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Abstract

In this study, we address the problem of noisy image super-resolution. Noisy low resolution

(LR) image is always obtained in applications, while most of the existing algorithms assume

that the LR image is noise-free. As to this situation, we present an algorithm for noisy image

super-resolution which can achieve simultaneously image super-resolution and denoising.

And in the training stage of our method, LR example images are noise-free. For different

input LR images, even if the noise variance varies, the dictionary pair does not need to be

retrained. For the input LR image patch, the corresponding high resolution (HR) image

patch is reconstructed through weighted average of similar HR example patches. To reduce

computational cost, we use the atoms of learned sparse dictionary as the examples instead

of original example patches. We proposed a distance penalty model for calculating the

weight, which can complete a second selection on similar atoms at the same time. More-

over, LR example patches removed mean pixel value are also used to learn dictionary rather

than just their gradient features. Based on this, we can reconstruct initial estimated HR

image and denoised LR image. Combined with iterative back projection, the two recon-

structed images are applied to obtain final estimated HR image. We validate our algorithm

on natural images and compared with the previously reported algorithms. Experimental

results show that our proposed method performs better noise robustness.

1 Introduction

Single image super-resolution (SR) is a classical problem in computer vision. In general, it uses

signal processing techniques to recover a high resolution (HR) image from only one low reso-

lution (LR) image. SR methods can be broadly classified into three categories: interpolation-

based methods, reconstruction-based methods, and example-based methods.

Interpolation-based SR such as [1, 2] has been proposed for in various applications and it

demonstrates the advantage of fast computational simplicity. But they usually fail to generate

fine details in discontinuous regions and often result in introducing blurring of edges and

other high-frequency features in practice [3].

Reconstruction-based methods usually integrate one or more sophisticated priors such as

gradient profile prior [4], edge prior [5], and total variation [6] into SR literature to estimate

the missed details. Recently, sparse-based regularization [7–10] has also been shown to be
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particularly effective for the ill-posed problems of SR. Usually, these methods achieved impres-

sive results in preserving sharper edges and suppressing aliasing artifacts. However, the perfor-

mance depends heavily upon a rational prior imposed on the up-sampled image [11].

Over the years, many example-based SR methods [12–14] have been proposed with demon-

strated promising results and become the mainstream approaches of SR domain. The methods

assume that the missing high frequency details can be estimated based on learning the map-

ping relationship from LR-HR patch pairs of external database and input LR patches. Two

kinds of relationship models exist for these methods. One is that between LR patches and the

corresponding HR patches in the database. After Freeman et al. [15] used Markov network to

model the relationship, regression functions [16] are employed to exploit the relationship

between HR and LR patch pairs. In addition, supervised or semi-supervised learning models

are introduced into some of the algorithms [17–19]. Recently, a mapping of LR-HR image

pairs was learned using a deep convolutional neural network [20], and has shown favorable

results. D. Dai et al. [21] jointly learned a collection of regressors from LR to HR patches,

which collectively yielded the smallest error for all training data. The other is that between LR

example patches and input LR patches. Most of the methods [22, 23] is based on Nearest

Neighbor Embedding (NNE). In these methods, a fixed number of nearest neighbors are

extracted from database for each input LR patch, and then the corresponding HR patches are

used to estimate the output HR patch by a linear combination determined by LR patch and its

neighbors. Despite the algorithms are demonstrated by successful results, they highly depend

on the number of neighbors which is difficult to determine. For this problem, [24] operates on

a dynamic k-nearest neighbor algorithm, where k is small for test point with highly relevant

neighbors and large others. Some researchers calculate the distance between input patch and

its neighbors respectively. The neighbors will be abandoned when the distance is smaller than

mean value. Yang [25] exploited sparse coding to perform image SR. The algorithm assumes

that LR-HR patch pairs share the same sparse coefficients with respect to their respective dic-

tionaries which are jointly learned from a set of external training images. It can be considered

as neighbor embedding in sparse domain without choosing the number of neighbors. Since

then, sparse coding is applied to SR problem [21–23], and achieves impressive results. Zeyde

[26] used dimensionality reduction and orthogonal matching pursuit for sparse representation

to improve efficiency. S. Wang [27], proposed a semi-coupled dictionary learning model,

under which a pair of dictionaries and a mapping function describing the relationship between

sparse coefficients of LR-HR patch pairs will be simultaneously learned. In [28], kernel ridge

regression is employed to connect sparse coefficients of LR-HR patch pairs. Kaibing Zhang

[29] determine the relationship between LR image patches and HR image patches by assuming

that LR image patches and HR image patches are share the same sparse coefficients. R. Timofte

et al. [30] proposed a fast image SR method called anchored neighbourhood regression (ANR)

which learns sparse dictionaries and regressors anchored to dictionary atoms. This algorithm

is faster, while making no compromise on quality. R. Timofte et al. [31] then produced an

improved variant of ANR. The study in [31] enhanced these features and anchored regressors

for ANR. Instead of learning the regressors on the dictionary, their method uses the full train-

ing material. It obtained improved quality, and became the fastest method indisputably. S. Gu

[32] proposed a convolutional sparse coding based SR method to address consistency issue. In

addition, researches show that image structures tend to repeat themselves within and across

scales. [33–35] exploits the self-similarity of structures in nature image and extracts the data-

base directly from the LR input image instead of the external database. Good reconstruction

quality relies on much additional memory and running time to build counterparts across dif-

ferent scales in a recursive scheme. Therefore, its application is limited.

Noisy image super-resolution
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Although the algorithms can results in better performance, most of the SR algorithms

including other learning-based methods assume that the input LR image is noise-free. Such

assumption is not in accord with real applications. The algorithms are less robustness to noisy

image SR. So another challenge is the super-resolution for noisy images. While compared with

SR on clear LR input images, less attention has been paid to develop effective SR algorithms

for noisy ones. J. Xie [36] first employs an adaptively regularized Shock filter to tackle the jag-

ged noise, and then perform SR for depth image. The disadvantage of such scheme is that the

artifacts can be created in denoising process and magnified in super-resolution process. There-

fore, researchers started on simultaneously denoising and super-resolution. In [37], LR train-

ing images are magnified by a TV regularization model with a constraint before dictionaries

training stage. However, the level of noise dealt with the method is small. Furthermore, it

focuses on magnification only. Based on the current research status, we devote to design an

algorithm to complete SR and denoising in the same framework to deal with noisy image

patches.

Sparse representation makes the signal energy only concentrated in a few atoms. Because of

the special nature, some sparse coding based SR algorithms such as [25] show certain robust-

ness to noisy image. In addition, sparse representation has been successfully employed in

image denoising [38, 39], image restoration [40, 41] and other processing [42, 43]. The dictio-

nary plays an important role in the sparse representation process. A predefined analytical dic-

tionary (e.g., wavelet dictionary, Gabor dictionary) make the coding fast and explicit, but it is

less effective to model the complex local structures of natural images. A synthesis dictionary

(e.g., K-SVD dictionary) can be learned from example natural images and has more expensive

computation but can better model complex image local structures [44]. In recent years, lots of

dictionary learning methods have been proposed and achieved obvious performance. Feng

et al. [45] propose to learn jointly the projection matrix for dimensionality reduction and the

discriminative dictionary for face representation. Zhang et al. [46] propose a semisupervised

label consistent dictionary learning framework for machine fault classification. Inspired by

these, we introduce sparse theory to our research. The synthesis procedure is illustrated in

Fig 1. The input LR image and example images are firstly cropped into patches. The example

images are noise-free. Then the features of example patch pairs are extracted, which will be

learned for dictionary pair. For each input LR patch, according to its features, it is easy to

achieve simultaneously similar dictionary atom pairs ðuh
i ;ul

iÞ finding and calculating distance

bi between input LR patch and its similar atoms. Next, combined with the input LR image

patch feature, LR dictionary atom ul
i and distance bi are used to compute weight ωi. After the

weight is computed, we can obtain estimated HR image patch and denoised LR image patch

from uh
i oi. Put all the estimated HR patches into an estimated HR image, which is computed

by averaging in overlapping regions. In the same way, we obtain the denoised LR image from

all the denoised LR patches. At last, combined with the iterative back projection (IBP), the esti-

mated HR image and the denoised LR image are applied to obtain the final output HR image.

The contributions can be summarized as follows.

(1) Different from the conventional methods, the proposed algorithm can process noisy

image, and present for simultaneously image superresolution and denoising. Furthermore, in

the training stage of our method, LR example images are noise-free. For different input LR

images, even if the noise variance varies, the dictionary pair does not need to be retrained.

(2) The core idea of our proposed method is that the estimated HR patch is weighted aver-

age of similar HR example patches. To reduce computational cost for finding similar patches

from millions of examples, example patches are replaced by the learned sparse dictionary

which makes the signal energy only concentrate in few atoms.

Noisy image super-resolution
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(3) Penalty function is applied to least squares regression regularized by l2-norm for model-

ing weight. It makes the objective function treat each similar atom unequally. The function is

determined by the similarity between input LR patch and its similar atom of LR dictionary.

When the similarity is strong, we make the penalty small, which forces large weight at the

same time. Conversely, when the similarity is weak, we make the penalty large, which forces

small or zero weight at the same time.

(4) LR example patches subtracted mean pixel value are used for training dictionary rather

than just their gradient features like other literatures such as [25]. In the training stage, for

each LR example patch, we first subtract its mean pixel value, then connect it to its correspond-

ing HR example patch into a single vector. All the new vectors are used as new HR examples to

learn HR dictionary. Thus, the HR dictionary represents textures of HR example patches, but

also that of LR example patches which are noise-free. Therefore, in the reconstruction stage,

the HR dictionary can also be used to recover denoised input LR patches. This is different

from conventional learning methods. Combined with iterative back projection (IBP), the

denoised LR patches are applied to enhance robustness to noise.

The remainder of this paper is organized as follows. The proposed algorithm is presented in

detail in Section 2. Experimental results and comparisons are demonstrated in section 3. Sec-

tion 4 concludes this paper.

2 The proposed method

Firstly, let us recall the image degradation model which is shown in Eq (1). Given an observed

LR image Y 2 RM that is a degraded version of a HR image X 2 RN of the same scene

Y ¼ GsHX þ v ð1Þ

Where, Gs is the down-sampling operator with scaling factor s; H is the blurring operator; v is

the noise. It is the task of SR reconstruction to recover X from Y as accurate as possible. It is

considered that the image is noise-free by conventional SR methods.

2.1 Example database

From the example images fIh
1
; Ih

2
; :::; IhNg, LR images fIl

1
; Il

2
; :::; IlNg are first obtained, which are

considered as noise-free ones. For each image Ihj , its corresponding LR image Ilj is determined

Fig 1. The flowchart of the proposed SR algorithm.

https://doi.org/10.1371/journal.pone.0182165.g001

Noisy image super-resolution
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by

Ilj ¼ GsHIhj ð2Þ

A set fph
1
; ph

2
; :::; ph

ng of vectorized HR patches of size
ffiffiffiffi
w
p
�

ffiffiffiffi
w
p

are taken from example

HR images fIh
1
; Ih

2
; :::; IhNg and a set fpl

1
; pl

2
; :::;pl

ng of vectorized LR patches of size
ffiffiffiffi
w
p

=s�
ffiffiffiffi
w
p

=s are taken from example LR images fIl
1
; Il

2
; :::; IlNg. Consequently, we obtain a database of

HR-LR patch pairs

ðph; plÞ ¼ fðph
i ; pl

iÞ 2 R
w � Rw=s2 ; i ¼ 1; 2; :::; ng ð3Þ

2.2 Distance penalty weight model

For the super-resolution, given a LR image YL, which is generated form HR image XH by Eq

(1), the task is to recover the unknown XH from YL with the help of example patch pairs. The

algorithm is performed with patch for the unit. Similar to [25], YL is firstly divided into over-

lapping patches

YL ¼ fyl
i; i ¼ 1; 2; :::;Nyg ð4Þ

Where, yl
i is the vectorized LR image patch of size

ffiffiffiffi
w
p

=s�
ffiffiffiffi
w
p

=s, Ny is the number of patches

of YL.

The estimated vectorized HR image XH can be represented as

XH ¼ fxh
i ; i ¼ 1; 2; :::;Nyg ð5Þ

Where,xh
i is the estimated HR image patch of size

ffiffiffiffi
w
p
�

ffiffiffiffi
w
p

.

According to Eq (1), the relationship can be described by

yl
i ¼ GsHxh

i þ vi ð6Þ

Where,vi is the noise. We assume that it is Gaussian noise with zero-mean and variance σ2.

Thus, it become the purpose of super-resolution to estimate HR image patch xh
i from input

LR image patch yl
i.

As we known, for each xh
i , it can be approximated by HR example patches through weighted

average, which have similar structures. Therefore, based on this core idea, the problem in this

method is to find the similar patches of xh
i in database and to calculate the weight.

Due to the repetition of local structures of images, a subset of patches ðuh
i ;ul

iÞ 2 ðp
h; plÞ in

which uh
i has similar structures with xh

i exists. That is

xh
i ¼

Xk

j¼1

uh
ijoij ¼ uh

i oi ð7Þ

Where, weight vector is ωi = [ωi1, ωi2, . . ., ωij, . . ., ωik]T, k is the number of the patch pairs in

this subset ðuh
i ; ul

iÞ.

There are many methods to determine the weight, such as set the weights to be inversely

proportional to the distance between patches. These methods relying on number of similar

patches heavily, and cannot suppress noise. Now, we discuss a new weight model in details.

Noisy image super-resolution
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According to the degradation model Eqs (1) and (7), we have

GsHxh
i ¼ GsHuh

i oi ¼ ul
ioi ð8Þ

From Eq (8), we can obtain

yl
i ¼ GsHxh

i þ vi ¼ ul
ioi þ vi ð9Þ

Where, vi is assumed as Gaussian noise with zero-mean and variance σ2.

Thus,

yl
i � ul

ioi ¼ vi ð10Þ

kyl
i � ul

ioik
2

2
� εi ð11Þ

Where, εi is related to σ2. We can see that the LR patch yl
i can be represented by the same

weight vector ωi over ul
i, with an error εi. That is to say, we can get the weight from input LR

image patch and similar LR example patches with a controlled error.

Based on the above discussions, We formulate the weight solution as a least squares regres-

sion regularized by l2-norm:

ωi ¼ argminkωik
2

2
s:t:kyli � ul

iωik
2

2
� εi;

Xk

j¼1

oij ¼ 1 ð12Þ

From Eq (12), the objective function treats the patches ul
i equally. It is not flexible to obtain

accurate weights for the input patch. Motivated by this, we introduce distance penalty to the

least square problem

ωi ¼ argminkbi � ωik
2

2
s:t:kyli � ul

iωik
2

2
� εi;

Xk

j¼1

oij ¼ 1 ð13Þ

Where, � denotes a point wise vector product, bi = [bi1, bi2, . . ., bij, . . ., bik]T. bi is the distance

between yl
i and each similar example patch in ul

i. When the similarity between ulij and yl
i is

strong, we make the bij small, which forces large ωij at the same time. Conversely, when the

similarity is weak, we make bij large, which forces small or zero ωij at the same time. It is simply

determined by the squared Euclidean distance.

Eq (13) can be written as

ωi ¼ argminkyl
i � ul

iωik
2

2
þ lkbi � ωik

2

2
s:t:
Xk

j¼1

oij ¼ 1 ð14Þ

Where, λ is a regularization parameter.

According to Eq (10), we have

kyl
i � ul

iωik
2

2
� kvik

2

2
� gs2 ð15Þ

Where, γ is a positive constant. So we set λ = γσ2, when σ 6¼ 0.

Thus, the main task in reconstruction stage is to find the patches ul
i from pl, which is similar

to yl
i and compute the weight. Squared Euclidean distance can be adopted in to quantify the

similarity. The corresponding uh
i is assumed to have similar structures with xh

i . But it is uneasy

to find similar patches for each input patch from millions of example patch pairs. It will take

lots of time for the repetitive computation. Sparse dictionary make the signal energy only

Noisy image super-resolution
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concentrate in few atoms, and some sparse coding based SR algorithm [25] show certain

robustness to noisy image, so that we use a learned sparse dictionary instead of examples. We

find similar patch pairs ðuh
i ; ul

iÞ from dictionary atom pairs, meaning ðuh
i ;ul

iÞ 2 ðD
h;DlÞ.

Two dictionaries Dh and Dl are trained to have the same sparse coding for each HR and LR

patch pair. Similar to Yang [25] and Chang [22], we subtract the mean pixel value for each HR

example patch, so that the dictionary Dh represents image textures rather than absolute inten-

sities. In the reconstruction stage, the mean value for each estimated patch is then predicted by

its LR version. Also we employ first- and second-order derivatives as the feature extraction for

LR example patches to train. Thus, Dl represents the gradient feature of images rather than

absolute intensities. The four filters used here are:

f1 ¼ ½� 1; 0; 1�; f2 ¼ fT
1
; f3 ¼ ½� 1; 0; 2; 0; 1�; f4 ¼ fT

3
ð16Þ

In addition, to enhance robustness to noise, we also subtract mean pixel value for each LR

example patch, and connect the LR example patch to its corresponding HR example patch into

a single vector, which is also used to learn Dh. Thus, dictionary Dh represents textures of HR

example patches, but also that of LR example patches which are noise-free. In the reconstruc-

tion stage, the Dh can also be used to recover denoised input LR patches. This is different from

conventional learning methods.

From above, the training set is obtained by

ðPH ;PLÞ ¼ ðPH
i ;PL

i Þ ¼
ph
i � �phi

pl
i � �pli

2

4

3

5; Fðpl
iÞ

0

@

1

A; i ¼ 1; 2; :::; n

8
<

:

9
=

;
ð17Þ

Where, (ph,pl) is original HR-LR patch pairs in Eq(3), �phi is the mean value of ph
i , �pli is the mean

value of pl
i, F(�) is the operator to get four gradient vectors by Eq (16) and connect the four vec-

tors into a single vector.

The set (PH,PL) is used to jointly train the dictionaries as

ðDh;DlÞ ¼ min
Dh ;Dl ;a

1

N
kPH � Dhak

2

2
þ

1

M
kPL � Dlak

2

2
þ l0kak1

� �

ð18Þ

Where, N and M are the vector dimensions of PH and PL, respectively.

To solve the problem easily, Eq (18) can be rewritten as

~D ¼ min
~D ;a
fk~P � ~Dak

2

2
þ l0kak1g ð19Þ

Where, ~D ¼
1ffiffiffi
N
p Dh

1ffiffiffi
M
p Dl

" #

, ~P ¼
1ffiffiffi
N
p PH

1ffiffiffi
M
p PL

" #

.

The minimization of Eq (19) is a typical patch-based sparse problem. Many methods can be

used to solve it. Yang [25] proposed the framework and acquired good results. However, it takes

a large amount of time to solve this sparse model. Zeyde [26] improve the execution speed by

dimensionality reduction on the patches through PCA and Orthogonal Matching Pursuit for

the Sparse coding. For sparse dictionaries learning, we use the approach of Zeyde [26].

Noisy image super-resolution
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Gradient features(see Eq (16)) of LR example patches are used to learn LR dictionary. Dl

represents the image gradient feature and uli 2 D
l. Therefore, the weight model is rewritten by

ω̂i ¼ argminkFðyl
iÞ � ul

iω̂ik
2

2
þ lkbi � ω̂ik

2

2
s:t:
Xk

j¼1

ô ij ¼ 1 ð20Þ

Where, ω̂i is the weight.

This problem Eq (20) is l2-norm constraint. We solve it for ω̂i by taking @L
@ω̂ i
¼ 0. The

closed-form solution is

ω̂i ¼ ððul
iÞ
Tul

i þ lBiÞ
� 1
ðul

iÞ
TFðyl

iÞ ð21Þ

Where, L ¼ kFðyl
iÞ � ul

iω̂ik
2

2
þ lkbi � ω̂ik

2

2
, Bi is a k × k diagonal matrix,

Biðj; jÞ ¼ bijðj ¼ 1; 2; :::kÞ ð22Þ

The final optimal weight is obtained by rescaling it so that
Pk

j¼1
ôij ¼ 1.

2.3 Reconstruction

Based on the above discussions, for each input yl
i, we start by extracting its gradient features

and finding k similar atom pairs ðuh
i ; ul

iÞ. Because the dictionary atoms are learned basis vec-

tors, we find the similar atoms based on the correlation between the LR dictionary atoms and

input LR patch rather than the Euclidean distance. Now, we describe how to compute the

correlation.

Fðyl
iÞ can be represented by dictionary Dl ¼ ½dl

1
; dl

2
; :::; dl

j; :::; dl
nd� (dl

j is the LR dictionary

atom, nd is dictionary size)

Fðyl
iÞ ¼ Dlb ¼ b1dl

1
þ b2dl

2
þ :::þ bjd

l
j þ :::þ bnddl

nd ð23Þ

Where, β = [β1, β2, . . ., βj, . . ., βnd], βj is the correlation between dl
j and Fðyl

iÞ.

Eq (23) shows that every dictionary atom makes its own contribution to representing the

input patch. The contribution of the jth atom dl
j can be evaluated by βj. In other words, βj is a

measurement of the similarity between the input patch and the jth dictionary atom. We con-

sider that the larger the βj, the larger scale of similarity between input patch Fðyl
iÞ and dictio-

nary atom dl
j; and a small βj means that there is little similarity. We can solve β by

b ¼ ðDlÞ
TFðyl

iÞ ð24Þ

Thus, ðDlÞ
TFðyl

iÞ could return the correlation. In Eq (20), we use distance bi as the penalty.

When the similarity between Fðyl
iÞ and dl

j is strong, we make the bij small, which forces large

ôij at the same time. Conversely, when the similarity is weak, we make bij large, which forces

small or zero ô ij at the same time. Therefore, we use the reciprocal of βj to compute the pen-

alty. The atom pairs corresponding to the maximal k correlation coefficients constitute

ðuh
i ; ul

iÞ. bi in Eq (20) is determined by

bi ¼ 1:=SortðabsððDlÞ
TFðyl

iÞÞ; kÞ ð25Þ

Where, Sort(a, num) is a function returning num top biggest values of vector a, abs(.) is abso-

lute value operation. The scheme can achieve simultaneously similar atoms finding and dis-

tance computing. If σ = 0, after finding similar atoms, we set bi = 1.

Noisy image super-resolution
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After this, we can easily obtain the weight ω̂i by Eq (20) and uh
i ω̂i. According to section 2.2,

the reconstructed vector uh
i ω̂i represents the estimated HR patch and the denoised LR patch

correspondent to yl
i. And the estimated patch and the denoised patch are subtracted mean

pixel value. Based on this, we have

x̂h
i

ŷ l
i

2

4

3

5 ¼ uh
i ω̂i þ

Eðx̂h
i ÞC1

Eðŷ l
iÞC2

2

4

3

5 ð26Þ

Where, x̂h
i is the estimation of xh

i , ŷ l
i is the denoised patch of yl

i, C1 2 Rw1 is an all-one column

vector, C2 2 Rw2 is an all-one column vector, w1 is the size of x̂h
i , w2 is the size of ŷ l

i, E(�) is the

mean evaluation operator.

Noise here is assumed as zero-means, so

Eðyl
iÞ ¼ EðDsHxh

i þ viÞ ¼ EðDsHxh
i Þ þ EðviÞ � EðDsHxh

i Þ ð27Þ

We can see that the noise has little effect on image mean. The mean of ŷ l
i and x̂h

i could be

estimated by the mean of yl
i. Eq (26) can be written by

x̂h
i

ŷ l
i

2

4

3

5 ¼ uh
i ω̂i þ

Eðyl
iÞC1

Eðyl
iÞC2

2

4

3

5 ð28Þ

Put all estimated patches x̂h
i into a HR image X̂H , which is computed by averaging in over-

lapping regions. In the same way, we obtain a denoised image ŶL from ŷ l
i. In order to

strengthen the reconstruction constraint Eq (1), we compute the final estimated HR image X�

by

X� ¼ kX� � X̂Hk
2

2
s:t:DsHX� ¼ ŶL ð29Þ

The iterative back-projection (IBP) method [32] is used to solve this optimization problem

X�tþ1
¼ X�t þ ððŶ

L � DsHX�t Þ"sÞ � p ð30Þ

Where, X�t is the estimate of the HR image at the tth iteration, "s denote up-scaling by factor s,
p is a symmetric Gaussian filter.

The entire SR process is summarized as Algorithm 1.

Algorithm 1: The Proposed SR Algorithm

Input:the sparsedictionariesDh and Dl; input LR image Y; numberof similar
atomsk; a positiveconstantγ;
output:HR imageX�;
1: for each patch yl

i of Y do
2: Extractthe gradientfeaturesfor yl

i by Eq (16).
3: Find k similaratom pairs ðuh

i ; ul
iÞ and computebi by Eq (25).

4: SolveEq (21) for ω̂ i.
5: GenerateestimatedHR patch x̂h

i and denoisedpatch ŷ l
i by Eq (28).

6: end for
7: Put the patches x̂h

i ; i ¼ 1; 2; :::;Ny and ŷ l
i; i ¼ 1; 2; :::;Ny into an image X̂H and ŶL,

respectively.
8: PerformIBP Eq (30) to obtaina HR imageX�.
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3 Experiments

In this section, we will show the robustness of the proposed algorithm to noise and compare

the state-of-the-art methods [20, 22, 25, 26, 31, 32]. In the training stage, we used 77 standard

natural images as training set. For testing, we used Set5 [20, 31], Set14 [20, 31] and B100 [20,

31] to evaluate the performance of upscaling factors ×2, ×3 and ×4, respectively. Set5 and

Set14 contain 5 and respectively 14 images for super-resolution evaluation. B100 contains 100

testing images of Berkeley Segmentation Dataset called BSDS300.

All LR images (training or test images) are generated from the original HR images. Firstly,

the original HR images are directly blurred and down-sampled. The MATLAB function “imre-

size” is used here to complete the process. The function “imresize” involved a smooth filtering

before down-sampling. Similar to [7], the noise is generated by MATLAB function “randn”,

and σ times noise is added to the blurred and down-sampled test images. It should be noted

that LR example images for training dictionary are noise-free. For color images used in experi-

ments, SR algorithms are performed only on luminance channel, because humans are more

sensitive to illuminant changes. Therefore, we first changes channels into YCbCr ones and

then apply our method to the Y channel. We interpolate the color layers (Cb, Cr) using bicubic

interpolation.

3.1 Parameters

In this section, we analyze the main parameters of our algorithm. The standard settings we use

are Set5 [20, 31] database, dictionary size 1024, γ = 0.08 and k = 24 for upscaling factor ×2,

k = 8 for upscaling factor ×3, ×4. Peak signal-to-noise ratio (PSNR) and reconstruction time

were used as the objective criteria.

3.1.1 Regularization parameter. γ is a key regularization parameter of our method. Here,

we validate the effectiveness of using different γ, and choose an appropriate one. The results of

Set5 are shown in Fig 2. Experimental setting is dictionary size 1024 and k = 24 for upscaling

factor ×2, k = 8 for upscaling factor ×3, ×4. We can see that the curves are not monotonic, and

PSNR peaks at γ = 0.08. For different datasets, the optimal γ is slightly different (0.06 of Set14

and B100 compared to 0.08 of Set5) for reconstruction quality. The results of Set14 and B100

are shown in S1–S6 Figs. Therefore, we suggest determining γ to be around 0.08 in practice.

Here, in all of our following experiments, we set γ as 0.08 for convenience.

3.1.2 Dictionary size. In this experiments, dictionary size is varied from 32 up to 2048,

while the training samples are extracted from the same training images previously mentioned.

In Fig 3, we present the results that show the relation between our method’s performance and

the dictionary size when γ = 0.08 and k = 24 for upscaling factor ×2, k = 8 for upscaling factor

×3, ×4. Actually, noise has little effect on reconstruction time. So we only show the reconstruc-

tion time when σ = 10. We can see that the larger we learn the dictionary, the better recon-

struction quality becomes. However, this comes with a higher computational cost. The result is

the same as that of [25, 47]. Other datasets Set14 and B100 can also achieve similar results. The

results of Set14 and B100 are shown in S7–S12 Figs. In practice, we suggest choosing the

appropriate dictionary size as a tradeoff between reconstruction quality and computation. Dic-

tionary size here is 1024 in our following experiments.

3.1.3 Number of similar atoms. The proposed method finds the similar atom pairs for

each input patch. The performance of the method depends on the number of similar atoms k.

The effect of k is shown in Fig 4 when dictionary size is 1024 and γ = 0.08. Here, we also only

Noisy image super-resolution
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Fig 2. γ versus average PSNR on Set5. (A) upscaling factor ×2; (B) upscaling factor ×3; (C) upscaling

factor ×4.

https://doi.org/10.1371/journal.pone.0182165.g002
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Fig 3. Dictionary size influence on performance on average on Set5. (A) upscaling factor ×2; (B) upscaling

factor ×3; (C) upscaling factor ×4.

https://doi.org/10.1371/journal.pone.0182165.g003
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Fig 4. Number of similar atoms influence on performance on average on Set5. (A) upscaling factor ×2; (B) upscaling

factor ×3; (C) upscaling factor ×4.

https://doi.org/10.1371/journal.pone.0182165.g004
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show the reconstruction time when σ = 10. We can see that k = 24 is best for reconstruction

quality when upscaling factor is ×2. The PSNR peaks at k = 8 when upscaling factor is ×3 or

×4. Moreover, average reconstruction time increases distinctly as k increases. It is due to the

fact that by having a larger k, the computation of matrix inversion in Eq (21) increases. Other

datasets Set14 and B100 can also achieve similar results. The results of Set14 and B100 are

shown in S13–S18 Figs. Therefore, in resource-limited systems, a reasonable selection of k
depends on the tradeoff between reconstruction quality and computational time. We will use

k = 24 when upscaling factor is ×2, k = 8 when upscaling factor is ×3 or ×4 in our further

experiments.

3.1.4 Patch size and overlap. Intuitively, using a too large or too small patch size tends to

produce a smooth or unwanted artifact as noticed also in [25, 29] and a larger overlapping

leads to a better SR results [25]. Therefore, patch size is set as 6×6, 6×6 and 8×8 for upscaling

factor ×2, ×3 and ×4, respectively, and overlap is set as 4, 3 and 4 for upscaling factor ×2, ×3

and ×4, respectively.

3.2 Performance evaluation

In this section we analyze the performance of our algorithm in quantitative and qualitative

comparison with the state-of-the-art methods including NE [22], SCSR [25], Zeyde [26], A+

[31], SRCNN [20], and CSC [32]. We also show the reconstruction times of the algorithms.

The code of the compared method was downloaded from the authors’ homepage. Peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM) were used as the objective criteria. The

parameters are analyzed in the previous section. Besides the patch size and overlap(see section

3.1.4), the other parameter are unified (γ = 0.08, dictionary size = 1024, k = 24 for upscaling

factor ×2, k = 8 for upscaling factor ×3 and ×4).

3.2.1 Quality. Tables 1–3 list the PSNR and SSIM comparisons. When σ = 0, the approach

CSC [32] achieves the best performance. But it is not in accord with real application. When σ
6¼ 0, as repeatedly shown, the results demonstrate the superiority of our proposed algorithm

over other approaches on Set5, Set14 and B100. The average PSNR of the recent method CSC

[32] is 0.24 dB (Set14, upscaling factor ×4, σ = 5) and 7.4 dB (Set5, upscaling factor ×2, σ = 20)

behind our method. Compared with CSC, for dataset B100, the average PSNR improvement is

Table 1. Comparisons of average PSNR (dB) and SSIM (σ = 0).

dataset Scale NE [22] SCSR [25] Zedye [26] A+ [31] SRCNN [20] CSC [32] ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5 ×2 35.77 0.949 36.04 0.951 35.78 0.949 36.55 0.954 36.34 0.952 36.62 0.955 35.65 0.948

×3 31.84 0.896 31.40 0.887 31.90 9.897 32.59 0.909 32.39 0.887 32.66 0.909 31.57 0.895

×4 29.61 0.840 - - 29.69 0.843 30.28 0.860 30.09 0.853 30.36 0.859 29.49 0.841

Set14 ×2 31.76 0.899 31.71 0.903 31.81 0.899 32.28 0.906 32.18 0.904 32.31 0.907 31.71 0.901

×3 28.60 0.808 28.07 0.803 28.67 0.808 29.13 0.819 29.00 0.815 29.15 0.821 28.26 0.811

×4 26.81 0.733 - - 26.88 0.734 27.32 0.749 26.61 0.725 27.30 0.750 26.55 0.738

B100 ×2 30.41 0.871 31.04 0.884 30.40 0.868 30.77 0.877 31.14 0.885 31.27 0.888 30.76 0.881

×3 27.85 0.771 27.81 0.772 27.87 0.770 28.18 0.780 28.21 0.780 28.31 0.786 27.85 0.778

×4 26.47 0.697 - - 26.55 0.697 26.77 0.709 26.71 0.702 26.83 0.711 26.51 0.703

https://doi.org/10.1371/journal.pone.0182165.t001
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Table 2. The results of PSNR (dB) and SSIM on the set5 dataset.

Scale σ Set5 images NE [22] SCSR [25] Zedye [26] A+ [31] SRCNN [20] CSC [32] ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2 5 baby 31.5 0.7556 32.96 0.8287 31.9 0.7753 31.11 0.7399 33.47 0.8482 30.63 0.7190 34.19 0.8760

bird 31.84 0.8063 32.21 0.8683 32.25 0.8226 31.48 0.7918 33.34 0.8836 30.89 0.7704 34.46 0.9134

butterfly 28.35 0.8372 29.05 0.8819 28.70 0.8492 28.97 0.8385 26.87 0.8588 28.43 0.8222 28.08 0.8936

head 30.71 0.7022 32.04 0.763 31.08 0.7193 30.42 0.6898 32.34 0.774 29.99 0.6693 32.87 0.7915

woman 30.39 0.7867 31.33 0.8465 30.68 0.803 30.3 1.7762 30.6 0.8575 29.82 0.7575 31.65 0.8913

average 30.56 0.7776 31.52 0.8377 30.92 0.7939 30.46 0.9672 31.32 0.8444 29.95 0.7477 32.25 0.8732

10 baby 26.17 0.5044 28.54 0.6364 26.66 0.5307 25.73 0.4834 25.43 0.4713 25.21 0.4587 31.41 0.7946

bird 26.30 0.5702 28.51 0.6943 26.77 0.5946 25.84 0.5487 25.52 0.5373 25.24 0.5208 30.99 0.8345

butterfly 25.04 0.6845 26.33 0.7572 25.41 0.7002 24.95 0.6777 24.52 0.6597 24.3 0.6547 26.08 0.8381

head 25.92 0.4649 28.34 0.5936 26.4 0.4899 25.53 0.4463 25.44 0.4454 24.99 0.4192 30.84 0.7124

woman 25.83 0.5698 27.68 0.6765 26.23 0.5912 25.44 0.5528 25.14 0.5433 24.92 0.5311 29.11 0.8199

average 25.85 0.5588 27.88 0.6716 26.29 0.5813 25.50 0.5418 25.21 0.5314 24.93 0.517 29.69 0.7999

15 baby 22.85 0.3496 25.62 0.4863 23.35 0.3726 22.39 0.3303 21.91 0.3108 21.83 0.3081 29.71 0.7343

bird 22.93 0.4126 25.52 0.5495 23.41 0.4358 22.45 0.3915 22.03 0.3753 21.81 0.3643 28.98 0.7723

butterfly 22.29 0.5741 23.88 0.6497 22.64 0.5892 21.92 0.5626 21.37 0.5399 21.3 0.5392 24.23 0.7802

head 22.81 0.3150 25.64 0.4546 23.3 0.3372 22.4 0.2983 22.18 0.2933 21.7 0.2709 29.50 0.6567

woman 22.69 0.4311 24.98 0.5442 23.12 0.4505 22.24 0.4137 21.81 0.3971 21.67 0.3933 27.18 0.7592

average 22.71 0.4165 25.13 0.5369 23.164 0.4371 22.28 0.3993 21.86 0.3833 21.66 0.3752 27.92 0.7406

20 baby 20.5 0.2556 23.46 0.3792 20.98 0.2741 20.03 0.2389 19.45 0.2196 19.39 0.2191 28.51 0.6856

bird 20.55 0.3105 23.34 0.4398 21.02 0.3304 20.05 0.2914 19.57 0.2754 19.35 0.2665 27.67 0.7219

butterfly 20.12 0.4935 21.95 0.5666 20.46 0.5071 19.64 0.4785 19.04 0.4555 19.03 0.4557 22.87 0.7262

head 20.58 0.2253 23.58 0.3529 21.05 0.2429 20.15 0.211 19.82 0.2049 19.29 0.185 28.47 0.6121

woman 20.41 0.3415 22.93 0.4475 20.83 0.3576 19.94 0.3247 19.42 0.3062 19.28 0.3051 25.86 0.7077

average 20.43 0.3253 23.05 0.437 20.87 0.3424 19.96 0.3089 19.46 0.2923 19.27 0.2863 26.67 0.6907

×3 5 baby 30.70 0.7523 30.42 0.7483 31.06 0.7713 30.33 0.7349 30.5 0.7495 29.95 0.7142 32.05 0.8407

bird 30.53 0.8043 30.22 0.8024 30.86 0.8214 30.39 0.793 30.45 0.8084 29.96 0.7724 31.43 0.8756

butterfly 24.97 0.7859 24.8 0.7846 25.20 0.8006 25.94 0.8088 26.15 0.8044 25.53 0.7841 24.97 0.8280

head 30.08 0.6777 30.01 0.6748 30.4 0.6938 29.78 0.6638 30.09 0.6871 29.42 0.6436 31.40 0.7442

woman 28.33 0.7781 28.08 0.776 28.61 0.7943 28.6 0.7719 28.51 0.7823 28.2 0.7483 28.80 0.8534

average 28.92 0.7597 28.71 0.7572 29.23 0.7763 29.01 0.7545 29.14 0.7663 28.61 0.7325 29.73 0.8284

10 baby 26.08 0.5299 25.85 0.5257 26.54 0.5576 25.53 0.5034 25.59 0.5091 25.05 0.4762 29.78 0.7625

bird 26.08 0.5952 25.83 0.5913 26.51 0.6215 25.55 0.5685 25.58 0.5798 25.03 0.5394 28.99 0.7993

butterfly 23.22 0.6601 23.06 0.6602 23.5 0.6784 23.46 0.6665 23.45 0.6573 22.92 0.6341 23.42 0.7635

head 25.89 0.4726 25.81 0.468 26.36 0.498 25.39 0.4488 25.61 0.4677 24.87 0.4199 29.64 0.6749

woman 25.17 0.5863 24.94 0.5839 25.54 0.6100 24.86 0.5673 24.80 0.5734 24.34 0.5371 26.89 0.7812

average 25.29 0.5688 25.10 0.5658 25.69 0.5931 24.96 0.5509 25.01 0.5575 24.44 0.5213 27.74 0.7563

15 baby 22.95 0.3812 22.72 0.3763 23.41 0.406 22.34 0.3541 22.25 0.3506 21.79 0.3285 28.13 0.6977

bird 23.00 0.4435 22.75 0.4375 23.44 0.4683 22.35 0.4125 22.23 0.4114 21.78 0.3835 27.33 0.7353

butterfly 21.34 0.5608 21.11 0.5585 21.62 0.5781 21.12 0.556 20.99 0.5446 20.57 0.5246 22.10 0.6994

head 22.98 0.3324 22.86 0.3273 23.44 0.3556 22.39 0.3083 22.34 0.3114 21.71 0.2778 28.22 0.6178

woman 22.53 0.4519 22.28 0.4478 22.91 0.4733 21.99 0.4278 21.84 0.4257 21.43 0.4002 25.43 0.7168

average 22.56 0.434 22.34 0.4295 22.96 0.4563 22.04 0.4117 21.93 0.4087 21.46 0.3829 26.24 0.6934

20 baby 20.68 0.2856 20.43 0.2805 21.11 0.3056 20.04 0.2606 19.83 0.2528 19.4 0.2375 26.78 0.6397

bird 20.73 0.3403 20.47 0.3337 21.16 0.4998 20.04 0.3109 19.8 0.3023 19.39 0.2825 26.07 0.6782

butterfly 19.63 0.4847 19.36 0.4802 19.9 0.262 19.15 0.4708 18.98 0.4612 18.62 0.4435 21.18 0.6453

head 20.83 0.243 20.69 0.238 21.27 0.3791 20.21 0.2215 19.96 0.2154 19.35 0.1913 26.97 0.5650

woman 20.47 0.3614 20.19 0.3558 20.82 0.3615 19.82 0.3361 19.58 0.3286 19.19 0.3108 24.35 0.6598

average 20.47 0.3430 20.23 0.3376 20.85 0.3616 19.85 0.3200 19.63 0.3121 19.19 0.2931 25.07 0.6376

(Continued)
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from the minimum 0.52 dB (upscaling factor ×4, σ = 5) to the maximum 6.18 dB (upscaling

factor ×2, σ = 20). In addition, our method improves on average 3.62 dB (Set5, upscaling factor

×2, σ = 20) over the next top robustness method SCSR [25]. Figs 5–8 provide a visual assess-

ment. We can see that our method gets similar quality performance as the top methods it was

compared to when σ = 0, and it has the strongest robustness.

3.2.2 Reconstruction time. Average reconstruction time of test images in Set5 was com-

pared when σ = 10. Actually, noise has little effect on test results. The experiments were con-

ducted on the same computer. The results are summarized in Table 4. The reconstruction

Table 2. (Continued)

Scale σ Set5 images NE [22] SCSR [25] Zedye [26] A+ [31] SRCNN [20] CSC [32] ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×4 5 baby 29.79 0.7405 - - 30.1 0.7579 29.57 0.7276 29.95 0.7566 29.18 0.7045 30.65 0.8066

bird 29.19 0.7878 - - 29.43 0.8029 29.22 0.7823 29.38 0.8053 28.86 0.7608 29.67 0.8355

butterfly 22.92 0.7246 - - 23.13 0.7414 23.70 0.7624 24.22 0.7734 23.46 0.7344 23.05 0.7582

head 29.4 0.6561 - - 29.69 0.6717 29.27 0.6494 29.67 0.6788 28.93 0.6309 30.39 0.7093

woman 26.52 0.7496 - - 26.76 0.7654 26.96 0.7522 26.83 0.7688 26.71 0.7282 26.82 0.8062

average 27.56 0.7317 - - 27.82 0.7479 27.74 0.7348 28.01 0.7566 27.43 0.7118 28.10 0.7832

10 baby 25.73 0.5442 - - 26.14 0.5697 25.25 0.5196 25.67 0.5523 24.72 0.4864 28.66 0.7342

bird 25.61 0.6081 - - 25.93 0.6310 25.16 0.5832 25.51 0.6208 24.61 0.5504 27.56 0.7612

butterfly 21.78 0.6258 - - 22.00 0.6427 22.02 0.6405 22.41 0.6546 21.62 0.6038 21.96 0.7053

head 25.63 0.4798 - - 26.04 0.5038 25.24 0.4619 25.77 0.5052 24.7 0.431 28.82 0.6504

woman 24.21 0.5843 - - 24.49 0.6056 24.05 0.5707 24.15 0.599 23.59 0.5376 25.39 0.7394

average 24.59 0.5684 - - 24.92 0.5906 24.34 0.5552 24.70 0.5864 23.85 0.5218 26.48 0.7181

15 baby 22.79 0.4029 - - 23.19 0.4264 22.21 0.3755 22.37 0.3935 21.59 0.3433 27.19 0.6783

bird 22.82 0.4648 - - 23.17 0.488 22.23 0.434 22.40 0.4625 21.58 0.3985 26.11 0.7021

butterfly 20.38 0.5401 - - 20.57 0.5544 20.20 0.5375 20.43 0.549 19.73 0.5025 20.83 0.6482

head 22.85 0.3508 - - 23.25 0.3722 22.36 0.3301 22.60 0.3628 21.63 0.2942 27.53 0.6037

woman 21.98 0.4594 - - 22.28 0.4788 21.53 0.438 21.57 0.4564 20.98 0.4057 24.16 0.6822

average 22.16 0.4436 - - 22.49 0.4640 21.71 0.4230 21.87 0.4448 21.10 0.3888 25.16 0.6629

20 baby 20.59 0.3081 - - 20.96 0.3271 19.97 0.2812 19.91 0.2885 19.25 0.2515 25.98 0.6304

bird 20.68 0.3633 - - 21.01 0.3819 20.03 0.3308 20.01 0.3485 19.28 0.2957 25.01 0.6514

butterfly 18.99 0.4705 - - 19.16 0.4819 18.54 0.4563 18.65 0.4652 18.03 0.4251 19.97 0.5984

head 20.77 0.264 - - 21.15 0.2819 20.21 0.2444 20.19 0.2643 19.31 0.2065 26.38 0.5609

woman 20.1 0.3704 - - 20.41 0.3865 19.53 0.3461 19.45 0.3570 18.87 0.3154 23.22 0.6335

average 20.23 0.3553 - - 20.54 0.3719 19.66 0.3318 19.64 0.3446 18.95 0.2988 24.11 0.6149

https://doi.org/10.1371/journal.pone.0182165.t002
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time varies a lot for different upscaling factors. Our algorithm cost fewer than 10s. The recon-

struction time of our algorithm is comparable to that of SCSR, CSC, and SRCNN. SCSR is the

slowest method.

3.3 Effect of IBP

Combined with iterative back projection (IBP), the denoised LR patches are applied to

improve SR performance in our algorithm. According to [47], IBP has an important role to

improve SR performance. But if the input is a noisy image, the model of IBP will propagate the

noise to the HR image. Experimental results show that if we use IBP algorithm directly on the

Table 3. The results of average PSNR (dB) and SSIM on the Set14 and B100 dataset.

dataset Scale σ NE [22] SCSR [25] Zedye [26] A+ [31] SRCNN [20] CSC [32] ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set14 ×2 5 28.74 0.7514 29.31 0.7981 29.01 0.7647 28.71 0.7737 28.61 0.7435 28.36 0.7275 29.69 0.8205

10 25.08 0.5551 26.59 0.6478 25.46 0.5750 24.78 0.5400 24.45 0.5264 24.31 0.5180 27.80 0.7381

15 22.29 0.4204 24.31 0.5213 22.71 0.4394 21.89 0.4309 21.42 0.3848 21.35 0.3821 26.38 0.6732

20 20.15 0.3302 22.47 0.4259 20.57 0.3466 19.70 0.3140 19.14 0.2945 19.10 0.2933 25.35 0.6220

×3 5 26.86 0.6903 26.55 0.6891 27.08 0.7035 26.96 0.6859 26.99 0.6942 26.70 0.6703 27.16 0.7220

10 24.19 0.5240 23.95 0.5215 24.52 0.5441 23.92 0.5079 23.90 0.5014 23.53 0.4856 25.78 0.6663

15 21.89 0.4032 21.64 0.3990 22.24 0.4221 21.43 0.3827 21.29 0.3781 20.96 0.3606 24.67 0.6075

20 19.99 0.3196 19.72 0.3142 20.35 0.3355 19.43 0.2981 19.20 0.2900 18.88 0.2767 23.77 0.5579

×4 5 25.57 0.6398 - - 25.76 0.6526 25.76 0.6416 25.89 0.6575 25.49 0.6241 25.73 0.6788

10 23.42 0.4985 - - 23.42 0.5174 23.24 0.4865 23.45 0.5078 22.84 0.4607 24.64 0.6171

15 21.39 0.3896 - - 21.69 0.4076 21.01 0.3713 21.08 0.3836 20.51 0.3448 23.70 0.5686

20 19.66 0.3115 - - 19.96 0.3265 19.15 0.2910 19.08 0.2958 18.57 0.2655 22.91 0.5283

B100 ×2 5 28.00 0.7264 28.81 0.7719 28.19 0.7380 27.96 0.7196 28.02 0.721 27.83 0.7076 28.95 0.7917

10 24.66 0.5279 26.28 0.6200 25.02 0.5480 24.36 0.5123 24.17 0.5059 24.07 0.4997 27.29 0.7037

15 22.01 0.3951 24.10 0.4941 22.42 0.4136 21.63 0.3792 21.25 0.3661 21.23 0.3654 26.08 0.6378

20 19.95 0.3077 22.32 0.4000 20.37 0.3233 19.52 0.2925 19.03 0.277 19.02 0.2779 25.20 0.5873

×3 5 26.32 0.6518 26.79 0.6728 26.49 0.6638 26.34 0.6463 26.46 0.6586 26.20 0.6351 26.85 0.7010

10 23.86 0.4878 23.74 0.4874 24.15 0.5067 23.58 0.4716 23.60 0.4767 23.27 0.4538 25.64 0.6273

15 21.66 0.3703 21.47 0.3674 21.99 0.3882 21.22 0.3510 21.10 0.3481 20.81 0.3326 24.66 0.5702

20 19.82 0.2902 19.59 0.2855 20.17 0.3051 19.29 0.2706 19.07 0.2635 18.78 0.2526 23.84 0.5223

×4 5 25.3 0.6015 - - 25.46 0.6133 25.36 0.5991 25.53 0.6171 25.2 0.5857 25.72 0.6414

10 23.23 0.4615 - - 23.49 0.4800 23.01 0.4478 23.23 0.4690 22.69 0.4269 24.74 0.5815

15 21.26 0.3562 - - 21.56 0.3736 20.86 0.3378 20.95 0.3500 20.43 0.3161 23.89 0.5358

20 19.56 0.2820 - - 19.86 0.2966 19.06 0.2622 18.99 0.2669 18.52 0.2412 23.15 0.4980

https://doi.org/10.1371/journal.pone.0182165.t003
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input LR image, the performance will become worse. The results are listed in Table 5. The iter-

ation number of IBP here is 20. From this comparison, we can see that the superiority of our

method is obvious. Other datasets Set14 and B100 can also achieve similar results. The results

of Set14 and B100 are shown in S1 Table.

3.4 Effect of distance penalty

Distance penalty is applied to model the weight. To check the effect of the penalty for improv-

ing SR performance, we perform our method with and without the penalty respectively on

Fig 5. Comparisons with various image super-resolution methods on “coastguard” from Set14 with

upscaling factor ×2 (σ = 0, PSNR in dB). (A) Ground truth HR; (B) NE [22]; (C) SCSR [25]; (D) Zedye [26];

(E) A+ [31]; (F) SRCNN [20]; (G) CSC [32]; (H) ours.

https://doi.org/10.1371/journal.pone.0182165.g005
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Set5 database. The experiments are done in different γ. The results are shown in in Fig 9. We

can see that our method with distance penalty obtains better performance and the superiority

of our method with distance penalty is obvious. Other datasets Set14 and B100 can also achieve

similar results. The results of Set14 and B100 are shown in S19–S24 Figs.

4 Conclusion

In this research, we proposed an algorithm of noisy image super-resolution based on sparse

representation. For the problem of noisy image super-resolution, most of the existing methods

will become less effective because they assume that the input LR image is noise-free. The

Fig 6. Comparisons with various image super-resolution methods on “16077” from B100 with

upscaling factor ×2 (σ = 10, PSNR in dB). (A) Ground truth HR; (B) NE [22]; (C) SCSR [25]; (D) Zedye [26];

(E) A+ [31]; (F) SRCNN [20]; (G) CSC [32]; (H) ours.

https://doi.org/10.1371/journal.pone.0182165.g006
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proposed algorithm can achieve simultaneously image super-resolution and denoising. For

different input LR images, even if the noise variance varies, the dictionary pair does not need

to be retained. The core idea of the proposed algorithm is that HR image patch is reconstructed

through weighted average of similar HR example patches. In particular, atoms of learned

sparse dictionary are used to compute the weight and reconstruct HR patch instead of example

patches. This strategy can reduce time computation and suppress noise. In addition, LR exam-

ple patches subtracted mean pixel value are also used to learn dictionary rather than just their

gradient features, which will help IBP to further improve the SR performance. The experimen-

tal results show that our method performs better noise robustness.

Fig 7. Comparisons with various image super-resolution methods on “241004” from B100 with

upscaling factor ×3 (σ = 10, PSNR in dB). (A) Ground truth HR; (B) NE [22]; (C) SCSR [25]; (D) Zedye [26];

(E) A+ [31]; (F) SRCNN [20]; (G) CSC [32]; (H) ours.

https://doi.org/10.1371/journal.pone.0182165.g007
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Fig 8. Comparisons with various image super-resolution methods on “208001” from B100 with

upscaling factor ×4 (σ = 10, PSNR in dB). (A) Ground truth HR; (B) NE [22]; (C) Zedye [26]; (D) A+ [31]; (E)

SRCNN [20]; (F) CSC [32]; (G) ours.

https://doi.org/10.1371/journal.pone.0182165.g008

Table 4. Comparisons of average reconstruction time (s)on Set5.

Scale NE [22] SCSR [25] Zedye [26] A+ [31] SRCNN [20] CSC [32] ours

×2 4.78 193.26 6.82 0.88 7.54 139.03 3.21

×3 2.78 44.31 3.01 0.57 7.47 78.46 1.24

×4 1.63 - 1.96 0.42 6.39 48.24 0.75

https://doi.org/10.1371/journal.pone.0182165.t004

Table 5. Effect of IBP on average PSNR(dB) and SSIM (Set 5).

Scale IBP σ = 5 σ = 10 σ = 15 σ = 20

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2 × 31.48 0.831 27.76 0.665 25.03 0.531 22.93 0.432
p

29.93 0.753 25.16 0.526 21.95 0.383 19.58 0.293

ours 32.49 0.873 29.69 0.800 27.92 0.741 26.67 0.691

×3 × 29.19 0.801 26.59 0.660 24.33 0.537 22.47 0.442
p

28.39 0.730 24.52 0.523 21.62 0.385 19.39 0.296

ours 29.72 0.828 27.74 0.756 26.24 0.693 25.07 0.638

×4 × 27.65 0.765 25.58 0.646 23.64 0.537 21.97 0.449
p

27.19 0.706 23.93 0.524 21.28 0.392 19.17 0.303

ours 28.10 0.783 26.48 0.718 25.16 0.663 24.11 0.615

https://doi.org/10.1371/journal.pone.0182165.t005
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Fig 9. Effect of distance penalty on average PSNR (dB)(Set 5). (A) upscaling factor ×2; (B) upscaling factor ×3; (C)

upscaling factor ×4.

https://doi.org/10.1371/journal.pone.0182165.g009

Noisy image super-resolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0182165 July 31, 2017 22 / 27

https://doi.org/10.1371/journal.pone.0182165.g009
https://doi.org/10.1371/journal.pone.0182165


Supporting information

S1 Fig. γ versus average PSNR on Set14. (upscaling factor ×2).

(TIF)

S2 Fig. γ versus average PSNR on Set14. (upscaling factor ×3).

(TIF)

S3 Fig. γ versus average PSNR on Set14. (upscaling factor ×4).

(TIF)

S4 Fig. γ versus average PSNR on B100. (upscaling factor ×2).

(TIF)

S5 Fig. γ versus average PSNR on B100. (upscaling factor ×3).

(TIF)

S6 Fig. γ versus average PSNR on B100. (upscaling factor ×4).

(TIF)

S7 Fig. Dictionary size influence on performance on average on Set14. (upscaling factor

×2).

(TIF)

S8 Fig. Dictionary size influence on performance on average on Set14. (upscaling factor

×3).

(TIF)

S9 Fig. Dictionary size influence on performance on average on Set14. (upscaling factor

×4).

(TIF)

S10 Fig. Dictionary size influence on performance on average on B100. (upscaling factor

×2).

(TIF)

S11 Fig. Dictionary size influence on performance on average on B100. (upscaling factor

×3).

(TIF)

S12 Fig. Dictionary size influence on performance on average on B100. (upscaling factor

×4).

(TIF)

S13 Fig. Number of similar atoms influence on performance on average on Set14. (upscal-

ing factor ×2).

(TIF)

S14 Fig. Number of similar atoms influence on performance on average on Set14. (upscal-

ing factor ×3).

(TIF)

S15 Fig. Number of similar atoms influence on performance on average on Set14. (upscal-

ing factor ×4).

(TIF)
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S16 Fig. Number of similar atoms influence on performance on average on B100. (upscal-

ing factor ×2).

(TIF)

S17 Fig. Number of similar atoms influence on performance on average on B100. (upscal-

ing factor ×3).

(TIF)

S18 Fig. Number of similar atoms influence on performance on average on B100. (upscal-

ing factor ×4).

(TIF)

S19 Fig. Effect of Distance Penalty on Average PSNR (dB) on average on Set14. (upscaling

factor ×2).

(TIF)

S20 Fig. Effect of Distance Penalty on Average PSNR (dB) on average on Set14. (upscaling

factor ×3).

(TIF)

S21 Fig. Effect of Distance Penalty on Average PSNR (dB) on average on Set14. (upscaling

factor ×4).

(TIF)

S22 Fig. Effect of Distance Penalty on Average PSNR (dB) on average on B100. (upscaling

factor ×2).

(TIF)

S23 Fig. Effect of Distance Penalty on Average PSNR (dB) on average on B100. (upscaling

factor ×3).

(TIF)

S24 Fig. Effect of Distance Penalty on Average PSNR (dB) on average on B100. (upscaling

factor ×4).

(TIF)

S1 Table. Effect of IBP on Average PSNR (dB) and SSIM (Set14 and B100).

(PDF)
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