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Abstract: Animal models have been an important tool for the development of influenza virus vaccines
since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex
formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines,
and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying
levels of protection that range between 40–60% and must be reformulated every few years to combat
antigenic drift. To address these issues, novel influenza virus vaccines are currently in development.
These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this
review, we describe seasonal and novel influenza virus vaccines and highlight important animal
models used to develop them.
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1. Introduction

Influenza viruses have caused seasonal epidemics and occasional pandemics for hun-
dreds of years [1]. Influenza A viruses (IAV) were isolated in 1933 [2] and Influenza B
viruses (IBV) were subsequently isolated in 1940 [3]. IAVs and IBVs are very diverse and
rapidly evolve to evade immune responses, giving them the ability to cause millions of
infections as well as thousands of hospitalizations and deaths annually [4,5]. Influenza
viruses are categorized based on their two glycoproteins, hemagglutinin (HA) and neu-
raminidase (NA), into IAV Group 1 (H1, H2, H5, H6, H8, H9, H11, H12, H13, H16, N1,
N4, N5 and N8), IAV Group 2 (H3, H4, H7, H10, H14, H15 N2, N3, N6, N7 and N9),
IBV B/Yamagata-like lineage and IBV B/Victoria-like lineage. H1N1, H3N2 and both
IBV lineage viruses infect humans seasonally [6]. IAVs can be found in many natural
hosts including aquatic birds, domesticated poultry, swine, equines and canines [7–10].
Conversely, IBVs primarily infect humans and can be found sparingly in other mammalian
hosts, such as the harbor seal [11,12].

Generally, seasonal influenza viruses cause mild to moderate infections in humans.
Symptoms can include fever, headache, lethargy, loss of appetite and body aches. Occasion-
ally, these infections are more serious and can lead to hospitalization or death [6]. However,
pandemic influenza viruses cause much more severe infections and have significantly
higher mortality rates. Pandemic IAVs have zoonotic origins and are introduced into
the population by direct interaction with infected poultry, waterfowl or swine. The most
notable influenza virus pandemic occurred in 1918 (H1N1 “Spanish Flu”) and caused over
21 million deaths world-wide [1]. The most recent influenza virus pandemic occurred
in 2009 (H1N1 “Swine Flu”). This outbreak was less severe, causing 200,000 deaths [1].
Humans rarely transmit avian or swine viruses from person-to-person, however the threat
of an influenza virus pandemic caused by a zoonotic virus that can transmit between
humans is omnipresent. Constant global surveillance is critical to try and identify viruses
with pandemic potential [4]. Previous outbreaks of avian H5N1, which can have mortality
rate as high as 60%, were the motivation behind creating national stockpiles of seed stocks
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of pandemic potential influenza virus vaccines [13–15]. If an unexpected IAV subtype
was to cause a pandemic, a matching vaccine would need to be developed, leading to
a delay in vaccinations and possible high mortality in the population [16,17]. Vaccines
are critical for the prevention of influenza virus infections. However, more “universal”
influenza virus vaccines that could potentially protect from both epidemics and pandemics
are needed. Animal models are the basis for many vaccine studies to establish efficacy,
safety, and immunogenicity of a vaccine. This review will discuss the types of influenza
virus vaccines under development and describe how animal models can be utilized to
further their progress towards clinical trials.

2. Seasonal Influenza Virus Vaccines

The primary defense to protect from influenza virus infections are seasonal vaccines.
These vaccines have varying efficacy, usually around 40–60% each year. However, during
some influenza virus seasons, vaccine efficacy was found to be as low as 20% [4,18]. The
first influenza virus vaccine produced was an inactivated form of A/Puerto Rico/8/1934
virus [19]. Monovalent vaccines were the first to be developed after the identification of
the H1N1 subtype in humans [19]. Shortly after this, Influenza B virus was identified in
humans, leading to a more comprehensive bivalent vaccine [20]. After the 1968 H3N2
pandemic, a trivalent vaccine was developed. This vaccine is composed of three influenza
virus strains representing each subtype [1]. In the 1980s it was discovered that there are
two co-circulating IBV lineages [21]. Another vaccine approach was adopted in the form of
a quadrivalent vaccine which is composed of four representative strains, two for IAV and
two for IBV [22–25].

There are several different vaccines currently on the market that fall into three
categories- inactivated influenza vaccines (IIV), live-attenuated influenza vaccine (LAIV)
and recombinant HA subunit vaccines (Table 1). These vaccines can be monovalent,
trivalent (TIV) or quadrivalent (QIV). The HA of influenza virus is responsible for virus
attachment and entry, meaning that antibody responses focused on the HA can prevent
infection. Because of this, IIVs are standardized based on HA content rather than total
protein in the hopes of generating a large, sterilizing immune response that could prevent
both infection and transmission of viruses. LAIVs are administered based on an infectious
dose, meaning that other viral proteins, such as the NA, are also included. The NA, and
other proteins, are present in IIVs, however the amount of protein in a particular vaccine
preparation can vary and is not standardized. IAV and IBV viruses are highly diverse, and
both the HA and NA undergo rapid antigenic drift leading to the emergence of antigeni-
cally distinct variants every few years. To combat this, the vaccines must be reformulated
annually. This puts pressure on vaccine manufacturers to constantly ensure that seasonal
vaccines will be produced in time for the new influenza season [17,26].

In the northern hemisphere, the influenza season is from October to March with
infections peaking between December and February [4]. About six months prior to the
onset of each season, a group of experts comprised of representatives from the World
Health Organization (WHO) Influenza Virus Collaborating Centers (WHO CCs), essential
regulatory laboratories, and other partners, review data generated by the WHO Global
Influenza Surveillance and Response System (GISRS) and make recommendations on
influenza vaccine composition “seed strains” that will be the best candidates for vaccine
production in the following season [17,28–30]. Production time from strain selection to
vaccine distribution can take from six to eight months. Seed strains are selected based on
several criteria including their ability to grow to high titers in embryonated hen eggs and
their antigenic relatedness to prominent circulating strains [29]. Most seed strains are made
as reassortant viruses (with internal genes from A/Puerto Rico/8/1934) to ensure that
they will grow to high titers in a single egg [30]. Eggs are used extensively for propagating
influenza viruses, making them a critical tool for virus and vaccine research [17,31]. Like
any system, there are some drawbacks to using eggs as a tool for propagating influenza
virus. Because avian species have different sialic acid receptors compared to humans,
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the viruses can acquire mutations that may alter antibody responses, drastically reducing
vaccine effectiveness [32–34]. Approximately one vaccine dose can be produced per egg,
meaning that millions of eggs are needed for any given influenza virus vaccine season. The
possibility of egg shortages threatens production of influenza virus vaccines, both seasonal
and pandemic. Additionally, production of H5N1 vaccines has been challenging in the
past due to the high infectivity of avian viruses in embryonated eggs, which can lead to
the death of the embryo before high virus titers are reached. This increases the number
of eggs needed to prepare pandemic vaccines. To address these concerns and limitations,
cell-culture based and recombinant protein based vaccines are available (Table 1) [17].

Table 1. Influenza virus vaccines currently on the US market [27].

Trade Name Manufacturer Category Available as Demographic

AFLURIA Seqirus Pty. Ltd. IIV TIV, QIV Persons > 6 months of age
Agriflu Seqirus Inc. IIV TIV Persons > 18 years of age

FLUAD a Seqirus, Inc. IIV TIV Persons > 65 years of age
FluMist MedImmune LAIV QIV Persons 2–49 years of age

Fluarix GlaxoSmithKline
Biologicals IIV TIV Persons > 3 years of age

Fluarix Quadrivalent GlaxoSmithKline
Biologicals IIV QIV Persons > 6 months of age

Flublok Protein Sciences
Corporation Recombinant HA TIV, QIV Persons > 18 years of age

Flucelvax Seqirus, Inc. IIV TIV Persons > 4 years of age
Flucelvax b Seqirus, Inc. IIV QIV Persons > 4 years of age

FluLaval
ID Biomedical
Corporation of

Quebec
IIV TIV, QIV Persons > 6 months of age

Fluvirin Seqirus Vaccines
Limited IIV TIV Persons > 4 years of age

Fluzone c Sanofi Pasteur Inc. IIV TIV, QIV Persons > 6 months of age

Influenza Virus Vaccine, H5N1 d Sanofi Pasteur Inc IIV Monovalent Persons 18 through 64
years of age

Influenza A (H5N1) Virus
Monovalent Vaccine e

ID Biomedical
Corporation of

Quebec
IIV Monovalent Persons > 6 months of age

a Adjuvanted with MF59®; b cell-based vaccine; c available as a standard dose IM vaccination, high-dose IM vaccination and intradermal
vaccination; d for national stockpile; e adjuvanted with AS03.

Typically, IIVs and recombinant HA vaccines are administered via a single intramus-
cular (IM) injection. LAIV vaccines are administered as a mist intranasally (IN). IIVs were
originally made using whole inactivated virus. Whole virus IIVs could be very reactogenic,
leading to the introduction of split-virion and subunit vaccines. Split vaccines are made
using detergent to break open the viral particle, exposing both the internal and external
proteins of the virus to the immune system. Subunit vaccines are then further purified to
increase total HA content [35]. This method was shown to be just as effective, and less
reactogenic, compared to whole virus vaccines. IIVs induce protective immune responses
without the addition of an adjuvant. However, the use of adjuvants has been discussed
to increase immunogenicity in the elderly instead of administering a high dose vaccine.
Adding adjuvants could lead to the reduction of HA content in each dose, which could
prevent vaccine shortages [17,26]. While they are not commonly used, there are a few
adjuvants that are licensed for uses in influenza virus vaccines. Adjuvants have been
demonstrated to boost immune responses, especially in high-risk groups that generally
have suboptimal vaccine responses [17,36]. Alum salt was one of the first licensed adju-
vants however newer adjuvants, such as MF59 and AS03, are oil-in-water emulsions. Many
other adjuvants are currently being evaluated in animal models or have moved into clinical
trials (detailed reviews in [17,36]). While improvements in seasonal vaccines could be
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helpful in curbing annual epidemics, they offer no protection against emerging pandemic
influenza viruses. This constant threat has spurred interest into taking a different approach
to influenza virus vaccines- going universal instead of strain-specific.

3. Universal Influenza Virus Vaccines

As discussed previously, the threat of pandemic influenza virus outbreaks, along with
seasonal antigenic drift, has uncovered faults in current seasonal vaccines. A “universal”
approach to influenza virus vaccines has become the primary focus of new strategies.
Universal influenza virus vaccines must meet several requirements established by agen-
cies including the WHO and the National Institute of Allergy and Infectious Diseases
(NIAID) [37–39]. These requirements include producing vaccines that cause long-lived
immune responses (one to five years), prevent clinical disease caused by IAV and IBV
drifted subtypes, are safe for the general population and high-risk groups as well as provide
protection from emerging pandemic strains.

The main premise for universal influenza virus vaccines is to boost antibody responses
that target conserved, yet less accessible, regions of the virus [40–47]. The HA head domain
is the primary target of immune responses after infection and vaccination. Due to the
high variability of the HA head domain between strains circulating annually and between
groups of IAV/IBV, it may not be the best target for universal vaccines. To overcome the
immunodominance of the HA head domain, prime-boost methods and the use of adjuvants
have been employed in hopes of diverting the immune response away from the HA head
domain and focusing it more on conserved epitopes [48–50]. Additionally, several new
approaches and targets have been proposed as universal influenza virus vaccines including;
the use of recombinant proteins, virus-like particles (VLPs) [51], viral vectors [52–54], self-
assembling nanoparticles [4,18] and nucleic acids (DNA [39] or mRNA [55–58]). A majority
of recombinant proteins focus on targeting the HA stalk (chimeric HAs (cHAs) [59–62],
stalk-only “headless HAs” [63] or mini-HAs [64]), conserved epitopes in both the head and
stalk domains of the HA (mosaic HAs [65,66] and computational optimized broadly reactive
antigen (COBRA) [67–70]), the neuraminidase [71–74], the matrix protein (M1) [43,75,76],
the matrix 2 ectodomain (M2e) [75–78] and the nucleoprotein (NP) [79,80]. Many technolo-
gies have been designed to carry recombinant antigens in ways that boost immunogenicity
or mimic natural infection. Virus-like particles have been engineered to carry recombinant
antigens such as M2e [42] or recombinant HAs [81]. Viral vectors, such as the modified
vaccina virus Ankara and chimpanzee adenovirus, have been engineered to stimulate T
cell responses by using conserved epitopes on M1 and NP proteins [75,76,82]. Nanoparticle
based vaccines have the advantage of being self-assembling structures that can mimic the
structure of an actual virion; however, they are not infectious or self-replicating. They
can be designed to express the full-length HA, HA stalk constructs, NA or M2e. The
nanoparticles themselves can be quite immunogenetic, however some formulations do
contain the adjuvant Matrix-M [24,47,83,84].

Recombinant influenza viruses expressing protein constructs developed for universal
vaccine platforms have also been created using reverse genetics. This system allows
for the production of live virus that express these proteins instead of traditional viral
proteins. The recombinant viruses can replicate similarly to wild-type viruses and can
therefore be used as seed strains in both IIVs and LAIVs that contain conserved epitopes
not targeted by seasonal IIVs and LAIVs, however they still utilize the existing vaccine
production pipeline [28,42,60,69,85,86]. As of 2020, 74 candidates have reached late pre-
clinical development and 22 have reached clinical development with studies undergoing
Phase 1–3 clinical trials (see detailed review [44]). This is where preclinical animal models
are key. Animal models may indicate whether a vaccine candidate will be protective, and
if so, correlates of protection can be determined by evaluating host immune responses in
a variety of ways. Each animal model has advantages and disadvantages, which will be
discussed in the next section. Choosing an applicable animal model is one of the most
critical steps for vaccine studies.
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4. Animal Models Used in Influenza Virus Vaccine Studies

Animal models have been extensively utilized to study influenza virus pathogenesis
and transmission [41,82–103]. They were instrumental in the early isolation of the virus as
well as its subsequent propagation. In the late 1930s and early 1940s, scientists began to
look at virus pathogenesis in both mice and ferrets [104,105].

While vaccine safety is no longer evaluated for annually reformulated seasonal vac-
cines, animal models are still used in studies that focus on improving immunogenicity and
efficacy. This usually involves testing whether adding novel adjuvants, increasing antigen
dosing or using prime-boost methods can induce better immune responses compared to
a standard vaccine regimen [93,106–109]. Novel vaccines must show efficacy, immuno-
genicity and safety in animal models before receiving approval for use in humans. This is
especially important for evaluating vaccines focused on viruses with pandemic potential
because protection studies cannot be ethically performed in human clinical trials [88]. For
most vaccines, a tier of animal models is used to evaluate immunogenicity and efficacy
of vaccines. This tier generally moves from smaller and more manageable models, such
as mice, to larger ones such as ferrets or non-human primates. There are many factors
involved in choosing the correct animal model for any vaccine study. Understanding the
utilities of each animal model can aid in developing vaccine candidates that will perform
well in clinical trials. The presence of clinical signs, data that can be collected, costs and
husbandry requirements should be considered before choosing an animal model for a
particular study. Additionally, finding animal models with sialic acid homology to humans
is important in understanding not only viral pathogenesis, but also vaccine efficacy. The
HA is responsible for host specificity and will bind preferentially to either α2,3 or α2,6
sialic acids depending on the subtype. Influenza viruses that infect humans have high
affinity for α2,6 sialic acids, while those that infect avian species preferentially bind to α2,3
sialic acids. Sialic acids of the respiratory tract in ferrets and swine are predominately α2,6
linked, which has homology to humans [34,110,111]. Mice have a mix of both α2,3 and α2,6
sialic acids, with the former being more abundant [112,113]. The upper respiratory tract of
guinea pigs is primarily composed of α2,6 sialic acids, however the lower respiratory tract
has more α2,3 sialic acids [103]. Additionally, animal models can be manipulated to mimic
some human comorbidities that are associated with increased risk of severe influenza virus
infections or poor vaccine responses [94].

Animal models have been critical in establishing correlates of protection. Both vac-
cination and natural infection lead to a strong innate and adaptive immune response
including the induction of Type 1 interferons, T cell activation, B cell maturation and anti-
body production [110,114–116]. Since vaccines are focused on inducing anti-HA antibodies,
correlates of protection have primarily been determined by measuring the production of
serum HA-specific antibodies that prevent binding to sialic acid receptors [48–50]. This
is usually measured using a hemagglutinin inhibition assay (HAI). An HAI titer of >1:40
is considered as a surrogate for a protective antibody response. Interestingly, immune
responses post-vaccination can vary compared to those induced by natural infection in
regard to which virus proteins (i.e., the HA, NA, NP etc.) are primarily targeted by anti-
bodies [32,33,51,117]. T-cells are also involved in clearing an infection, however traditional
vaccines are not designed to induce strong T cell responses, while natural infection is
more prone to inducing T-cell responses [111]. Novel influenza virus vaccines that target
either the HA stalk, NA, M1, M2e or NP induce antibodies that cannot be detected in a
hemagglutinin inhibition assay. With the development in new tools, it has been possible
to understand other immune correlates of protection. By comparing antibody responses
towards the NA after vaccination and natural infection, Chen et al. found that IIVs do
not induce detectable anti-NA antibody titers while natural infection induces immune
responses that are more balanced between the HA and NA [51]. This, and work from
others, influenced the discovery of different correlates of protection, including anti-HA
stalk antibodies and anti-NA antibodies [52–54]. As novel, T-cell based vaccines emerge,
there will be more of an opportunity to examine T-cell driven correlates of protection.
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Information gained in animal models can be used to define primary outcome measures
during clinical trials.

The main animal models involved in pre-clinical vaccine research are mice and ferrets,
but other models such as the guinea pig, cotton rat, Syrian hamster, swine and non-human
primates are also used (Figure 1). However, these models are uncommon and reagents for
many downstream analyses are limited.
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4.1. Mice

The mouse model is a staple in influenza virus vaccine and immunity studies. Gener-
ally, it is the first model used to investigate vaccine immunogenicity and efficacy. Vaccine
studies using mice (Mus musculus) began by investigating whether delivering an inacti-
vated form of influenza virus could serve as a surrogate to natural infection [118]. After the
confirmation that the vaccine was immunogenic and safe in mice, the study continued and
led to the development of the first inactivated influenza virus vaccine [19,119]. Almost all
vaccines on the market, as well as those still in development, have been initially evaluated
in mice.

While they are not a natural host for influenza viruses, mice can be experimentally in-
fected with a variety of human influenza viruses [88]. However, pathology can vary widely
between strains. Early isolates, such as A/Puerto Rico/8/1934 (H1N1) and B/Lee/1940
(IBV) are still used today as representative strains due to their high infectivity in mice.
However, these viruses were adapted before their use in the mouse model. A/Puerto
Rico/8/1934 was passaged 77 times in mice, 717 times in cell culture, 80 times in embry-
onated chicken eggs and 5 times in ferrets before it was used as the first inactivated vaccine
strain in 1938. B/Lee/1940 was also passaged through embryonated chicken eggs before
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its use in the first bivalent vaccine. Both strains have been continuously passaged through
eggs over time, making them more adept at causing severe infections in mice [117]

Additionally, many pandemic strains such as the H1N1 2009, H3N2 Hong Kong 1968,
H5N1 and H7N9 viruses have been found to be lethal in the mouse model. Recent strains
of human H1N1, H3N2 and IBV viruses are either unable to infect or need to be adapted
to the mouse model [93,120]. For vaccine studies, a challenge virus that has been recently
circulating in the population would be valuable as it would more accurately represent
what humans would experience during clinical trials.

Mouse adapting is a key tool used to make challenge virus strains that can easily infect
mice and cause clinical signs [121]. This process involves infecting mice with the wild
type strain, collecting mouse lungs at one to three days post infection, homogenizing lung
tissues and then infecting another mouse with diluted lung homogenates. Some viruses
are easily adapted to mice, however other viruses may take several passages before they
are fully adapted [122–125]. Mouse adaptation can cause mutations in many viral genes,
including the polymerase machinery (PB1, PB2 and PA) as well as the glycoproteins HA
and NA [126–128]. However, there has been little evidence of antigenic drift between the
parental and mouse adapted viruses. Typically, wild type mouse strains such as BALB/c
or C57BL6 mice are used for mouse adaptation. However, more susceptible mice, such as
the DBA/2 strain or pharmacologically induced immune-suppressed, have been used to
adapt viruses that are unable to infect wild type mice [126].

Mice are used to establish vaccine regimens (single dose, prime-boost and/or the
addition of adjuvants), test routes of administration (IN, IM or intradermal), determine
protective doses and immunogenicity as well as measure the reduction of morbidity,
mortality and viral loads [88,91]. Mice are also often used to evaluate how vaccines can
protect against homologous, heterologous and pandemic viral challenge. Vaccine studies
are generally set up by immunizing groups of mice with differing regimens. Control groups,
such as a standard of care (TIV/QIV), unvaccinated or sublethally infected mice are critical
for understanding the differences in immune responses, protection and morbidity are
induced by the vaccine and not by other factors. Experiments are designed to follow the
vaccine distribution protocol and determine how the vaccine protects mice from lethal
virus challenge.

Mice generally begin to show seroconversion approximately three weeks after vac-
cination, which is similar to the kinetics of seroconversion in humans. Once infected,
unvaccinated mice generate high viral titers in their lungs at three days post infection that
decrease by six days post infection. Clinical signs for infection in mice include lethargy,
anorexia, weight loss and occasionally paralysis. Weight loss, as well as clinical signs,
are used to measure morbidity prevented by the vaccine. Survival after viral challenge is
recorded to determine the protectiveness of the vaccine [87,93,96,126]. Experimental setups
are simple, with mice grouped based on their treatment and co-housed with 5–10 mice
per cage, depending on the institution (Figure 2a). To study immune responses after vacci-
nation tissues such as the lungs, trachea, lymph nodes, bone marrow and spleen can be
collected. Sera is also collected to evaluate humoral immune responses. Bronchoalveolar
lavage fluid (BALF) can be collected to determine viral titers and measure humoral immune
responses. Tissues may be used for histology, determining viral titers or investigating T
cell and B cell responses. Histology can visualize local inflammation, viral replication and
immune infiltration into infected tissues. Determining viral titers gives a glimpse into how
well the vaccine is preventing initial infection and further viral replication. By evaluating
humoral responses, T cell activation and B cell maturation, we can determine how well
the vaccine induces an adaptive immune response. Sera can be collected longitudinally
and used to determine longevity of humoral responses. Generally, sera are assessed for
binding to viral proteins via an enzyme linked immunosorbent assay (ELISA). Mice will
also be evaluated for seroconversion using a hemagglutinin inhibition assay (HAI) and
microneutralization assay (MN). These three assays are the staple to pre-clinical vaccine
development in the mouse model [129].
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Figure 2. Experimental setups for vaccination experiments: (a) mouse vaccination experiments are designed so that each
vaccine group is co-housed in a single cage. A maximum of five to ten mice can be placed in a single cage. Morbidity and
mortality are monitored for 14 days post challenge. Sera, lungs, trachea and spleens may be collected to measure viral titers,
viral spread, B-cell, T-cell and antibody responses; (b) ferret transmission and vaccination experimental design. For contact
transmission, ferrets are co-housed with a maximum of two animals per cage. For aerosol transmission, ferrets are in two
separate cages, spaced far apart enough to prevent direct contact. Airflow goes from the infected to uninfected animal.
Tissues and sera are collected and utilized in a similar manner as those collected for mouse experiments. Additionally, ferret
nasal wash samples or nasal swabs are collected and can be used to interrogate viral titers, innate immune responses and
mucosal immunity. This figure was created with BioRender.com (accessed on 1 April 2021) and Affinity Designer v1.9.

There are few limits to reagents that are available to study host responses to vaccination
in the mouse model, which is one of its biggest advantages [120]. In influenza virus
research, the wild type strains C57BL/6 and BALB/c are generally used to mimic healthy
individuals [88]. These mice have innate and adaptive immune responses like what would
be seen in humans. However, some discrepancies in antibody subtypes and Th1/Th2
responses can be observed [130]. Humanized mouse models have emerged as a possible
way to better utilize the mouse model for influenza virus vaccine research [131]. In one
study, researchers designed a humanized mouse model to identify vaccine constructs that
may cause adverse reactions in humans [132]. Another study developed a humanized
mouse model to better study T cell mediated immunity by engrafting CD34+ hematopoietic
progenitor cells into severely immunocompromised mice. The T cell repertoire after
vaccination closely resembled what is observed in humans making this model viable for
evaluating T cell-based vaccines [133].

It has been shown that mice upregulate similar genes as humans in response to
infection [96]. DBA/2 mice are more susceptible to infection and may be used to study
viruses that are generally not infectious in wild type mice [134,135]. Mouse models are
inbred, with little genetic variation between mice of the same strain, which can have some
benefits in vaccine studies such as the increased reliability that results obtained in one
laboratory can be comparable to results reported elsewhere.

BioRender.com
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4.2. Ferrets

Ferrets (Mustela putorius furo) have been used in influenza virus research since the virus
was first identified [2,3,20,109,112]. Ferrets are the most biologically relevant small animal
model to study influenza virus pathogenesis, transmission and vaccinology [83–86,99].
There are many factors that make ferrets a more biologically relevant model including
their ability to be naturally infected with human isolates, their sialic acid distribution
homology with humans, their ability to transmit viruses through the air and their ability
to mount protective immune responses after vaccination. They are also used extensively
for risk assessment of viruses with pandemic potential to determine how infectious and
transmissible a particular isolate is [89,136,137].

Like humans, the ferret respiratory track is lined with α2,6 sialic acids [34,138]. When
infected with seasonal viruses, ferrets display clinical signs similar to humans including
nasal discharge, anorexia, fever, sneezing and coughing [84,99]. Infection with zoonotic
viruses can cause severe weight loss, pneumonia and a prolonged high fever. Additionally,
ferrets are a unique model because they can transmit influenza viruses through direct
contact and aerosols [83–86]. Clinical signs, along with quantifying viral loads in nasal
secretions and body tissues, are used to determine how well a given vaccine protects from
infection. Because ferrets’ signs and symptoms are like those in humans, these animals
provide better clarity as to how the vaccine will behave in humans.

Experimental setups can vary depending on what questions are being asked about a
particular vaccine [56,92,106,109,136,137,139–155] (Figure 2b). Ferrets are commonly used
to assess how well a vaccine protects from morbidity and transmission. Additionally, host
antibody responses can be evaluated to determine whether a vaccine induced protective
HAI titers [113,116,156]. Ferrets are typically infected via direct administration of virus
into each nostril [85]. For transmission experiments, ferrets will be separated into three
groups, the donor (directly infected), contact recipient (uninfected) and aerosol recipient
(uninfected). The vaccine can be administered to the donor ferret to assess whether vacci-
nation prevents initial infection and further transmission to a naïve ferret. Alternatively,
recipient ferrets can receive the vaccination to assess how well the vaccine protects from
transmissible influenza virus. Contact recipients are co-housed with donor ferrets so that
transmission occurs through frequent interactions and shared space. Influenza viruses can
readily transmit through the direct contact route. Aerosol transmission is modeled by plac-
ing ferrets in separate cages with enough space between them to prevent physical contact.
Airflow is designed to travel from the donor to the recipient ferret to aid in transmission,
which can vary in effectiveness depending on the virus strain. For efficient transmission,
ferrets should be housed with controlled temperature and humidity settings (ideally 23 ◦C
with 30% relative-humidity), however, these practices are not yet standardized [157]. To
closely mimic human vaccination strategies, ferrets are generally vaccinated following the
same protocol that will be used in future clinical trials. Ferrets are infected intranasally by
either using a pipet to drip virus into their nasal cavity or via aerosols, however the former
is more efficient despite it being an unnatural route of infection [84,85].

In addition to monitoring clinical signs, many different specimens can be collected
from ferret challenge studies allowing for an in-depth examination of vaccine efficacy. Prior
to viral challenge, blood is collected from vaccinated animals to determine pre-infection
antibody titers. Nasal washes or swabs can be collected throughout infection to determine
viral titers, investigate innate immune responses in the form of cytokine and chemokine
expression, and measure mucosal antibody titers [84]. The larger size of ferrets allows for
the collection of tissues from many different anatomic compartments such as lobes of the
lung, the trachea, and the nasal cavity allowing for the determination of viral spread within
the animal [89,90]. This gives insight into how well a vaccine protects from both initial
infection and virus spread by measuring viral titers as well as inflammation and infiltration
of immune cells into infected tissues (histopathology). Collection of sera and BALF allows
for the quantification of immune responses including innate immune responses (cytokine
and chemokine expression), antibody levels towards viral proteins and vaccine antigens
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as well as the induction of cellular responses (for a detailed review see [84]). Previous
vaccination experiments have confirmed that ferrets can mount strong, broadly reactive and
relatively long-lasting immune responses to universal vaccine candidates. With promising
results in the mouse and ferret models, vaccine candidates can be further tested in clinical
trials [143,145,146,149–151,155]. In addition, because of their long life-span, it is possible
to reuse ferrets from previous vaccine or pathogenesis studies to further examine how
immune memory influences vaccine responses [158]. Ferrets are larger animals than mice,
so the increased requirements for husbandry and handling of these animals must be
considered. Additional ethical and technical restrictions limit the number of animals that
can be included in a particular study, reducing the amount of treatment groups that can
be tested.

There are less tools developed for studying ferret immune responses to vaccination
compared to those for the mouse model. Much of the previous information gleaned about
ferret immune responses was done using reagents made for canine research [159]. However,
significant progress has been made in recent years to increase the availability of species
specific reagents for more accurate analyses of ferret immune responses [82]. After the full
ferret genome was sequenced, technologies to study genes contributing to host immune
responses were developed [160]. Using the sequenced genome, scientists were able to
express recombinant, full-length ferret proteins, such as IFN-γ [161–163]. Using hybridoma
technologies, monoclonal antibodies that target key proteins in ferret immune responses,
such as immunoglobins, interferons, cytokines and chemokines, have now been produced
and are available commercially [87,164,165]. Additionally, probes for flow cytometry and
ELISpot assays have been developed [166]. These tools are important for evaluating the
mechanism of protection given by the vaccine and for determining any possible correlates
of protection. Aside from the increased training and husbandry costs required for ferrets,
these animals are a good model for influenza virus vaccine studies [82].

4.3. Guinea Pigs

Guinea pigs (Cavia porcellus) are primarily used to study influenza virus transmis-
sion [102,167,168]. They do not exhibit any clinical signs when infected with influenza
virus making them poor models for assessing how a vaccine prevents morbidity. However,
virus can easily be detected in nasal washes and guinea pigs can transmit most influenza
viruses through direct contact or aerosol transmission [72,102,168,169]. Transmission stud-
ies for guinea pigs are set up just like ferrets, with an infected donor guinea pig being
either co-housed (contact transmission) or separated (aerosol transmission) with uninfected
guinea pigs (Figure 2b). It has been well established that cooler temperatures (ranging
from 4 ◦C to 23 ◦C) and 20–30% relative humidity are optimal [97]. Typically, nasal washes
are performed every other day after infection, up to 10 days post infection. Sera is also
collected prior to vaccination and at various timepoints during the study. It can be used to
verify seroconversion and to measure the levels of vaccine specific antibody titers [156].
One study utilized guinea pigs to determine that intranasal vaccination using recombinant
NA protein was sufficient to prevent transmission from an infected to naïve animal [72].
Additionally, tissues from the respiratory tract can be collect for histology staining or quan-
tifying virus titers [97]. Guinea pigs do have an advantage of being inbred, meaning that
there is little variation between animals regarding gene expression and immune responses.
Fewer reagents are available to interrogate guinea pig immune responses. A dearth of
reagents, along with no clinical manifestations of disease make this model unrealistic for a
well-rounded evaluation of vaccine induced immunity.

4.4. Cotton Rats

Cotton rats (Sigmodon hispidus or Sigmodon fulviventer) are not commonly used to study
influenza virus pathogenesis or vaccinology. Unlike mice, cotton rats are susceptible to
a variety of Influenza A and B viruses and can be infected with natural isolates without
prior adaptation [94,95,105]. Upon infection, cotton rats exhibit increases respiratory rates,
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weight loss and hypothermia. Clinical signs, along with quantifying virus titers in various
tissues, are used to evaluate candidate vaccines. While cotton rats are a slightly better
model compared to mice in regard to susceptibility to infection, they also cannot transmit
viruses between each other [94,95,105]. This, coupled with a lack of reagents to examine
immune responses, has limited the number of vaccine studies conducted with cotton
rats. However, in recent years, many new reagents have been developed to evaluate
immune responses to infection and vaccination [89]. Vaccine studies in cotton rats have
been primarily focused on increasing seasonal vaccine efficacy. One study used cotton rats
to determine that a single dose of a whole inactivated influenza virus vaccine induces lower
levels of serum antibodies compared to a prime-boost method. However, the quality of
immune response was blunted so that animals in both groups exhibited similar morbidity
despite differences in antibody titers [170]. Another study evaluated how well a seasonal
TIV (2006–2007 season) could protect from drifted viral strains, which provided valuable
information regarding strain selection for seasonal vaccine reformulations [107]. Few
studies have examined universal influenza virus vaccines; however, it has been shown that
cotton rats mount a cross-protective immune response when infected with heterosubtypic
virus strains [171]. When combining data from other animal studies, cotton rats can be a
valuable addition to evaluating candidate vaccines.

4.5. Hamsters

The Syrian hamster (Mesocricetus auratus) model has been infrequently used to evaluate
influenza virus vaccines. Studies in the 1970s–1980s used hamsters to characterize cold-
adapted LAIVs and whole-virus IIVs [164,172–177]. In humans, the upper respiratory tract
is approximately 33 ◦C while the lower respiratory tract is 37 ◦C. Therefore, cold-adapted
viruses would be restricted to only the nasal cavity and could not cause lower respiratory
tract infections like wild-type viruses. Hamsters were considered a good model because
their upper and lower respiratory tracts were also 33 ◦C and 37 ◦C, respectively [165]. These
animals also share sialic acid homology with humans [178–181]. In addition to studying
LAIVs, hamsters were used extensively to understand heterosubtypic immunity and the
implications of immune history (either from vaccination or natural infection) on vaccine
responses [182–184].

To evaluate vaccine responses, sera, nasal washes and respiratory tissues can be
collected [185]. Efficacy was measured by the ability of a vaccine to induce serum hemag-
glutinin inhibition titers along with the reduction of virus titers in nasal washes and
respiratory tissues [164,172–177]. Now, Syrian hamsters are an uncommon animal model
for influenza virus research, especially for vaccine studies.

Hamsters have several advantages including their natural susceptibility to most human
influenza viruses and their ability to transmit via direct contact or aerosol routes [164,185]. These
animals are also relatively small and easy to maintain, making them an attractive animal
model. However, they do not exhibit clinical signs, although some pdmH1N1 viruses cause
mild weight loss at high doses [185]. There are also few reagents available to investigate
immune responses to vaccination. In recent years, work has begun to develop genetically
modified hamsters to mimic human diseases [167]. Immunological tools, such as antibodies
targeting specific hamster immune response proteins are also being created [168]. Once
improved tools are available, the hamster model could become an important small animal
model for vaccine research. However, they share many similarities with other rodent
models, such as guinea pigs or cotton rats, making their utility redundant for many studies.

4.6. Swine

After the outbreak of swine-origin pdmH1N1 in 2009, there became a renewed interest
in evaluating domestic swine (Sus scrofa domesticus) as a model for influenza vaccine
research [95,169]. There are more than 10 different H1 and H3 clusters of viruses that
co-circulate in North American swine [101]. Additionally, there is frequent avian-to-swine
and human-to-swine IAV transmission events, leading to significant viral diversity in the
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swine population [186,187]. If co-infected with human and swine IAVs, swine can act
as a “mixing vessel” where there is a chance of reassortant strains emerging that carry
both swine-origin and human-origin viral genes [178,182,183,188]. While these reassortant
strains are rare, one emerged in 2009 that contained swine, avian and human-origin genes,
leading to the 2009 H1N1 pandemic [184]. Like avian species, there is constant global
surveillance of viruses circulating in swine in an attempt to curb the emergence of future
viruses with pandemic potential [183]. Swine can transmit influenza viruses to each
other, and humans, through direct contact and aerosols. Swine present mild to moderate
symptoms when infected including nasal discharge, labored breathing, fever, coughing
and weight loss [100,106,189]. Infections are rarely fatal, however swine influenza virus
vaccines are available to prevent outbreaks that could have an economic impact on the
swine industry [179]. Like in humans, swine mount cross-reactive antibody responses when
immunized, however unlike humans, their responses are not as cross-protective [180,190].
Studies have suggested that this phenomenon is caused by vaccine-associated enhanced
respiratory disease (VAERD), where vaccinated swine exhibit worse morbidity compared
to unvaccinated counterparts. VAERD has been primarily associated with heterologous
viral challenge after receiving inactivated whole influenza virus vaccines [191]. While
not yet observed in humans or other animal models, swine remain a good model and are
increasingly used to evaluate vaccines [120].

4.7. Non-Human Primates

Non-human primates are not a natural host for influenza viruses, however they
can be experimentally infected with human isolates [87]. Many different species have
been used to study influenza virus pathogenesis and immunology including African green
monkeys (Chlorocebus sabaeus), cynomolgus macaques (Macaca fascicularis), pigtail macaques
(Macaca nemestrina), rhesus macaques (Macaca mulatta) and common marmosets (Callithrix
jacchus) [181,192–196]. As primates, this animal model is the most like humans and can
be used to determine the future success of vaccine candidates in human clinical trials.
However, the use of non-human primates is limited because of the expensive husbandry
costs and specialized facilities needed to house the animals. In addition, experimental
sample sizes are kept to a minimum because of ethical concerns. These limitations are
why non-human primates are not a staple in influenza virus vaccine research. They have
been used to evaluate pandemic influenza virus vaccines, since those cannot be tested in
humans [197–199]. Universal influenza virus vaccines have also been evaluated in non-
human primates for similar reasons. While the protective efficacy of universal influenza
virus vaccines can be determined in humans for seasonal viruses, the non-human primate
model can evaluate both seasonal and pandemic influenza viral challenge.

Non-human primates exhibit similar signs and symptoms as humans when produc-
tively infected with influenza virus. Viral loads can be detected in nasal washes and in
respiratory tissues after infection. Studies have found that non-human primates are able to
mount cross-reactive and protective immune responses like what is seen in other animal
models and human clinical data. In one study, a single DNA vaccination in combination
with a seasonal vaccine booster was able to induce broadly reactive antibodies that pro-
tected from drifted H1N1 viruses [200]. Interestingly, not all non-human primates can
transmit influenza viruses through the air. It was shown that the common marmoset can
transmit viruses to each other, while rhesus macaques do not [194,201]. Without trans-
mission events, the non-human primate model does not truly recapitulate the human
population making other models, such as the ferret model, more applicable. Almost all
candidates that have been evaluated using the non-human primate model have first been
assessed in either a mouse or ferret model to ensure vaccine quality and determine effective
dosages. Several universal influenza virus vaccine candidates have been evaluated in the
non-human primate model [57,102,189,192,200,202–204].
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5. Pre-Clinical Animal Models of High-Risk Populations

After the H1N1 2009 pandemic, it was found that pregnant and obese individuals had
higher rates of hospitalization and death compared to the general population [205–208]. It
has also been observed that malnourished, diabetic, young children and elderly individuals
exhibit increased morbidity and mortality from influenza virus infections. Conversely, these
populations also have reduced vaccine responses compared to healthy adults [197,209–212].
To better meet the needs of these vulnerable populations, vaccines need to be optimized by
either increasing antigen doses, adding adjuvants or implementing prime-boost strategies.
The field of modeling conditions related to decreased vaccine responses in animals is still
being developed, however early vaccine studies in high-risk hosts have been conducted
using mice, ferrets and non-human primates.

5.1. Mice

Mice are the easiest small animal model to use when mimicking human genetic or
lifestyle related high-risk conditions. They can be easily manipulated to generate gene-
specific knockout strains. For example, mice have been used to model genetic obesity by
having either their leptin receptor (db/db) or leptin (ob/ob) genes knocked down [98,198].
C3−/− mice are compliment deficient and can be used to look at the contribution of
antibody dependent cellular toxicity pathways to protection from infection [199]. This
is important because many universal influenza virus vaccines induce antibodies that are
non-neutralizing and rely on other cell-mediated immune mechanisms to provide pro-
tection [59,144]. Vitamin deficient mouse models have been used to evaluate immune
responses in malnourished hosts [213,214]. One study reported that vitamin supplements
given at the time of vaccination improved vaccine responses in deficient mice [215]. Mice
can also be used to examine other human conditions such as infancy [216], malnutri-
tion [215,217–221], aging [197,222–224], diet-induced obesity [103,219,225,226] or preg-
nancy [205,212,227–233]. The variety of populations that the mouse model can mimic al-
lows for vaccines to be evaluated for multitude of individuals. Increased pathogenesis was
recapitulated in obese and pregnant mouse models, showing that immune-compromised
hosts mount suboptimal immune responses while having increased pathology after infec-
tion [208]. This leads to more severe disease and poor immune memory, leaving the host
suspectable to more infections. Pregnant mice have been used to study maternal antibody
transfer of antibodies from TIV vaccinated dams to their pups [232]. Aging mice have
been used extensively to understand immune responses in elderly populations. Findings
from these experiments include the fact that T cell function declines with age, reducing the
effectiveness of vaccines [224]. Additionally, B cell function is dysregulated in aging mice,
leading to lowered antibody responses and retardation of immune memory [234]. These
observations led to new recommendations of high-dose vaccines for individuals ≥65 years
of age [197,235–237]. Using these various mouse models, scientists have been able to not
only determine immune pathways that are important during infection, but also determine
how to exploit these pathways to generate stronger immune responses after vaccination.

5.2. Ferrets

Ferrets are a more complex model compared to mice, limiting the amount of char-
acterized high-risk models. In addition, while a few transgenic ferret models have been
developed [238,239], it is difficult to make specific genetic knockout strains to be as readily
available as those for the mouse model. However, human conditions not influenced exclu-
sively by genetics, such as immunocompromised states [142,240], diet-induced obesity [98],
aging [241] and pregnancy [225,242] can be modeled in ferrets. Just like humans, ferrets
that have comorbidities exhibit higher morbidity and mortality when infected with sea-
sonal influenza viruses [99,103,220,221,226,243–245]. Chemotherapy treated ferrets have
been used to characterize the safety and immunogenicity of an LAIV vaccine in an im-
munocompromised model [142]. Additionally, aged ferrets were used to study impaired
immune responses after sequential infections with H1N1 viruses [241]. Novel vaccines are
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not frequently assessed in high-risk ferret models as of now, but these studies are expected
to increase once vaccine candidates prepare for clinical trials.

5.3. Non-Human Primates

The non-human primate model for high-risk hosts is relatively underdeveloped. Few
models have been characterized and utilized in influenza virus vaccine research. Nonethe-
less, vaccine research in neonatal and aged non-human primate models has helped in
identifying the relative efficacy of a given vaccine for the population. Elderly rhesus
macaques were used to examine whether the addition of an adjuvant to a traditional TIV
vaccine improved immunogenicity [226]. Another elderly non-human primate model
using cynomolgus macaques was used to characterize the pathogenesis of H7N9, a virus
with pandemic potential [243]. Neonate African green monkey models have been used
to characterize immune responses to novel adjuvants and natural infection [244,246,247].
Additionally, neonatal and adult African green monkeys have been used to character-
ize humoral responses after natural infection with a seasonal influenza virus, A/Puerto
Rico/8/1934 [248]. While an obese non-human primate model is being developed, [249]
there has not yet been research into how influenza vaccines behave in this model. Contin-
ued work in high-risk non-human primate models will increase the reliability of results
found in both mouse and ferret models, allowing for more confident predictions on how
vaccines will behave in high-risk humans.

6. Conclusions

When designing vaccination studies, scientists must decide on which animal model
will best address their hypotheses for a particular stage of vaccine development. Many
Institutional Animal Care and Use Committees (IACUC) encourage researchers to limit
animals used and, when possible, try other methods to address their hypotheses. To
that end, unconventional models are being developed for future influenza virus vaccine
studies. One study used primary human nasal epithelial cells to evaluate the differences in
innate immune responses after infection with wild type H3N2 or a matched LAIV [250].
By identifying key innate immunity pathways induced after exposure to influenza virus
vaccine strains, a connection can be made to pathways that will lead to protective adapted
immune responses. Further development of primary cell technologies may lead to a
reduction in animals used in influenza virus research. It is also possible to conduct initial
risk assessments using human and ferret primary cells isolated from different respiratory
tract tissues to determine if there is any susceptibility to avian isolates [251–256]. If infection
occurs, then ferrets would be used to examine transmission potential. However, ex vivo
systems cannot replace the complexity required for a protective immune response to
vaccination. While animal models have limitations, they remain invaluable for preclinical
vaccine development.

Advances in the safety and immunogenicity of universal influenza virus vaccine can-
didates has reinvigorated the human challenge model [92,245,257–270]. Human challenge
studies are conducted by immunizing participants with vaccine candidates and monitoring
for any side effects or adverse reactions. After a minimum of four weeks, participants
will be experimentally infected with influenza virus intranasally. Signs, symptoms and
nasal washes and are collected for two weeks following challenge to evaluate efficacy of
the vaccine. Participants can also be monitored longitudinally with sera collected every
few months to determine long term immunity induced by the vaccine [262]. If vaccine
formulations have proved to be safe and immunogenic in preliminary experiments, they
could hypothetically move into the human challenge model instead of going through the
tier of animal models.

Animal models have been the foundation for many of the new vaccine approaches in
clinical trials today. When developing new vaccine technologies and evaluating correlates
of protection, it is important to understand the benefits and limitations of each animal
model. The husbandry abilities of animal facilities at research institutions, availability
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of reagents and other factors need to be considered. If a vaccine candidate is in early
developments, it may be best to use the mouse or cotton rat for dosing, immunogenicity
and efficacy of the vaccine. As the product is more polished, it will be important to move
into a more biologically relevant model such as the ferret or non-human primates.
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