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Clostridioides difficile is a major cause of nosocomial infection worldwide causing
antibiotic-associated diarrhea and some cases are leading to pseudomembranous
colitis. The main virulence factors are toxin A and toxin B. Hypervirulent strains of
C. difficile are linked to higher mortality rates and most of these strains produce
additionally the C. difficile binary toxin (CDT) that possesses two subunits, CDTa and
CDTb. The latter is responsible for binding and transfer of CDTa into the cytoplasm
of target cells; CDTa is an ADP ribosyltransferase catalyzing the modification of actin
fibers that disturbs the actin vs microtubule balance and induces microtubule-based
protrusions of the cell membrane increasing the adherence of C. difficile. The underlying
mechanisms remain elusive. Thus, we performed a screening experiment using MS-
based proteomics and phosphoproteomics techniques. Epithelial Hep-2 cells were
treated with CDTa and CDTb in a multiplexed study for 4 and 8 h. Phosphopeptide
enrichment was performed using affinity chromatography with TiO2 and Fe-NTA; for
quantification, a TMT-based approach and DDA measurements were used. More than
4,300 proteins and 5,600 phosphosites were identified and quantified at all time points.
Although only moderate changes were observed on proteome level, the phosphorylation
level of nearly 1,100 phosphosites responded to toxin treatment. The data suggested
that CSNK2A1 might act as an effector kinase after treatment with CDT. Additionally, we
confirmed ADP-ribosylation on Arg-177 of actin and the kinetic of this modification for
the first time.

Keywords: binary toxin, Clostridioides difficile, proteome, phosphoproteome, signaling

INTRODUCTION

Clostridioides difficile infections are with 223,900 cases in hospitalized patients in 2017, a significant
cause for nosocomial infections, and classified by the Centers for Disease Control and Prevention
as an urgent threat with 12,800 deaths in 2017 in the United States (Centers for Disease Control
and Prevention, 2019). The main virulence factors of C. difficile are the large glycosylating toxins
TcdA and TcdB that target small GTPases of the Ras and Rho subfamily. Our group studied the

Abbreviations: DDA, Data-dependent acquisition; CID, Collision-induced dissociation; HCD, Higher-energy-collisional-
dissociation; TMT, Tandem mass tags; PCA, Principal component analysis; IPATM, Ingenuity Pathway AnalysisTM; ACN,
Acetonitrile; AGC, Automatic gain control.
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effects of TcdA and TcdB on target cells concerning the
glycosyltransferases effect via proteomic experiments. Both
toxins alter the proteome of colonic cells in a time-dependent
manner and effect proteins that are involved in cellular
functions related to the cytopathic and cytotoxic effect of
the large glucosylating toxins. Mutant TcdA with impaired
glucosyltransferase activity showed no effect on the proteome
of target cells; in contrast, glucosyltransferase inactive TcdB
induces in epithelial cells (HEp2) a process called pyknosis that
is accompanied by extensive alterations on the proteome level
(Zeiser et al., 2011, 2013; Jochim et al., 2014; Erdmann et al., 2017;
Junemann et al., 2017).

In recent years hypervirulent strains of C. difficile (e.g.,
NAP1/BI/027) emerged that produce additionally the binary
toxin (CDT; Aktories et al., 2018). Up to 30% of clinical
isolates that produce the binary toxin are linked to increased
morbidity and mortality rates (Abeyawardhane et al., 2021).
CDT belongs to the iota toxin family and consists of two
separated subunits, the catalytically active CDTa and the pore-
forming CDTb. CDT acts differently from TcdA and TcdB
by ribosylating G-actin directly, subsequently prohibiting the
prolongation of the F-actin, leading to depolymerization of
F-actin and an imbalance of the actin microtubule homeostasis.
While the actin cytoskeleton collapses, the cells form protrusions
based on microtubule polymerization (Schwan et al., 2009).
It has been advocated that the microtubule-based protrusions
were beneficial for attachment of C. difficile to the epithelia.
Septins play a significant role in this process since they are the
primary driver of microtubule polymerization guidance (Schwan
et al., 2009). Recent studies have shown that the knockout
of septin prohibits microtubule-based protrusions and CDC42
involvement in septin regulation (Nölke et al., 2016). However,
the underlying mechanism of microtubule stabilization and
general cell response to CDT remains elusive. It has always been
assumed that CDT ribosylates actin on Arg-177 like other iota-
type toxins, but it has never been directly shown while general
actin ribosylation by CDT has been proven (Vandekerckhove
et al., 1987; Gülke et al., 2001).

This study investigated the fundamental mechanism in the
cell response to CDT treatment of human epithelial cells (HEp-
2) by LC-MS-based proteomics utilizing a tandem mass tags
(TMT)-based phosphoproteomic approach. In a two-timepoint
experiment, a detailed global phosphoproteomic analysis was
carried out, and the catalytical active subunit of casein kinase
2 alpha (CSNK2A1) emerged as a potential upstream regulator
of microtubule protrusions and a general regulator in the CDT
response. Furthermore, we could prove for the first time CDT-
mediated actin ribosylation on Arg-177.

MATERIALS AND METHODS

Cell Culture
From HeLa cells, derived cell line HEp-2 was maintained in a
75 cm2 flask in a humidified atmosphere at 37◦C and 5% CO2.
Cells were cultured in minimal essential medium supplemented
with 10% fetal bovine serum, 100 U/mL penicillin, and 100 U/mL

streptomycin. Depending on confluency, the cells were split to
maintain vitality.

Toxin Treatment of HEp-2 Cells and
Sample Preparation
Two days before toxin treatment, 7.5 × 105 cells were seeded
in 10 cm dishes to achieve a 75% confluency on the day
of toxin treatment. CDTa and CDTb were generated using
an Escherichia coli expression system as previously described
(Beer et al., 2018). Cells were treated with 1.5 µg/mL CDTa
and 3 µg/mL CDTb. Changes in the morphology were
documented by phase-contrast microscopy after 4 and 8 h,
respectively. For controls, only medium was exchanged. While
LPS contamination was not separately checked by an assay,
classical LPS reaction pathways, e.g., ERK pathway, show no
activation (Supplementary Tables 1, 2), and no inflammatory
GO terms were enriched in GO analysis indicating that there is
no major additional effect concerning LPS. After documentation,
cells were washed twice with ice-cold PBS and lysed by
scraping them into 600 µL lysis buffer [8 M Urea, 50 mM
ammonium bicarbonate (pH 8.0), 1 mM sodium ortho-vanadate,
complete EDTA-free protease inhibitor cocktail (Roche), and
phosphoSTOP phosphatase inhibitor cocktail (Roche)]. Lysates
were sonicated on ice two times for 5 s at 30% energy. Cell debris
was removed by centrifugation for 15 min at 16,100 × g at 4◦C.
The supernatant was collected and used for further preparation.

Protein Digestion
Protein concentrations were estimated utilizing BCA assay
(Thermo). Proteins were reduced with 5 mM DTT at 37◦C for
1 h and afterward alkylated with 10 mM iodoacetamide at RT
for 30 min. Alkylation was quenched by adding DTT to a final
concentration of 5 mM. For digestion, lysates were diluted 1:5
with 50 mM ABC buffer to lower the concentration of urea below
2 M; 1 mg protein per condition was digested at 37◦C for 4 h using
1:100 w/w Lys-C (Wako) followed by overnight digestion with
1/100 w/w trypsin (Promega). Digestion was stopped by adding
TFA to a final concentration of 1%. Peptide solutions were then
desalted with Sep Pak C18 1cc cartridges (Waters).

Phosphopeptide Enrichment and
Tandem Mass Tags Labeling
Before phosphopeptide enrichment, 25 µg of peptide of
each condition was set aside for the proteome measurement.
Phosphopeptide enrichment was performed following Sequential
Enrichment from Metal Oxide Affinity Chromatography
protocol (Thermo Scientific). Phosphopeptides have to be
enriched since they only resemble a small proportion of all
peptides and could rarely be measured without prior enrichment.
Afterward, enriched phosphopeptides were desalted by C18
spin tips. BCA assay was used before labeling to estimate
the peptide concentration of each sample. Equal amounts of
enriched phosphopeptides and peptides for the proteomic
analysis were labeled and combined following manufactures
instructions. TMT labeling is performed to quantify multiple
samples in one LC-MS run and minimize technical variability
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between samples. After labeling, peptides were fractionated into
eight fractions by high pH fractionation (Thermo Scientific).
Subsequently, peptides were vacuum dried and stored at −80◦C
until LC-MS measurement.

LC-MS Analysis
Samples were dissolved in 0.1% TFA/2% ACN and analyzed
in an Orbitrap Fusion Lumos mass spectrometer (Thermo
Fisher Scientific) equipped with a nanoelectrospray source and
connected to an Ultimate 3000 RSLC nanoflow system (Thermo
Fisher Scientific). Peptides were loaded on an Acclaim PepMap
C18 trap (Thermo Fisher Scientific) and separated by a 50 cm
µPACTM (PharmaFluidics) analytical column at 35◦C column
temperature. Utilizing 0.1% formic acid as solvent A and 100%
ACN with 0.1% formic acid as solvent B, we used a 120-min
gradient at a flow rate of 500 nl/min ramping from 3.4% B
to 21% B in 65 min, to 42% B in 32 min and to 75.6% B
in 2 min, kept for 3 min, then to 3.6% B in 2 min, held for
16 min. The spray voltage was set to 2 kV. A data-dependent
acquisition method, in which ions are selected on the basis of
their MS1 signal and isolated for further fragmentation, was
used with a cycle time of 3 s and Top N setting. Dynamic
exclusion was set to 60 s, AGC target at 4 × 105, maximum
injection time at 50 ms, and Orbitrap resolution at 120,000 for
MS1 scan. For all runs, an MS2 method was used with higher-
energy-collisional-dissociation (HCD) fragmentation at 38% [for
specific remeasurement for ribosylation verification collision-
induced dissociation (CID) at 35% was used], first mass at
100 m/z, MS2 maximum injection time of 110 ms, MS2 isolation
width at 0.8 m/z, and an Orbitrap resolution of 60,000. HCD
and CID are fragmentation techniques that are used to fragment
ions in gas phase to assess their composition and consequently
to identify them. While CID is considered to use low energy
for fragmentation and hence produce less fragmented ions, HCD
fragmentation generates heavier fragmented ions and is very well
suited to identify phosphorylated peptides including annotation
of the phosphorylation site (Jedrychowski et al., 2011; Tu et al.,
2016). For an in-depth review of current mass spectrometry
techniques, we refer to Sinha and Mann (2020).

Data Processing
Raw data were processed with MaxQuant software (version
1.6.3.3; Cox and Mann, 2008) using the Andromeda search
engine (Cox et al., 2011). Spectra were searched against
the Swiss-Prot reviewed UniprotKB database (version
01/2021, 20,395 entries; The UniProt Consortium et al.,
2021). Carbamidomethylation of cysteine was set as fixed
modification, and as variable modifications, oxidation of
methionine, N-terminal acetylation, deamidation of glutamine,
and asparagine were set. To detect mono-ADP-ribosylation
(541.0611 Da, H21O12C15N5P2), this variable modification
was set at cysteine, aspartate, glutamate, histidine, arginine,
lysine, serine, threonine, and tyrosine residues. Similarly,
phosphorylation (PO4) was set at serine, threonine, and
tyrosine residues as variable modification. False discovery rate
was set to 0.01 and maximum of missed cleavage to 2. Only
phosphosites and proteins were used for quantification that

were measured in all three replicates. Measured phosphosites
with a localization probability below 75% were excluded from
further processing. Both proteome and phosphoproteome were
normalized by subtracting the median intensity of each sample
and the median intensity of each TMT-batch, respectively.
Only phosphosites were later included in quantitative analysis
that could be normalized using the corresponding protein.
Data evaluation, analysis, and visualization were done using
Perseus (version 1.6.2.3.; Tyanova et al., 2016). The upstream
analysis was generated through ingenuity pathway analysis
(IPA, QIAGEN Inc., https://www.qiagenbio-informatics.com/
products/ingenuity-pathway-analysis). The IPA software
predicts regulatory proteins by comparing up- and down-
regulated proteins and phosphorylation events to a hand-curated
database and can therefore predict regulatory proteins that could
be relevant to the observed proteomic and phosphoproteomic
changes. All significant regulated sites were included. R Core
Team (2013) in particular, the R packages complex heat map
(Gu et al., 2016) and ggplot2 (Wickham, 2016) were used for
data analysis and visualization. For heat map generation, protein
and phosphosite intensities were used that were tested in a
Benjamini Hochberg FDR-based ANOVA. For gene ontology
analysis, the STRING data base (Jensen et al., 2009) was used.
The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE (Griss et al.,
2016) partner repository with the dataset identifier PXD027411.

RESULTS

Alteration of Morphology After Treatment
With CDT
Different concentrations of CDT for treatment of HEp-2 cells
were tested, and 1.5 µg/mL was considered to be most suitable
for the proteome and phosphoproteome experiments. After
4 h of treatment with CDT, most cells exhibit a rounded cell
morphology but appear to be attached to the cell culture flask
(Figure 1). After 8 h, rounding was more pronounced, and a
small number of cells had detached from the ground. Detachment
seemed to be a dynamic process that started only at some areas of
cells, and many cells in the cell culture flasks were observed to be
a little agile and seemed to stick only with a small part to the cell
culture bottom while most of the cell was rounded and moved a
little bit in the medium after easy panning (Figure 1).

Quantitative Proteome Analysis After
CDT Treatment
The proteome was analyzed in a 4-plex TMT-based approach.
In all three replicates, 4,348 proteins could be identified and
quantified and were included in bioinformatic analysis. To assess
evaluability, the data were collapsed into only two components
[e.g., principal component 1 (PC1) and principal component 2
(PC2)], which explains most of their changes; the percentage sign
after each component represents the percentage of the underlying
data that this component describes (see Figures 2B, 3B). The
different time points and treatments are then compared to
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FIGURE 1 | Morphology changes of HEp-2 cells after 4 and 8 h of CDT treatment. Cells were treated with 1.5 µg/mL of CDTa and 3 µg/mL of CDTb; controls were
untreated.

each other to determine whether they can be differentiated. All
different time points and conditions were distinguishable via
PCA and, therefore, feasible for further analysis (Figure 2). Only
minor changes could be detected in the proteome after 4 and
8 h (Figure 2), respectively. Several proteins were significantly
altered but 99% with a ratio of less than twofold. Notably,
after 8 h, tropomyosin subunits (TPM1, TPM2, and TPM4)
were significantly down-regulated by 40% compared to the
untreated 8-h sample and also down-regulated compared to the
4-h timepoint (Figure 2).

Quantitative Phosphoproteome Analysis
After CDT Treatment
In all three replicates, 5,686 phosphosites could be measured
and 5,516 with a localization probability above 75%. Only
phosphosites were included in a quantification that could be
normalized by a corresponding protein to prohibit false hits
that were only based on changed abundance of a protein; 4,619
phosphosites could be taken into analysis.

All different time points and conditions were distinguishable
via PCA and, therefore, feasible for further analysis (Figure 3).
330 phosphosites were significantly regulated after 4-h treatment
compared to control and, after 8 h, 61 phosphosites with a
regulation above twofold change, respectively. 200 (54 with a
twofold change) phosphosites significantly changed at both time
points compared to the control. The top 20 significant regulated
phosphosites of each condition are shown in Supplementary
Tables 3, 4. A Fisher’s exact test of the ANOVA significant
phosphosites was performed to get an overview of the underlying
kinase activation status. Enriched motifs were then analyzed

on their phosphorylation status across the significantly changed
phosphosites of both time points (Supplementary Figure 1).
Motif phosphorylation that was regulated in the same direction
at both time points was considered to play a role as a primary
mechanism regulating the cell response to CDT and was therefore
called “co-regulated.” Down-regulated phosphorylation was
primarily observed on CDK and PIM1 based motifs in both
time points. Overall, up-regulated phosphorylation was detected
for Casein kinase family motifs as well as BARD1 BRCT
motifs (Figure 4).

Analysis of CSNK2A1 as a Potential
Upstream Regulator
All significantly changed phosphosites of both time points were
analyzed via the IPATM software. Based on a hand-curated
database, IPATM predicts upstream regulator for phosphosites.
A Z-score of above 2 or below −2 is considered activated
or inhibited. For the 4 h time point; PIN1 and CDK6 were
identified to be down-regulated. Thrombin, PASK, and HDAC1
were considered to be strongly up-regulated, and CSNK2A1
was slightly activated (Figure 5). For the 8 h time point, only
CSNK2A1 was considered to be activated, and Thrombin was
somewhat up-regulated. Since CSNK2A1 was regulated at both
time points and phosphorylation of Casein kinase motifs was
enhanced at both time points, potential downstream targets were
further analyzed. IPATM predicts 28 proteins to be controlled
by CSNK2A1. Significantly changed phosphosites containing
the casein kinase II motif are targets of CK2 according to the
PhosphoSitePlus R© database (Hornbeck et al., 2015), and were
analyzed on their gene ontology using the STRING database
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FIGURE 2 | Proteome analysis of with CDT-treated HEp-2 cells after 4 and 8 h. (A) Heat map of proteins that were significantly changed (p < 0.05) after Benjamini
Hochberg FDR-based ANOVA testing. (B) Principal component analysis (PCA) of proteins that were significantly altered (p < 0.05) after FDR-based ANOVA testing.
Volcano plots of proteins with CDT treated Hep-2 cells after 4 h (C) and 8 h (D), respectively. Proteins that have been labeled with the same name resemble the
isoform of that protein (C,D). [(C,D) Horizontal dotted line indicates a p-value threshold of p < 0.05, vertical line a twofold difference, green dots: twofold significant
downregulation, red dots: twofold significant upregulation; (A) Exp. value: expression value; numbers of row and column cluster are for coordinative reasons and
have no underlying meaning; (B) PC1: principal component 1; PC2: principal component 2].

FIGURE 3 | Phosphoproteome analysis of with CDT-treated HEp-2 cells after 4 and 8 h. (A) Heat map of significantly changed phosphosites (p < 0.05) based on
intensity values and Benjamini Hochberg FDR ANOVA testing; Exp. value: expression value; numbers of row and column cluster are for coordinative reasons and
have no underlying meaning. (B) Principal component analysis (PCA) of significantly changed phosphosites (p < 0.05) after FDR-based ANOVA testing (PC1:
principal component 1; PC2: principal component 2). Volcano plots proteins of with CDT-treated HEp-2 cells after 4 h (C) and 8 h (D), respectively, [(C,D) Horizontal
dotted line indicates p-value threshold of p < 0.05, vertical line twofold difference, green dots: twofold significant downregulation, red dots: twofold significant
upregulation].
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FIGURE 4 | Summed co-regulated phosphorylation of motifs of significantly changed phosphosites after 4 and 8 h of CDT treatment.

FIGURE 5 | (A) Upstream regulators predicted by IPATM. (B) Regulation of significantly changed predicted downstream phosphosite targets of CSNK2A1 after 4 h
(red) and 8 h (blue) of CDT treatment. (C) GO analysis of predicted targets.

(Jensen et al., 2009). Highly enriched were GO-terms that
were part of the translational process like “RNA splicing” and
“translational regulator activity.” The 30 most enriched GO terms
for each time point are depicted in Supplementary Figures 3, 4.

Detection of Actin Ribosylation on
Arg-177
The mono-ADP-ribosylation could be detected at Arg-177
proved by an MS2 spectrum with an Andromeda score of 214.4.
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FIGURE 6 | (A) Fragment spectrum of ADP ribosylated actin on Arg-177 on the tryptic peptide TTGIVMDSGDGVTHTVPIYEGYALPHAILRLDLAGR, (C) the
unmodified version, and (B) diagnostic peak of AMP at 348.2 m/z. (D) Normalized intensity of ADP ribosylation on Arg-177 after 4- and 8-h treatment with CDT
(*p < 0.05, ns: non-significant).

Interestingly, no fragment ion could be seen on Arg-177 at HCD
38% despite the 348.02 peak of AMP (Figure 6). At CID 35%,
an overlapping ion could confirm the ribosylation at Arg-177
(Figure 6). Furthermore, the ribosylation could be quantified
with an insignificant 1.4-fold increase after 4 h of treatment and
a significant 2.8-fold increase after 8 h compared to control time
points (Figure 6).

DISCUSSION

For the first time, the effects of CDT on the proteome and
phosphoproteome of target cells have been examined.

Although the proteome remains only slightly changed, distinct
proteins involved in modeling the cytoskeleton were regulated
in a time-dependent manner between 4 and 8 h. Tropomyosin
TPM1, TPM2, TPM4, and their isoforms were significantly
down-regulated during 8 h of toxin treatment and compared
to the 4 h time point with a clear downward shift (Figure 2).
Tropomyosins have been shown to be essential regulators of the
actin filament function (Gunning et al., 2015). In knockout cells,
it has been demonstrated that CSNK2A1 controls the abundance
of tropomyosin negatively (D’Amore et al., 2019). Furthermore,

the cytokine GDF-15 that promotes cell migration is significantly
twofold up-regulated at both time points (Figure 2), and its
expression is indirectly controlled by CK2 (Feng et al., 2013).

The phosphoproteome was drastically altered in contrast to
the proteome. Only enriched kinase motifs were analyzed with
the same phosphorylation pattern at both time points to get an
overview of the underlying kinase activation status over the given
period. Cyclin-dependent kinases and Pim1 motifs were less
phosphorylated (Figure 4), and CDK6 and PIN1 also appeared
as down-regulated in their activity, as evident from the IPATM

analysis (Figure 5). This downregulation was expected since it has
been described for TcdA and TcdB that both can cause cell cycle
arrest due to the collapse of the cytoskeleton that is also facilitated
by CDT (Chandrasekaran and Lacy, 2017). Also, the beta-
adrenergic receptor motif was stronger when phosphorylated
together with the BARD1 motif. These regulations could also be
foreseen considering that CDT has been described to activate the
NFκB-pathway and the induction of apoptosis (Chandrasekaran
and Lacy, 2017; Simpson et al., 2020).

Noticeably, changes of the phosphoproteome at the 4 h
time point are more drastic than at the 8 h time point. This
observation was apparently due to the collapse of the cytoskeleton
between 3 and 4 h after treatment (data not shown). Accordingly,
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the time point of measurement was set to 4 h to see the detailed
cell reaction. At the 4 h time point, many processes were the target
of imminent downregulation (e.g., cell cycle) and upregulation
of damage response regulators, e.g., HDAC1 (Figure 5A; Miller
et al., 2010). Consequently, the summed phosphorylation of
different motifs compared to the control for the 4 h time point
were primarily negative and do not correlate with the 8 h time
point (Supplementary Figure 1). At the 8 h time point, those
sudden changes were no longer present, and the underlying
mechanism of the cell response to CDT could be viewed as more
pronounced. So, only the phosphorylation of motifs regulated
in the same direction was considered to describe this hidden
mechanism and was further analyzed.

The phosphorylation of casein kinase motifs was up-regulated
at both time points, and CSNK2A1 was strongly induced
as an upstream regulator (Figure 5). According to a gene
ontology analysis, CSNK2A1 targets that were analyzed in
this dataset were mainly involved in transcriptional processes
(Figure 5). Together with the regulated proteins, this implied an
activated CSNK2A1 kinase.

A recent study suggests that SEPTINs were drivers of
microtubule-based protrusions (Nölke et al., 2016). Although we
did only check on general morphological changes as a marker
of the CDT effect and did not look specifically for protrusions,
it is noteworthy that SEPT2 is a target of CSNK2A1 with a
phosphorylation site at S228. This site was found significantly
altered in ANOVA-FDR-based testing and slightly up-regulated
but not significant at both time points (Supplementary Table 3).
This phosphorylation has been shown to positively influence the
GTP binding of SEPTINs (Huang et al., 2006). Additionally, it has
been demonstrated that in CSNK2A1 knockout cell, SEPTIN2 is
significantly down-regulated (Borgo et al., 2017). This indicates
a distinct regulatory mechanism, via CSNK2A1, SEPTIN, and
GTPases, that could steer the microtubule polymerization and
cause protrusions in the CDT setting.

While general actin ribosylation by CDT has already been
shown (Gülke et al., 2001), here we could confirm for the
first time that CDT ribosylates actin specifically on Arg-177.
Interestingly, HCD fragmentation produces no fragment ion
containing the ribosylation site on Arg-177, despite detecting the
mono-ADP-ribose fragment at 348.2 m/z (Figure 6), described
as a diagnostic ADP ribosylation marker (Schröder et al.,
2018). However, the CID fragmentation method produced
fragment ions containing the modification and served as an
additional verification on the localization of the ADP ribosylation
(Supplementary Figure 2).

This study offers a first glimpse of the underlying mechanisms
that concern the detailed cell response to CDT. However, more
experiments must be made to solidify those first suggestions
that CSNK2A1 acts as an upstream regulator by, e.g., knockout
experiments following experiments with primary cells instead of

cell lines. In further investigations, it would also be beneficial
to add more time points, especially to identify phosphorylation
changes very early, e.g., 10–60 min after toxin addition.
Of exceptional interest in those early time points would be
the lipolysis-stimulated lipoprotein receptor (LSR) described
hitherto as the only receptor for CDT (Papatheodorou et al.,
2011) which could also act as an early upstream regulator. We
found the phosphorylation of LSR on site S643 with a CSNK2A1
motif significantly altered after 4 h (data not shown), but since
have not measured the corresponding protein, we could not
include this into our analysis. Yet, it could hint that CSNK2A1
and LSR are connected and interact in a feedback loop. A different
methodical setup must be applied in the following study to take
receptor phosphorylation status into account since membrane
proteins are challenging to analyze via LC-MS-based proteomics
(Vit and Petrak, 2017).

Taken together, we describe the first phosphoproteome and
proteome analysis after treatment of cells with CDT and offer
first insights into the cellular response to this toxin. More
studies have to be made to deepen these findings and elaborate
on them further.
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