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Abstract

The development and clinical testing of drug combinations for the treatment of Non-Hodgkin Lymphoma (NHL) and other
cancers has recently shown great promise. However, determining the optimum combination and its associated dosages for
maximum efficacy and minimum side effects is still a challenge. This paper describes a parametric analysis of the dynamics
of malignant B-cells and the effects of an anti-sense oligonucleotide targeted to BCL-2 (as-bcl-2), anti-CD-20 (rituximab) and
their combination, for a SCID mouse human lymphoma xenograft model of NHL. Our parametric model is straightforward.
Several mechanisms of malignant B-cell birth and death in the nodal micro-environment are simulated. Cell death is
accelerated by hypoxia and starvation induced by tumor scale, by modification of anti-apoptosis with as-bcl-2, and by direct
kill effects of rituximab (cell kill by cytotoxic immune cells is not included, due to the absence of an immune system in the
corresponding experiments). We show that the cell population dynamics in the control animals are primarily determined by
K*, the ratio of rate constants for malignant cell death, Kd, and cell birth, Kb. Tumor growth with independent treatments is
reproduced by the model, and is used to predict their effect when administered in combination. Malignant cell lifetimes are
derived to provide a quantitative comparison of the efficacy of these treatments. Future experimental and clinical
applications of the model are discussed.
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Introduction

The development and clinical testing of drug combinations for

the treatment of non-Hodgkin Lymphoma (NHL) and other

cancers has recently shown great promise [1]. However, deter-

mining the optimum combination and its associated dosages for

maximum efficacy and minimum side effects is still a challenge.

This study addresses several questions:

1. Can a parametric model quantitatively simulate the separate

effects of as-bcl-2 and anti-CD-20 compared to the control?

2. Can the benefits of each therapy relative to the control be

quantitatively measured in terms of reduced malignant cell

lifetimes?

3. Can the model quantitatively simulate the combined effects of

these therapies without introduction of additional parameters?

4. Can the model use the independently determined key

parameters for individual therapies to predict their combined

efficacy?

5. Can the quantitative results suggest the relative importance of

the separate mechanisms simulated in the model?

Affirmative answers to these questions will validate the model

and provide a tool for the design of dedicated animal experiments

to identify optimum combinations of drugs. They may also assist

with the planning of future clinical trials in humans using similar

drug combinations.

Data from experiments in which human lymphoma cells are

grown in immuno-deficient SCID mice that are then treated with

as-bcl-2 and monoclonal antibody suggest that combination

therapy has a qualitatively larger effect on malignant cell

populations than either treatment alone [2]. However, it is not

clear if the observed combined efficacy is synergistic, or

predictable. If the individual treatments are synergistic, a

parametric model that includes their individual biological mech-

anisms should be able to simulate their combined efficacy.

In the next section, we describe the experimental procedure and

data reduction process, in which the tumor volumes are carefully

measured by summing planar MRI images. The following section

describes a parametric model that explicitly connects each

independent therapy to one or more terms in the model. We

then apply the full parametric equation to predict the efficacy of

combined treatment and compare these predictions to the

combined therapy data in the following section. Agreement
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between the model and data will provide an initial validation of

the model and a quantitative evaluation of combination treatment.

In the final section, the model is used to derive average cell

lifetimes from the mouse tumor volume data as a metric for the

effectiveness of each therapy. We then discuss these results,

provide tentative answers to the questions posed above, and

suggest future directions and applications.

Materials and Methods

Experimental Methods
We examined the effects of combination therapies on the

DoHH2 human lymphoma cell line (0.256106 + 2.5 mg

Matrigel/0.4 ml PBS) injected subcutaneously into immune

deficient mice. DoHH2, a t(14;18)+ transformed lymphoma cell

line, was obtained from the Deutsche Sammlung von Mikroorga-

nismen und Zellkulturen GmbH (DMSZ, German Collection of

Microorganisms and Cell Cultures, Braunschweig, Germany).

These cells were allowed to grow until a time, typically ten days,

when mass was palpable. Measurement of tumor volume was

performed by multiple ‘‘slice’’ MRI whose minimum resolution,

limited by voxel size, was approximately 0.2 mm. The outline of

the tumor was clearly visible, and the cross-sectional area of a slice

of the tumor was readily calculated. A set of such slices was then

summed to determine total tumor volume at each designated day

of the experiment. The first measurements were made an

additional five days after the animals were variably injected

intraperitoneally as before [2] with:

– mut-bcl-2: an oligonucleotide with no activity, administered

alone (the ‘‘control’’) or in combination with anti-CD-20 as a

single dose of 200 micrograms per gram.

– anti-sense bcl-2: an antisense oligonucleotide to down-

regulate bcl-2 that should enhance malignant cell apoptosis

without affecting cell birth rates, thereby causing malignant

cells to be ‘‘sensitized’’ and become more vulnerable to kill

mechanisms, administered as a single dose of 200 micrograms

per gram.

– anti-CD-20: a monoclonal antibody (rituximab), should

preferentially, and directly, kill malignant cells (note that

indirect kill by cytotoxic T-cells was not likely in these immune

deficient mice, although some residual NK cells may have been

present), administered as a single dose of 5 micrograms per

gram (higher doses have been administered in other experi-

ments not reported here).

– anti-sense bcl-2 and anti-CD-20 combination: single doses

administered as above.

Ref [2] justifies the dose schedule of as- bcl-2 and control oligos,

as well as that for anti-CD20, and demonstrates effects on both

DoHH2 and FSCCL cell lines. Further, Ref. [3] confirms in vivo

down-regulation of bcl-2 by anti-sense oligos. In vitro cell line data

was reported in Ref. [4].

A set of five mice comprised each group and tumor volumes

were followed for up to 23 days, yielding between four and five

data points per experiment. Examples of MRI ‘‘slices’’ at

maximum tumor girth are shown for a control animal and a

mouse treated with rituximab alone in Figure 1 and Figure 2,

respectively. These images are axial views through the chest of the

mouse. The large signal void is the mouse’s lungs. The tumor is the

bright area on the left hand side of the image. In Figure 3, we

compare sample images taken on day 15 for animals in the

control, rituximab, as-bcl-2 and combination therapy groups. The

tumors are outlined in yellow for improved visibility.

Tumor volumes were measured by outlining the tumor

manually using imaging system software, and adding the volumes

outlined on each slice. Each slice is 0.5 mm thick, and has a

2.56 cm field of view with a 1286128 image matrix, giving a

0.2 mm in-plane resolution. A T2 weighted spin echo pulse

sequence was used. The tumor xenografts were quite bright with

these parameters. As can be seen from Figure 1 and Figure 2, the

tumors tended to grow in a flat layer beneath the skin, and did not

protrude from the animal sufficiently for caliper measurements to

be accurate. With MRI protocols requiring only a few minutes to

complete for each animal, such methods (where available) would

likely be feasible even for conventional subcutaneous models,

providing more accurate tumor volume measurements while

requiring a greater, but not prohibitive, increase in effort.

All work was conducted under approval from our Institutional

Animal Care and Use Committee (IACUC). No tumors grew in

size to exceed 10% of bodyweight. Animals were monitored daily

for health and activity, including any signs of bleeding or

ulceration of the tumor sites (which were not observed in our

model).

Average tumor volumes and the related Standard Error of the

Mean (SEM) for all twenty experiments are plotted in Figures 4a,

b, c and d. Analysis of individual mouse responses would be of

interest, but the current data base is insufficient to support such

analysis. We note that average initial tumor sizes were 158, 114,

125 and 109 mm3 for the mut-bcl-2 (control), as-bcl-2, rituximab

and combination as-bcl-2/rituximab groups, respectively. In the

modeling described in the next section, we will non-dimensionalize

all tumor cell populations by their initial values, which are

assumed to be proportional to measured tumor volumes divided

by their initial values (which are not statistically different, as the

initial SEMs overlap) to compare their subsequent growth and

response to therapy. While we recognize the limitations inherent in

small experimental samples, the slight overlap of the SEMs in

Figure 5 suggests that the average tumor volumes are both

statistically separable and responsive to as-bcl-2, anti-CD-20 and

combined therapies (experiments at other dosages were statistically

analyzed in Ref. [2] and will not be reported here). Furthermore,

we believe that the early time data suggests a synergistic effect

between as-bcl-2 and anti-CD-20 when they are used in

combination. There also appears to be a change in the rate of

tumor growth at seven days. The magnitudes and possible causes

of this change in net tumor growth rate will be addressed later.

Parametric Modeling
The rate of change of the malignant tumor cell population with

respect to time (t) is equal to the sum of cellular mechanisms that

characterize the birth and death rates of population members, the

direct kill of population members by various external mechanisms,

and other effects that limit the growth or accelerate the death of

the population, such as competition for limited resources. The

resulting ‘‘logistics’’ - like equation has been successfully applied

for decades to the simulation of population dynamics for a broad

range of problems [5].

In this model, the birth term is the product of the tumor cell

birth rate Kb and its current population, N(t). The death term at

low concentrations of malignant cells is the product of tumor cell

death rate, Kd, and its current population. The cell death rate is

assumed to be enhanced by a factor f = 1+N(t)/N(0). The N(t)/

N(0) term represents the first order influence of hypoxia and

starvation, which limit population growth. This factor is related to

the ‘‘carrying capacity’’ term used in population growth models of

tumors and ecological systems [5].

Parametric Model of Combination Therapy
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In the absence of an immune system, indirect kill by cytotoxic

T-cells due to rituximab is absent. However, rituximab treatment

can also induce direct kill, which we model with a term that is the

product of the kill rate, KK, a function g(c), where c is the

concentration of rituximab relative to body mass, and the current

malignant cell population.

Summing these terms (with appropriate sign) yields the basic

model:

dN=dt~Kb N{Kd 1zN=N(0)½ �N{KK g(c)N ð1Þ

We non-dimensionalize the malignant cell population, N, by its

initial value, N(0), so that the non-dimensional population number

is N* = N/N(0). The natural parameter with which to non-

dimensionalize elapsed time is Kb
21, the inverse of the cell birth

rate and the characteristic ‘‘e-folding’’ time, T, for initial

exponential growth. Non-dimensional time is then t* = t Kb = t/

T. We shall adopt the convention of using K* as the ratio of the

inherent malignant cell death rate to cell birth rate, most closely

representative of the early stage disease in untreated animals.

Thus,

K�~Kd=Kb

We expect that as-bcl-2 will modify the death rate, and note this

by changing K* to K9 when as-bcl-2 is administered.

We also define

K 00~KK=Kd

and non-dimensionalize g(c) so that g = 1 when c = 5 micrograms/

per gram, the concentration of rituximab in the subject

experiments.

Inserting these definitions into Eq (1) yields the non-dimensional

model equation:

dN�=dt�~N� 1{K� 1zN�ð ÞzK 00g cð Þ½ �f g ð2Þ

where K* is replaced by K9 when modeling the as-bcl-2

experiments.

The data from which we will derive K0g(c) was taken at a

dosage of 5 micrograms per gram. Prediction of the effect of

Figure 1. Maximum diameter tumor slice (bright area) for a control mouse.
doi:10.1371/journal.pone.0051736.g001
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higher dosages will require a functional form for g(c), keeping K0 a

constant. This will be the subject of future comparisons with other

experimental data taken at Fox Chase Cancer Center.

Our model computation strategy is straightforward: We first

determine K*, K9 and K0 from the individual experimental data

for mut bcl-2, as-bcl-2 and anti-CD-20. We then predict the

combination therapy data with these parameters fixed. This four

step calculation, employs Eq. (2) at each step:

1. For the control group (mut-bcl-2), we set K0 = 0, N*(0) = 1, and

determine the values of T and K* that best match the data by

visual inspection. After many independent trials, and recog-

nizing the limited data base, we decided that a formal ‘‘least-

squares’’ or similar fitting process would provide no real

improvement to these estimates.

2. For the as-bcl-2 group, we again set K0 = 0 and N*(0) = 1,

designate K* as K9, and find K9 using the same approach as

above, with T held at the value found in step 1.

3. For the rituximab group, we use K* from step 1, N*(0) = 1, and

find K0g(c) with the same approach as above, again holding T

at the value found in step 1.

4. For the combination group, we use T from step 1, K9 from step

2, K0 from step 3, N*(0) = 1, and predict the experimental

tumor volume history for this group.

Results

As illustrated in Figures 6a, b and c, we obtain reasonable

matches between the parametric model and the average tumor

volume data for the control experiments and the two independent

treatment experiments. The control data fit yields T = 7 days as

the characteristic e-folding time for malignant cell growth and

K* = 0.11. This value of K* means that the isolated malignant cell

death rate is 11% of its birth rate, so that the characteristic lifetime

of such cells, L = T/K* = 1/Kd, is approximately 63 days. The

parametric model accurately simulates the average mut-bcl-2

(control) data for the entire length of these experiments, and is in

reasonable overall agreement with the average as-bcl-2 and anti-

CD-20 data as well. However, as shown in Figure 6d, the model

does not accurately predict the combination treatment data. This

is because the value of K9 (0.09) for the as-bcl-2 data is slightly less

than that of K* (0.11) derived for the control, which is the opposite

of the anticipated effect. These values are the best fits to the data

over the entire experiment, but a value of K9 = 0.15 is required to

match the early time data in Figure 4b, c and d, where little

growth is observed.

When we initiate the previous model prediction (K* = .11 and

K9 = .09) for the combination treatment at 7 days, excellent

agreement with the combination therapy data is obtained, as

shown in Figure 6e. There are at least two potential explanations

for this behavior: 1) anti-CD-20 and combination therapy are

Figure 2. Maximum diameter tumor slice for a rituximab treated mouse.
doi:10.1371/journal.pone.0051736.g002
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most effective at early times, when both as-bcl-2 and anti-CD-20

are in maximum abundance, or 2) the therapy is more effective

with the most vulnerable of a heterogeneous population of tumor

cells, which are eliminated in the first week, leaving the less

vulnerable cells to dominate tumor growth after 7 days. We note

that T, the theoretical recovery time for these tumors, is also 7

days.

This analysis of the experimental data suggests that the primary

effect of as-bcl-2 occurs during the first week after injection, a

period during which little or no tumor growth is observed. The

primary anti-tumor agent during this period is clearly anti-CD-20,

but its efficacy appears to be enhanced by the simultaneous

introduction of as-bcl-2. We will derive a quantitative measure of

these ‘‘early time’’ effects in the next section.

Discussion

We can use the experimentally-deduced parameters to derive a

quantitative measure of the early time effectiveness of each

treatment relative to the control. As previously defined, the

characteristic (isolated) malignant cell lifetime, L = 1/Kd = T/K*,

is 63 days. For a malignant cell in a nodal environment the death

Figure 3. MRI "slices" on day 15 for animals in the a) control, b) rituximab, c) as-bcl-2 and d) combination therapy groups.
doi:10.1371/journal.pone.0051736.g003
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rate is enhanced by the factor [1+N*] and by rituximab treatment.

This is the factor E = [1+N*+K0g(c)] that multiplies K* (or K9) in

Eq. 2, yielding a characteristic cell lifetime of L = T/K*E. The

minimum value of E occurs at t = 0, so that E(0) = 1+N*(0)+K0g,

yielding a maximum cell lifetime of L(0) = T/K*E(0). In the

present experiments, N*(0) = 1, and g(c) = 1, yielding E(0) = K0 +2,

and a maximum cell lifetime of L(0) = T/K*[K0 +2]. Using values

for these parameters derived from only the early time (0 to 7 days)

data, we obtain the results presented in Table 1.

We note that the ratio of the ‘‘control’’ cell lifetime to as-bcl-2

lifetime is 1.4 and to anti-CD-20 is 2.7. The product of these ratios

is 3.8, which is close to the ratio of control cell lifetime to

combination drug cell lifetime (4.0), suggesting a multiplicative,

synergistic effect of the combination treatment. However, the

differences in estimated cell lifetimes are less pronounced when the

later time data is included (see Figures 6b, c and d). While K* is

the same, K9 = 0.09 and K0 = 2, with the result that L(0) for the

four cases is 32, 39, 15 and 19 days, respectively. As observed

earlier, there is no apparent long-term (.7 days) benefit to the

initial administration of as-bcl-2 alone, but its early time influence

delays re-growth of a tumor treated with rituximab. This behavior

has been noted in previous experiments at Fox Chase Cancer

Center [2] and elsewhere [6,7,8], although in the latter

experiments repeated administration of as-bcl-2 yielded signifi-

cantly greater efficacy. A single dose of each treatment was

administered in the subject experiments to simulate the clinical

regimen, but optimal dose scheduling is clearly an area for future

experimentation and analysis.

This preliminary analysis is not inconsistent with both the

experimental hypothesis and the basic assumptions in the

parametric model: 1) average birth rates are relatively constant

for each group of experiments; 2) the average malignant cell death

rate increases and its lifetime decreases with the introduction of

anti-CD-20 and in combination with as-bcl-2; and 3) the ratio of

characteristic cell lifetime to that of the control, is comparable to

the product of the ratios of independent therapies.

Conclusions
An analysis of mouse tumor volume progression employing a

parametric model has demonstrated an approach to the quanti-

tative comparison of the efficacy of combination drug therapy

relative to independent treatments. We have shown that this

model may be used to combine efficacy data from independent

treatments to predict the effectiveness of combination therapies.

At this point, there is insufficient data to compute statistical

measures of the variation of K*, K9 and K0 for each animal in an

experimental group, but comparison of the average tumor volume

data with the model suggests that additional experiments would be

worthwhile. Improved statistics would then provide greater

confidence in the model predictions. In summary, we provide

the following tentative answers to the questions posed at the outset:

Figure 4. Average tumor volume measurements for each data set.
doi:10.1371/journal.pone.0051736.g004

Figure 5. Comparison of average tumor growth histories with
SEMs indicated.
doi:10.1371/journal.pone.0051736.g005
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1. A straightforward parametric model of tumor progression

simulates the control experiments and the independent effects

of as-bcl-2 and anti-CD-20 treatments.

2. The relative efficacy of each treatment compared to the control

can be quantitatively derived with the model.

3. Synergistic effects of combined as-bcl-2 and anti-CD-20

treatment can be calculated without the need of additional

parameters.

4. Key parameters derived from independent therapy experi-

ments can be used to predict the effectiveness and optimization

of combination therapies.

Figure 6. Comparison of parametric model with independent and combination therapies.
doi:10.1371/journal.pone.0051736.g006

Table 1. Cell lifetimes estimated from early time (t,7 days) data.

Cell Death/Birth Rate Cell Kill/Death Rate Cell Lifetime (Days)

K* or K9 K0 g L(0)

Isolated cell 0.11 n/a 63

control 0.11 n/a 32

as- bcl-2 0.15 n/a 23

anti-CD-20 0.11 3.5 12

Combination 0.15 3.5 8

doi:10.1371/journal.pone.0051736.t001
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5. The relative effectiveness of as-bcl-2 and direct kill by anti-CD-

20 can be quantified.

The effects of dosage and treatment frequency on tumor

progression and regression is readily modeled with Eq. 2 using

empirical data for g(c), the drug concentration factor. A review [9]

of clinical studies comparing ‘‘maintenance’’ rituximab therapy

with interventional treatment of NHL may also provide a useful

clinical data set. For animals with intact immune systems, the

interaction of cytotoxic T-cells or NK-cells with malignant B-cells,

enabled by rituximab [10], can be modeled with an additional

term in Eq. 2 and a separate (logistics-like) equation for the

response of immune cell populations. Parametric models such as

these should become useful in the planning of multi-parameter

combination drug experiments and clinical trials [11,12].

Parametric modeling of tumor response could be used in two

different ways in clinical trials: 1) Interpretation of the results of

multi-therapy trials in order to determine the particular effects of

therapies individually and 2) Planning of future trials so that

treatment dosages and timing are determined in a rational

manner. If the model contains the primary biological mechanisms,

it should be directly applicable to human data. However, the

extrapolation of survival data in mouse experiments to the human

case, particularly in subcutaneous xenografts, is problematic. In

subcutaneous models, animals can accept extraordinarily large

tumor burdens without ill effects (surpassing the 10% of body

weight limit set by our institutional guidelines). Parametric

modeling of tumor growth rates therefore provides a much more

relevant assessment of treatment efficacy.

We also note that most tumors are under attack from the

immune system and so all therapies act in combination with the

immune system. As suggested, our method can indicate synergistic

effects between treatments, and unravel the effect of cytotoxic

treatments (anti-CD20) from those of pro-apoptotic treatments

(anti-bcl2). Application of these methods to clinical data would not

only elucidate the importance of each therapy and their potential

synergies, but would form the basis for mathematical optimization

that can be done prior to any treatment. Models may show, for

example, that cytotoxic therapies are effective only at the early

stages of treatment, and should be discontinued early, whereas

anti-apoptotic treatments should be continuously administered

Conversely, continuous anti-apoptic treatments could be shown to

increase the effectiveness of later cytotoxic therapies, permitting

lower dosages to be used. As pointed out in a recent publication

[13], ‘‘mathematical modeling narrows down an infinite space of

possible treatment strategies to a subset of strategies with the

greatest potential that can then be validated in preclinical models

before being introduced to patient care’’. For example, if each

disease state is characterized by only one parameter (K* in our

model) with 10 possible values, and each of two treatments has 10

possible dose levels ranging from ineffective to toxic, there are a

thousand possible experiments and associated outcomes in

combination. If an immune response parameter is included, or

three drugs are administered in combination, there are ten

thousand possibilities to consider.

While modeling, in general, should have similar benefits for the

understanding and treatment of other cancers, our model may be

relevant to other blood cancers at best, and is designed specifically

for the lymphomas.
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