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Stroke is one of the leading causes of death and disability worldwide. Age is associated

with increased risk of stroke, while telomere length shortening plays a pivotal role in the

process of aging. Moreover, telomere length shortening is associated with many risk

factors of stroke in addition to age. Accumulated evidence shows that short leukocyte

telomere length is not only associated with stroke occurrence but also associated with

post-stroke recovery in the elderly population. In this review, we aimed to summarize the

association between leukocyte telomere length and stroke, and discuss that telomere

length might serve as a potential biomarker to predict the risk and prognosis of stroke.
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INTRODUCTION

Stroke is an acute cerebrovascular disease caused by the disruption of blood supply. As the
second leading cause of death and the third leading cause of disability worldwide (1), stroke brings
heavy burden to both family and health care system. The incidence of stroke is increased with age
and∼65% of stroke cases occur in individuals older than 65 years. In addition to age per se, various
risk factors of stroke are age-related, including hypertension, atherosclerosis, atrial fibrillation,
high cholesterol, and diabetes. Telomere length (TL) shortening is associated with age and many
other risk factors of stroke. Consistently, a number of studies indicated that stroke occurrence
is associated with short leukocyte telomere length (LTL) (2–4). Moreover, accumulated evidence
indicates that short LTL is also associated with the post-stroke recovery. Therefore, we aimed to
summarize the association between LTL and stroke, and discuss the potential of TL as a biomarker
to predict the risk and prognosis of stroke.

TL MAINTENANCE

Telomeres
Human telomeres are specialized structure of DNA-protein complex, capping the end of linear
chromosomes. Human telomeric DNA consists of a variable number of tandem repeats of double-
stranded TTAGGG and a 3′ G-rich single-stranded overhang, known as the G-tail (5). The length
of double-stranded repeats ranges from 2 to 30 kb, while the length of 3′ overhang is around
150 nt. The invasion of 3′ G-tail into the double-stranded region forms a high order structure
and a triple-stranded structure, called T-(telomere) loop and D-(displacement) loop, respectively
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FIGURE 1 | The structure of telomeres. (A) Cap structure of telomeres

consists of a T-loop and a D-loop. (B) The shelterin complex, including TERF1,

TERF2, TINF2, TERF2IP, TPP1, and POT1, maintains the stability of loop

structures by binding to the telomeric DNA.

(6) (Figure 1A). Shelterin complex, the protein components of
telomere, includes six subunits, telomeric repeat binding factor
1 (TERF1), telomeric repeat binding factor 2 (TERF2), TERF2
interacting protein (TERF2IP), TERF1-interacting nuclear factor
2 (TINF2), tripeptidyl peptidase I (TPP1), and protection of
telomeres 1 (POT1) (Figure 1B). TERF1/TERF2 and POT1
bind directly to double-stranded and single-stranded telomeric
DNA, respectively (Figure 1B). TERF2IP, the partner of TERF2,
interacts solely with TERF2, while TINF2 connects TERF1,
and TERF2. POT1 is tethered to TERF1 and TERF2 via an
interaction between TPP1 and TINF2 (7). Telomeric DNA along
with the shelterin protein complex maintains the specialized
telomere structure and protects the ends of chromosomes from
degradation, fusion, and recombination formaintaining genomic
integrity (8). Moreover, mammalian CTC1-STN1-TEN1 (CST)
complex does localize to telomeres, which resembles the Cdc13-
Stn1-Ten1 complex from Saccharomyces cerevisiae in that the
STN1 and TEN1 subunits are conserved. CST complex binds to
single strand DNA in a non-sequence specific manner and plays a
key role in telomere replication (9–11). In addition, various DNA
repair proteins contribute to telomere maintenance including TL
maintenance via interacting with telomere proteins or modifying
telomere proteins, including Polβ, FEN1, APE1, XPF-ERCC1
complex, and MRN complex which are involved in base excision
repair pathway, nucleotide excision repair pathway and double
strand break repair pathway, respectively (12–15).

Telomerase
Inability of DNA polymerase complex to replicate the 3

′

-
end of the lagging strand in linear chromosomes leads to
telomere shortening by each cycle of DNA replication during
cell division, so-called end replication problem. As the number
of cell division increases, TL is gradually shortened. When TL

is reduced to the critical length, cells stop dividing and may
enter cellular senescence or apoptosis (16). To counter this
issue, human telomerase is responsible for synthesizing telomeric
DNA to compensate the erosion of TL during DNA replication.
Telomerase is a unique ribonucleoprotein enzymatic complex
consisting of a RNA component and a protein component,
telomerase RNA component (TERC), and telomerase reverse
transcriptase (TERT). TERC is a non-coding RNA which is
essential for telomere synthesis by serving as a template for
the elongation of telomere 3′ overhang of the telomeric G-
rich strand, while TERT catalyzes the process by its reverse
transcriptase activity (17). In mammalian, telomerase is active
only in germ cells, some types of stem cells and cancer cells, while
most human somatic cells lack telomerase activity. Moreover,
the activity of telomerase is regulated by the shelterin complex,
CST complex, and telomeric repeat containing RNA (TERRA)
which is transcribed from telomeric DNA. For example, shelterin
complex control telomerase-dependent telomere elongation
through a TERF1-mediated negative regulatory pathway, i.e., the
more TERF1 is binding to telomeres, the less telomerase accesses
to the ends of telomeres leading to less telomere elongation
(13, 18, 19). In addition, the phosphoryaltion and PARylation
of TERF1 promotes the release of TERF1 from telomeres
contributing to telomere lengthening (13, 20, 21). Recently,
the structure of telomerase with telomeric DNA has been
resolved, which will promote the understanding the function of
telomerase (22).

TL AND STROKE

TL maintenance is critical for human health as telomere
shortening is associated with aging and various age-related
diseases. Leukocyte telomere length (LTL) is served as a marker
in a number of association studies of aging and age-related
diseases (3, 23–26). The alteration of LTL has been observed in
patients with stroke, which is one of the most common age-
related diseases leading to death and disability. The positive
association between short LTL and the risk of stroke was reported
in the case-control studies from China, while the short LTL
was also associated with post-stroke death (2, 25, 27, 28). In a
10-year prospective study from the United States, the positive
association between short LTL and increased risk of stroke was
only existed in the population ranging from 65 to 73 years
old, but not in the population beyond 73 years old (29). A
study from Europe showed that short LTL was associated with
cerebrovascular accidents in the hypertensive patients with left
ventricular hypertrophy aged 55–80 years (30). Moreover, short
LTL was associated with higher mortality rate in patients with
cardiovascular diseases aged 60 years or older (31). However,
two nested case-control studies from the United States have
not found the positive association between LTL and stroke (32,
33). In addition, no association between short LTL and stroke
was found in a 29-year cohort study from Denmark (34). It
has to be noted that the participants aged 30–55, 40–84, and
30–60 years, respectively, in the three studies when the blood
samples were collected. It highly suggested that the positive
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association between short LTL and the risk of stroke or post-
stroke death might only exist in the aged population although
further validation is necessary. Recently, two meta-analysis have
been performed to investigate the association between TL and
stroke. First, a meta-analysis including 11 studies showed that
shortened TL is significantly associated with stroke, even though
subgroup analysis showed equivocal results for both prospective
(n = 7, p = 0.051) and retrospective (n = 4, p = 0.067) studies
(35). The high heterogeneity, particularly age difference, and
reduced sample size might contribute the equivocal results of
the subgroup analysis. Another meta-analysis based on causal
inference approaches using TL-related SNPs as instrumental
variables did not support the causal effect of shorter TL on
ischemic stroke (36). It has to be noted that age, one of the
most important covariates, was not considered in this study.
As previous studies do indicate that the positive association
between short LTL and the risk of stroke or post-stroke death
might only exist in the aged population, the effect of age might
need to be taken into consideration in future studies. Currently,
although mechanisms of the positive association between short
LTL and stroke in the elderly remain elusive, multiple signaling
pathways may contribute the positive association, e.g., apelin-
apelin receptor mediated signaling pathway, histone deacetylases
mediated epigenetic regulation (37, 38).

RISK FACTORS OF STROKE AND TL

Age
Age is one of the major risk factors of stroke (39). The incidence
of stroke is increased with age, and the mean age at first-ever
stroke was more than 68 years (40). TL is considered as a marker
of the biological aging process because it shortens with each cell
division. The estimated shortening rate is about 25–27 base pairs
per year with individual difference (23, 41, 42). However, the
actual LTL shortening rate is about 31–72 base pairs per year
(23, 43). It suggests that many factors may contribute to LTL
shortening in addition to end replication problem. For example,
oxidative stress-induced oxidative DNA damage could lead to
telomere uncapping and subsequent telomere shortening, while
telomere shortening further enhances oxidative stress forming a
vicious cycle (44–47). Age-related increase of oxidative damage
is observed in human (48, 49). Moreover, increased evidence
suggests that reduction of mitochondria function contributes to
the aging process (50). Dysfunction of mitochondria contributes
to age-related increase of oxidative stress, which in turn leads
to TL shortening (51). Furthermore, multiple molecules (e.g.,
apelin, HDAC4, RCAN1, α-synuclein), altered in stroke are
implicated in aging process, premature disorders (e.g., Down
syndrome, Werner syndrome) and age-related disorders (e.g.,
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease)
(37, 38, 52–66). Thus, age-related physiological or pathological
alterations may also contribute to TL shortening.

Genetic Factors
Growing evidence indicates that genetic factors play a major
role in stroke and family history of stroke is associated with
increased stroke risk (67–69). Genomewide association study

(GWAS) showed that the heritability for all ischemic stroke
was 37.9%, while the heritability varied markedly in different
subtypes of stroke, 32.6% for cardioembolic stroke, 40.3% for
large-vessel stroke and 16.1% for small-vessel stroke (70). It was
also reported that genetic factors appeared to be more important
in large-vessel and small-vessel strokes than in cardioembolic
stroke (71). Moreover, various genetic variants associated with
short telomeres also contribute to the risk of stroke. For example,
genetic variants of ACYP2 and TSPYL6 were associated with
shorter telomere, which did contribute to the increased risk of
stroke (72, 73).

Obesity
Obesity is associated with elevated risk of stroke. A number
of studies showed that obesity is consistently associated
with increased inflammation and oxidative stress, which
promotes telomere shortening (74–80). Valdes et al. found
that LTL of obese women was 240 bp shorter than that
of age-matched lean women (41). A couple of cross-
sectional studies showed a negative correlation between
LTL and obesity (81, 82), whereas others did not show
significant associations between LTL and obesity (83, 84).
A recent meta-analysis showed there is a tendency toward
demonstrating negative correlation between obesity and TL.
Although 39 of 63 studies showed either weak or moderate
correlation between obesity and TL, heterogeneity among the
selected studies made the relationship of obesity and TL still
open (85).

Smoking and Alcohol Intake
Smoking is a well-established risk factor for all forms of stroke
(86–88). Even passive smoking significantly increases the risk
of stroke (89–91). Meta-analysis including 30 studies showed
that shorter LTL was among ever smokers compared to never
smokers, while the dosage of smoking was negatively associated
with LTL (92).Moreover, Valdes et al. showed that each pack-year
smoked caused an additional loss of 5 base pairs of LTL per year
(41). Babizhayev et al. reported that telomere attrition can serve
as a biomarker of the oxidative stress and inflammation induced
by tobacco smoking (93). In addition, heavy alcohol consumption
was strongly associated with a reduced LTL in participants aged
≥65 years (94).

Psychological Stress and Depression
Numerous studies demonstrated that psychological stress
caused by negative life event, work stress, illness etc. has
significant effect on the risk of stroke (95–98). Accelerated
LTL shortening was associated with psychological stress, which
might be caused by psychological stress-induced higher oxidative
stress and lower telomerase activity (99, 100). In addition,
depression is a strong risk factor for stroke, while long-
term stress could lead to depression (101, 102). Although
the association between LTL and depression was inconsistent,
two meta-analyses showed that short LTL was associated with
depression (103, 104).
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Age-Related Diseases
Hypertension
Hypertension is one of themost important modifiable risk factors
for stroke. The strong, direct, linear, and continuous association
between increased blood pressure and stroke risk was observed,
while intensive blood pressure lowering appears to be beneficial
for the reduction of stroke incidence (105–109). Two studies
showed that LTL was negatively associated with pulse pressure
and hypertension (110, 111). Importantly, meta-analyses from
3,097 participants showed that LTL of hypertensive patients was
significantly shorter than that of controls (112).

Diabetes
Diabetes is an independent risk factor for stroke with a
2-fold increased risk in stroke for diabetic patients (113).
Compared with control individuals, TL is significantly shorter
in patients with type 1 diabetes or type 2 diabetes (114–
121). For example, LTL was significantly shorter in type 2
diabetes cases compared with controls over a wide age range
in a retrospective case-control study comprising 4,016 subjects
(121). Moreover, the escalated telomere attrition was associated
with insulin resistance in young adults aged from 21.0 to 43.5
years, which might be caused by increased oxidative stress,
metabolic and inflammatory factors (122). In addition, the
inverse association between LTL and body mass index (BMI)was
observed (120).

Cardiovascular Diseases
Short LTL are associated with various cardiovascular diseases
(CVD) including atherosclerosis, myocardial infarction,
coronary artery disease (CAD) and atrial fibrillation (AF)
(123–129). For example, short TL was associated with severe
CAD adjusting for age and sex (123). A recent systematic
review and meta-analysis from 43,725 participants and 8,400
patients suggested that LTL was inversely associated with the
risk of coronary heart disease independent of conventional
vascular risk factors (26). LTL was shorter in patients with
myocardial infarction than that in age-matched control
individuals (124). In a prospective study, Chen et al. examined
LTL at baseline to predict the incidence and progression of
carotid atherosclerosis (130). Compared to participants in the
highest LTL tertile, those in the lowest tertile had significantly
elevated risk for both incident plaque and plaque progression
(130). A recent study indicated that telomere shortening may
constitute a novel factor for cardioembolic stroke in patients
with AF (129).

Although the underlying mechanism of the relationship
between short LTL and CVD remains elusive, booming studies
have provided a number of hypotheses (131–133). First, genomic
evidence showed that inheritance of shorter telomere might act
as a cause of CVD. Genome-wide association studies (GWAS)
identified a small set of loci, including SNPs within TERT and
TERC, but all with very small R2 values (<0.5%) (72, 134).
Moreover, it has been reported that cardiovascular risk-related
systemic oxidative stress and inflammation might accelerate
telomere attrition (135). In addition, the attrition-rate hypothesis
implies that variation in adult telomere attrition rates might
be more important than TL inheritance (136), indicating that
telomere attrition rate could serve as a clinical atherosclerosis
CVD biomarker. However, a smaller longitudinal study did not
show and so on an association between leukocyte telomere
attrition rate and atherosclerosis (137).

CONCLUSIONS

Short LTL is positively associated with stroke in the elderly
population. In addition, multiple risk factors of stroke are
associated with shortened LTL, e.g., age, smoking, alcohol intake,
psychological stress, while the possibility of short LTL as an
independent risk indicator of stroke still remains. It indicates that
LTL might serve as a potential biomarker to evaluate the risk
of stroke in the elderly. Moreover, short LTL was also positively
associated with the mortality of stroke and cardiovascular
diseases, indicating that LTL might be a potential biomarker to
predict the prognosis of stroke.
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