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Introduction: Sleep disorders (SLD) are supposed to be associated with increased

risk and development of Alzheimer’s disease (AD), and patients with AD are more likely

to show SLD. However, neurobiological performance of patients with both AD and

SLD in previous studies is inconsistent, and identifying specific patterns of the brain

functional network and structural characteristics in this kind of comorbidity is warranted

for understanding how AD and SLD symptoms interact with each other as well as finding

effective clinical intervention. Thus, the aims of this systematic review were to summarize

the relevant findings and their limitations and provide future research directions.

Methods: A systematic search on brain functional and structural changes in

patients with both AD and SLD was conducted from PubMed, Web of Science, and

EMBASE databases.

Results: Nine original articles published between 2009 and 2021 were included

with a total of 328 patients with comorbid AD and SLD, 367 patients with only AD,

and 294 healthy controls. One single-photon emission computed tomography study

and one multislice spiral computed tomography perfusion imaging study investigated

changes of cerebral blood flow; four structural magnetic resonance imaging (MRI)

studies investigated brain structural changes, two of them used whole brain analysis,

and another two used regions of interest; two resting-state functional MRI studies

investigated brain functional changes, and one 2-deoxy-2-(18F)fluoro-d-glucose positron

emission tomography (18F-FDG-PET) investigated 18F-FDG-PET uptake in patients with

comorbid AD and SLD. Findings were inconsistent, ranging from default mode network

to sensorimotor cortex, hippocampus, brain stem, and pineal gland, which may be due

to different imaging techniques, measurements of sleep disorder and subtypes of AD

and SLD.

Conclusions: Our review provides a systematic summary and promising implication of

specific neuroimaging dysfunction underlying co-occurrence of AD and SLD. However,

limited and inconsistent findings still restrict its neurobiological explanation. Further
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studies should use unified standards and comprehensive brain indices to investigate

the pathophysiological basis of interaction between AD and SLD symptoms in the

development of the disease spectrums.

Keywords: Alzheimer’s, sleep disorders, brain function and structure, default mode network, hippocampus

INTRODUCTION

Alzheimer’s disease (AD) is a severe neurodegenerative disease,
manifested as deterioration in cognition (1), memory (2),
thinking, behavior, and the ability to perform everyday activities
(3). The World Health Organization reports that, as the most
common form of dementia, AD may contribute to 30–35 million
patients worldwide and 6–7 million new cases every year.
However, there is still no particularly effective treatment for
it (3). Finding possible risk or comorbid factors and effective
intervention of this disease is warranted.

As one of the most important noxious factors on physical and
mental health (4), sleep disorder (SLD) is reported to be closely
associated with development of AD (5–7). Some researchers even
believe that SLD has decisive effects on AD (2). It is reported
that roughly more than 50% of patients with AD have got
significant SLD (8), which may include insomnia, obstructive
apnea hypopnea syndrome (OSA), rapid eye movement sleep
behavior disorder (RBD), sleep apnea, shortened sleep duration,
fragmented sleep, slow wave sleep disruption, and misalignment
of circadian rhythm (9). Older adults with SLD are more
likely to have a diagnosis of AD or cognitive decline (10).
Brain chemical changes in OSA patients could further lead to
cognitive impairment and early AD clinical performance, and
continuous positive airway pressure therapy could modify these
AD biomarkers (11). RBDmay also lead to cognitive impairment
and pathologies of AD (12).

Another 9-year follow-up study found reduced sleep was
associated with a two-fold increased risk of AD compared
with controls (13). The reasons for this significant correlation
could be that the SLD can increase stress reactions and impair

Abbreviations: 18F-FDG-PET, 2-deoxy-2-(18F)fluoro-d-glucose positron

emission tomography; AD, Alzheimer’s disease; CBF, cerebral blood flow; CCMD-

3, Chinese Classification of Mental Disorders version 3; CERAD, consortium to

establish a registry for Alzheimer’s disease assessment packet clinical assessment

battery; dALFF, dynamic amplitude of low-frequency fluctuation; DLPFC,

dorsolateral prefrontal cortex; DMN, default mode network; IPL, inferior parietal

lobules; MFG, middle frontal gyrus; mPerAF, percent amplitude of fluctuation

divided by global mean PerAF; MSCTP, multi-slice spiral computed tomography

perfusion imaging; NIAA, National Institute of Aging-Alzheimer’s criteria in

2011; NIAAA, National Institute on Aging-Alzheimer’s Association workgroups

on diagnostic guidelines for Alzheimer’s disease; NPI-Q, brief questionnaire form

of neuropsychiatric inventory; OSA, obstructive apnea hypopnea syndrome;

PCC, posterior cingulate cortices; PerAF, percent amplitude of fluctuation;

PSG, polysomnographic recordings; PSQI, Pittsburgh sleep quality index; RBD,

rapid eye movement sleep behavior disorder; RBDSQ, rapid eye movement

sleep behavior disorder screening questionnaire; ROI, region of interest; rs-

fMRI, resting-state functional magnetic resonance imaging; SFG, superior

frontal gyrus; SLD, sleep disorder; SMG, supramarginal gyrus; sMRI, structural

magnetic resonance imaging (sMRI); sNPI, sleep subscale of neuropsychiatric

inventory; SPECT, Single-photon emission computed tomography; STP, superior

temporal pole.

attention, episodic memory (14) and cognitive function (15),
increase adrenocorticotropin and cortisol secretion, weaken
neuronal structures, increase risk of cell death (5). Specifically,
SLD could increase beta-amyloid production and deposition

(2) and decrease its clearance in the brain (7), further cause

synaptic dysfunction (2), and exacerbate the deterioration of AD
symptoms, especially when both were severe (9). One review

indicates that the treatment of SLD may also alleviate cognitive
decline and the risk of AD (2) and be an effective therapy for

AD symptoms (9). However, the specific neurobiological basis
of the interactive process between AD and SLD symptoms are

still controversial.
Neuroimaging technology could help us understand the

brain pathophysiology of AD and SLD in vivo. Previous

review and meta-analysis studies indicate that patients with AD

exhibit decreased regional cerebral blood flow in the posterior
cingulate cortices (PCC), precuneus, inferior parietal lobules

(IPL), dorsolateral prefrontal cortex (DLPFC) (16); decreased
gray matter volume in the left parahippocampal gyrus, left PCC,

right fusiform gyrus, and right superior frontal gyrus (SFG)
(17) and network changes mainly associated with subcortical

areas (18) and default mode network (DMN) (19). In particular,
the DMN is reported as the first network affected by AD (20).
Meanwhile, patients with SLD show decreased brain functional

and structural indices in the frontal cortex, temporal gyrus,
fusiform gyrus, striatum, cingulate cortex, precentral gyrus,
and reduced glucose metabolism in the limbic system as well

as increased brain activation and regional homogeneity in
the middle frontal gyrus, precunus, cingulate gyrus (21) and

overactivation in the hypothalamic-pituitary-adrenal cascade (5).

However, one review indicates that cortical hyperarousal other
than hypo-arousal activities, as the central feature of SLD, may

be located at the temporal cortex and hippocampus and could
contribute to both AD and SLD pathogenesis so as to increase

their comorbidity rate (8).
Although these findings show some shared and bidirectional

interactions of brain disturbances, neurodegeneration, and
neuropathology between AD and SLD (9), the key brain changes
associated with high comorbidity and their interactions are

still controversial and remain to be elucidated. The necessity
and merits of this review are that through the conclusions of
previous brain functional and structural findings in patients with
comorbid AD and SLD, we could find the possibly abnormal
SLD-related brain regions or networks that beta-amyloid mainly
deposit or neural inflammation led to in these patients. We could
also well-understand the specific neurobiological basis of how
SLD contributes to the development of AD symptoms and find
a possible effective way to delay or prevent the brain alterations
and clinical manifestations of AD through effective treatment of
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SLD symptoms. Furthermore, concluding the specific differences
of brain changes in patients with comorbidity of AD and SLD
compared with patients with AD alone could also help us find a
possible specific subtype of the AD spectrum. For these aims, the
present review provides an overview of the specific neuroimaging
findings of patients with comorbid AD and SLD, their limitations,
and future research directions. In addition, if the number of
included studies using the same imaging technologies is >3, then
a meta-analysis will be conducted.

Previous studies mainly found abnormal limbic structures,
especially hippocampal astrophic (9) and dysfunctional regions
in the DMN in patients with AD or SLD (20). Based on these
findings, we hypothesize that these brain regions and networks
would exhibit relatively consistent abnormality in patients with
comorbid AD and SLD in related studies.

METHODS

Search Strategy and Study Selection
A systematic literature search was conducted to identify
published studies that examined brain imaging changes in
patients with AD and SLD using databases of PubMed, Web
of Science, and Embase. The key words were searched using
the following terms: (sleep OR insomnia OR apnea hypopnea)
AND (Alzheimer’s∗) AND (MRI OR brain imag∗), and the
search period ended on August 8, 2021, from the earliest date
of the databases. The reference lists of retrieved articles were
also searched for identifying potentially relevant studies. There
were no other restrictions, such as SLD classification, imaging
methods, language, or publication year; i.e., we included all
studies of insomnia, OSA, RBD, sleep apnea, shortened sleep
duration, fragmented sleep, slow wave sleep disruption, and
misalignment of circadian rhythm, etc. All primary studies that
reported brain functional or structural changes of the patients
with comorbid AD and SLDwere included in the review. If values
of demographic information or brain changes were unclear, we
attempted to contact the authors for clarification. The exclusion
criteria were (1) case reports, (2) review or meta-analyses, and
(3) non-human studies, and (4) if studies had overlapping
samples, only studies with the largest sample were included. Any
divergences were resolved by discussion between authors.

Data Extraction
The extracted characteristics of the articles included first
author, publish year, sample size, mean age of participants,
questionnaires for AD or SLD in the articles, imaging technique,
whole brain or regions of interest analysis, country of study, and
the main results, which were brain functional or structural or
chemical changes in comorbid AD and SLD compared with AD
or healthy controls.

RESULTS

Included Studies
A PRISMA flow chart of article choice is presented in Figure 1. A
total of 1,240 articles were retrieved, 1,231 articles were excluded,

and nine studies were finally included in the review. Summary of
the included studies is showed in Table 1.

Two of them compared brain differences between the
comorbidity of AD and SLD groups, the AD group and healthy
controls (22, 23); three studies only included the comorbidity
group and healthy controls (24–26); four studies recruited the
comorbidity group and the AD group (20, 27–29). Published
years of articles ranged from 2009 to 2021. Three studies were
conducted in China, three in Korea, one in Canada, one in Italy,
and one in Japan.

Included patients with comorbid AD and SLD, AD only, and
controls in this review were 328, 367, and 294, respectively.
Sample size of every group ranged from 14 to 257. Mean age of
participants ranged from 71.5 to 81.5.

In these studies, one single-photon emission computed
tomography (SPECT) (22) study and one multislice spiral
computed tomography perfusion imaging (MSCTP) (26) study
investigated changes of cerebral blood flow; two whole-
brain structural magnetic resonance imaging (sMRI) studies
investigated brain structural changes (27, 28), one sMRI study
investigated the brain stem volume (24), and another investigated
the pineal gland volume (30); two resting-state functional
magnetic resonance imaging (rs-fMRI) studies investigated
brain functional changes (23, 29); and one 2-deoxy-2-(18F)
fluoro-d-glucose positron emission tomography (18F-FDG-PET)
investigated 18F-FDG-PET uptake in patients with comorbid AD
and SLD (25).

Evaluation of AD and SLD
Diagnosis and evaluation of AD and SLD are heterogeneous.
In AD diagnosis, four studies used National Institute of
Neurological and Communicative Disorders and stroke—AD
and related disorders association criteria (NINCD) (22–24, 28),
one used National Institute on Aging-Alzheimer’s Association
workgroups on diagnostic guidelines for AD (NIAAA) (25), one
used a consortium to establish a registry for AD assessment
packet clinical assessment battery (CERAD) (30), one used
Chinese Classification of Mental Disorders version 3 (CCMD-
3) (26), one used National Institute of Aging-Alzheimer’s criteria
in 2011 (NIAA) (29), and one did not provide a diagnostic
standard (27). In SLD evaluation, three used a sleep subscale
of neuropsychiatric inventory (sNPI) (22, 24, 28), three used
the Pittsburgh sleep quality index (PSQI) (26, 27, 29), one
used polysomnographic recordings (PSG) (25), one used a brief
questionnaire form of neuropsychiatric inventory (NPI-Q) (23),
one used a rapid eye movement sleep behavior disorder screening
questionnaire (RBDSQ) (30).

Brain Changes in Comorbid AD and SLD
All studies found significant brain changes in patients with
comorbid AD and SLD compared with patients with only AD or
healthy controls.

One region of interest (ROI)-based sMRI study found
significant differences of posterior brain stem morphology
in the AD and SLD group compared with controls and
a negative correlation between the NPI scores and left
posterior lateral brain stem volume (24), and another ROI
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FIGURE 1 | PRISMA Flow diagram of studies selection for review.

study found decreased pineal gland volume in AD and SLD
compared with AD, and the pineal gland volume negatively
correlated with the severity of SLD (30). One whole brain
and hippocampus subfield ROI study found decreased gray
matter volume of bilateral cingulate gyrus in poor sleeper AD
compared with AD only as well as no significant results in
the hippocampus (27). Another whole brain and pineal gland
ROI study found decreased gray matter volume of bilateral
precuneus in AD patients with sleep disturbance compared with
patients with AD only, which negatively correlated with the
sNPI scores (28). However, different from the second study,
no significant results were found in the pineal gland ROI
comparison (28).

Two rs-fMRI studies investigated brain functional changes
(23, 29). One of them found increased dynamic amplitude of low-
frequency fluctuation (dALFF) variance of right cerebellum, left
superior temporal pole (STP), right rectus, right hippocampus,
decreased dALFF variance of right supramarginal gyrus (SMG),
decreased sALFF of left precentral gyrus, right IPL, and cuneus
in patients with AD and SLD compared with AD, and dALFF
variance positively correlated with amyloid deposit in regions
involved in memory and sleep (23). Another study found a
decreased percentage of amplitude of fluctuation (PerAF) and
PerAF divided by global mean PerAF (mPerAF) in the left
brainstem, left calcarine gyrus, left lingual gyrus; decreased
PerAF in the left fusiform gyrus, left parahippocampal gyrus, left
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TABLE 1 | Summary of AD&SLD studies included in the meta-analysis.

References Country AD and SLD

subsets

AD and SLD

cases (male/

female)

AD cases

(male/

female)

Controls

(male/

female)

AD and SLD

mean age

(SD)

AD mean age

(SD)

Controls

mean age

(SD)

Questi-

onnaire

Imaging

technique

ROIs Main results

Ismail et al. (22) Canada AD with or

without sleep

loss

14/24 7/10 17/20 72.4 (7.4) 74.2 (8.3) 71.5 (6.3) NINCD, sNPI SPECT-CBF WB Higher perfusion in the

right MFG in AD and

SLD compared with

AD

Lee et al. (24) Korea sNPI in AD &

SLD

13/31 N.A. 14/26 76.2 (5.7) N.A. 75.2 (4.7) NINCD, CDR,

sNPI

3T

T1-weighted

sMRI

Brain stem Decreased volume in

the brain stem;

negative correlation

between the sNPI

scores and left

posterior lateral brain

stem volume in AD

and SLD

Liguori et al.

(25)

Italy Polysomnographic

recordings in AD

& SLD

8/18 N.A. 7/11 71.56 (3.92) N.A. 74.11 (2.78) NIAAA, PSG 18F-FDG-PET Hypo-thalamus Interplay between the

reduction of sleep

efficiency, REM sleep

and the reduction of

hypothalamic

18F-FDG-PET uptake,

which negatively

correlated with the

index of

neurodegeneration in

AD and SLD

Yi et al. (27) Korea Poor or good

sleeper AD

32 14 N.A. N.A. N.A. N.A. PSQI 3T

T1-weighted

sMRI

WB and hippo

subfields

Decreased gray

matter volume in the

bilateral cingulate

gyrus in poor sleeper

AD. No hippo findings.

Matsuoka et al.

(28)

Japan AD with or

without sleep

disturbance

8/11 11/33 N.A. 81.5 (6.4) 77.8 (6.9) N.A. NINCD,

ICD-10, sNPI

3T

T1-weighted

sMRI

WB and pineal

gland

Decreased gray matter

volume in the bilateral

precuneus in AD with

sleep disturbance. No

pineal gland findings.

Li et al. (23) China AD with poor or

normal sleep

7/9 9/5 53/70 74.66 (8.50) 70.76 (8.24) 74.02 (7.13) NINCD, CDR,

NPI-Q

rs-fMRI &PET WB Increased dALFF

variance in the right

cerebellum, left STP,

right rectus, right

hippo, decreased

dALFF variance in the

right SMG, decreased

sALFF in the left

precentral gyrus, right

IPL and cuneus in AD

and SLD compared

with AD

(Continued)
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TABLE 1 | Continued

References Country AD and SLD

subsets

AD and SLD

cases (male/

female)

AD cases

(male/

female)

Controls

(male/

female)

AD and SLD

mean age

(SD)

AD mean age

(SD)

Controls

mean age

(SD)

Questi-

onnaire

Imaging

technique

ROIs Main results

Park et al. (20) Korea AD with or

without sleep

behavior

disorder

8/31 79/178 N.A. 76.8 (7.4) 77.4 (7.4) N.A. CERAD,

RBDSQ

3T

T1-weighted

sMRI & PET

Pineal gland Decreased pineal

gland volume in AD &

SLD compared with

AD, and the pineal

gland volume

negatively correlated

with the severity of

SLD

Liu et al. (26) China AD with sleep

disorders

31/45 N.A. 32/44 73.07 (5.41) N.A. 72.32 (5.28) CCMD-3,

PQSI

MSCTP-CBF TL, FL, hippo,

BG

Decreased CBF in the

TL, FL, hippo and BG

in AD and SLD

Wang et al. (29) China Mild AD with or

without sleep

disturbances

12/26 8/13 N.A. 73.7 (7.2) 73.6 (8.4) N.A. NIAA, CDR,

PSQI

rs-fMRI WB Decreased mPerAF

and PerAF in the left

brainstem, left

calcarine gyrus, left

lingual gyrus;

decreased PerAF in

the left fusiform gyrus,

left parahippocampal

gyrus, left precentral

gyrus, left postcentral

gyrus

18F-FDG-PET, 2-deoxy-2-(18F)fluoro-d-glucose positron emission tomography; AD, Alzheimer’s disease; BG, basal ganglia; CBF, cerebral blood flow; CCMD-3, Chinese Classification of Mental Disorders version 3; CDR, clinical

dementia rating scale; CERAD, consortium to establish a registry for Alzheimer’s disease assessment packet clinical assessment battery; dALFF, dynamic amplitude of low-frequency fluctuation; FL, frontal lobe; hippo, hippocampus;

ICD-10, International Classification of Disease version 10; IPL, inferior parietal lobule; MFG, middle frontal gyrus; mPerAF, percent amplitude of fluctuation divided by global mean percent amplitude of fluctuation; MSCTP, multi-slice spiral

computed tomography perfusion imaging; N.A., not available; NIAA, National Institute of Aging-Alzheimer’s criteria in 2011; NIAAA, National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s

disease; NINCD, National Institute of Neurological and Communicative Disorders and stroke – Alzheimer’s disease and related disorders association criteria; NPI-Q, brief questionnaire form of neuropsychiatric inventory; PerAF, percent

amplitude of fluctuation; PSQI, Pittsburgh sleep quality index; RBDSQ, rapid eye movement sleep behavior disorder screening questionnaire; PSG, polysomnographic recordings; REM, rapid eye movement; ROI, region of interests;

rs-fMRI, resting state functional magnetic resonance imaging; sALFF, static amplitude of low-frequency fluctuation; SD, standard deviation; SLD, sleep disorders; SMG, supramarginal gyrus; sMRI, structural magnetic resonance imaging;

sNPI, sleep subscale of neuropsychiatric inventory; SPECT, single-photon emission computed tomography; STP, superior temporal pole; TL, temporal lobe; WB, whole brain.
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precentral gyrus, left postcentral gyrus in patients with AD and
SLD compared with AD (29).

In the rest of the studies, one MSCTP study investigated
changes of cerebral blood flow (CBF) in ROIs, and found
decreased CBF of temporal lobe, frontal lobe, hippocampus, and
basal ganglia in the AD and SLD group compared with controls
(26). One SPECT study found higher CBF in the right middle
frontal gyrus (MFG) in the AD and SLD group compared with
the AD group (22). One 18F-FDG-PET study investigated 18F-
FDG-PET uptake in patients with comorbid AD and SLD and
found correlation between the reduction of sleep efficiency, REM
sleep, and the reduction of hypothalamic 18F-FDG-PET uptake,
which negatively correlated with the index of neurodegeneration
in AD and SLD group compared with controls (25).

DISCUSSION

Nine experimental studies, which investigated brain functional
and structural changes in patients with both AD and SLD, using
rs-fMRI, sMRI, PET, SPECT, or MSCTP scanning, were included
in our review. Although many findings showed heterogeneity,
which may be due to small sample sizes, different experimental
designs, disease assessment and imaging tools, some findings still
support our hypothesis.

DMN is a brain network most activated in the resting state
and associated with autobiographical and episodic memory
(1), consolidating individual experiments, self-referential
information processing, and constructing integrated “self ”
(31). These cognitive domains are believed to be impaired
early, and the DMN is the first dysfunctional network affected
by increased beta-amyloid deposition in patients with AD
(1, 20) as well as in patients with SLD (32, 33). The abnormal
DMN, especially the overactivated hippocampus and medial
temporal lobe, is reported to associate with dysfunction of
emotion (34), memory, and cognition in patients with SLD
(15, 35) and could also interact with increased beta-amyloid
production and greater local deposition (1) and facilitate the
following hypo-activation and atrophy of hippocampus and
other DMN regions in patients with AD (8). However, whether
overactivation (8, 15), hypo-activation (26, 29), or no change
(22, 27) of the hippocampus in the different developmental
processes of these two diseases is still controversial. It may be
due to different categories of hippocampal subregions, such as
previous studies that believe that changed anterior, medial, or
posterior parts of the hippocampal volumes could have different
changes in patients with AD (36) or abnormal hippocampal
subregions of the dentate gyrus (DG), cornu ammonis 1/2/3,
and subiculum play distinct roles in memory impairments (37)
or due to different neurobiological changes of SLD subtypes,
such as OSA or RBD, which need further investigation with
high-resolution brain imaging.

Decreased sALFF in the precentral gyrus (23) and decreased
PerAF in the precentral and postcentral gyrus were found in the
comorbidity of the AD and SLD group (29). These decreased
precentral activations may imply increased night awakening,
reduced slow-wave activity, and sleep depth linked to sleep

disruption (38) as well as impaired sensory and motor function
by SLD in the development of AD (29).

Decreased volume (24), mPerAF and PerAF of the brainstem
were found in the comorbidity group in previous studies (29).
The brainstem is usually unmentioned or not investigated in
brain imaging studies. However, it is a key neurobiological
basis of sleep regulation, producing and regulating the sleep–
wake rhythms (29). Degeneration of it could occur very early
in patients with AD and also contribute to the onset of SLD,
fragmented sleep, impairedmemory consolidation, and cognitive
decline (24).

Some researchers believe that the pineal gland is associated
with sleep regulation through melatonin synthesis, and beta-
amyloid could easily inhibit its function (39), which, in turn,
could reduce the protection of cholinergic neurons from amyloid
toxicity, increase the risk of both SLD and AD (30). In the
included studies, only one found decreased pineal gland volume
in the comorbidity group (30). Another ROI-based study (28)
and four whole-brain studies did not find any significant results
(22, 23, 27, 29). These inconsistent results in previous studies
may imply a different presentation of melatonergic systems
in different developmental stages or subtypes of the diseases,
which need more studies with large sample sizes for further
verification (28).

Some other positive results could also be worth considering.
One whole-brain study found higher CBF in the dorsal
lateral prefrontal cortex (DLPFC) in the comorbidity group
compared with the AD group (22). Another ROI-based study
found significant decreased brain glucose consumption in the
hypothalamus in the comorbidity group, which negatively
correlated with the index of neurodegeneration in patients
with AD and SLD and a significant interplay between the
reduction of sleep efficiency, REM sleep, and the reduction
of hypothalamic 18F-FDG-PET uptake (25). The abnormal
activation of DLPFC, which may be the result of impaired
thalamocortical ascending executive cholinergic pathways, could
associated with sleep loss and frequent arousals during sleep
(22) and lead to cognitive dysfunction (15). The hypothalamus
is associated with homeostasis and the sleep–wake cycle and
could be affected by AD pathology leading to some non-cognitive
deficits, such as sleep–wake and neuroendocrine disorders and
loss of weight (25). Meanwhile, hypothalamic-pituitary-adrenal
axis dysregulation and inflammation was also reported to
contribute to the development of pathophysiology of both SLD
and AD symptoms (8). The knowledge of the hypothalamic
circuitry functions in the interaction between AD and SLD
symptoms still needs expansion for reliable biomarkers and
therapeutic approaches.

There are still many limitations left in current research. First,
the clinical manifestation and developmental process of SLD
is complicated with high heterogeneity, and the assessment
of it is still not unified between studies. Furthermore, many
studies did not report the onset time or duration of SLD.
Second, neurobiological explanation of comorbidity is still
constrained by a lack of magnetic resonance spectroscopy
or other microscopic neurobiological studies. Elaborate
experiments with solution of these limitations, such as
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large, well-characterized, or homogeneous samples; standard
assessment; diagnosis; imaging and analysis protocols (40);
and longitudinal studies on AD risk management, prevention
and intervention from the viewpoint of SLD treatment are
warranted (6). Finally, because the number of studies included
in our review using the same scanning technology are all
not greater than three, meta-analysis was not able to be
conducted. It limits the preciseness and generalizability of
our research.

Integrating all these studies together, we could conclude that
SLD may have induced even decisive effects on the pathological
development of AD symptoms. The DMN, especially the
hippocampus as well as the sensorimotor cortex, may be the
initial neurophysiological basis of interactions between AD and
SLD symptoms. These changes could be mainly associated
with memory, self-awareness, and sensorimotor deficiencies.
Functions of the brainstem and pineal gland in this comorbidity
still need further verification. Our study may contribute to a
better understanding of the pathophysiology and possible risk
of AD in patients with SLD and a suggestion of potential
neural biomarkers for the further investigation on the early
diagnosis and treatment of SLD patients with AD risk or
with the comorbidity of AD and SLD. The facilitated effects

of SLD symptoms on AD, and this physiological basis in the
AD developmental continuum from subclinical to high-risk
population and to patients deserve more attention in the future
studies. For example, elaborately task-based fMRI experimental
design, technology of magnetic resonance spectroscopy or AD
animal models could be introduced. Findings from these studies
could further help us to prevent or attenuate cognitive decline
and AD symptoms (2), perform targeted early intervention on
possible dementia risk and improve senile life quality (5).
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