods.

Important next steps will be to obtain more samples and spectra to track the behavior of the
models as more TRC samples are made available, thereby allowing for a more balanced CV scoring of
the classifier’s accuracy.
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