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Abstract
Background: The identification of genetic target genes is a key step for rational engineering of production
strains towards bio-based chemicals, fuels or therapeutics. This is often a difficult task, because superior
production performance typically requires a combination of multiple targets, whereby the complex
metabolic networks complicate straightforward identification. Recent attempts towards target prediction
mainly focus on the prediction of gene deletion targets and therefore can cover only a part of genetic
modifications proven valuable in metabolic engineering. Efficient in silico methods for simultaneous
genome-scale identification of targets to be amplified or deleted are still lacking.

Results: Here we propose the identification of targets via flux correlation to a chosen objective flux as
approach towards improved biotechnological production strains with optimally designed fluxes. The
approach, we name Flux Design, computes elementary modes and, by search through the modes, identifies
targets to be amplified (positive correlation) or down-regulated (negative correlation). Supported by
statistical evaluation, a target potential is attributed to the identified reactions in a quantitative manner.
Based on systems-wide models of the industrial microorganisms Corynebacterium glutamicum and Aspergillus
niger, up to more than 20,000 modes were obtained for each case, differing strongly in production
performance and intracellular fluxes. For lysine production in C. glutamicum the identified targets nicely
matched with reported successful metabolic engineering strategies. In addition, simulations revealed
insights, e.g. into the flexibility of energy metabolism. For enzyme production in A.niger flux correlation
analysis suggested a number of targets, including non-obvious ones. Hereby, the relevance of most targets
depended on the metabolic state of the cell and also on the carbon source.

Conclusions: Objective flux correlation analysis provided a detailed insight into the metabolic networks
of industrially relevant prokaryotic and eukaryotic microorganisms. It was shown that capacity, pathway
usage, and relevant genetic targets for optimal production partly depend on the network structure and
the metabolic state of the cell which should be considered in future metabolic engineering strategies. The
presented strategy can be generally used to identify priority sorted amplification and deletion targets for
metabolic engineering purposes under various conditions and thus displays a useful strategy to be
incorporated into efficient strain and bioprocess optimization.
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Background
The identification of genetic target genes is a key step in
rational engineering of production strains towards bio-
based chemicals, fuels or therapeutics. To fully account for
the high complexity of metabolic networks and select
promising genes out of many possible candidates, sys-
tems-wide approaches have recently emerged from the
rapidly increasing amount of genome-scale models [1]. As
example, OptKnock [2] OptGene [3], minimization of
metabolic adjustment (MOMA) [4] as well as strain
design based on optimum theoretical yield [5] display
efficient in silico algorithms that allow the prediction of
promising gene deletion targets towards overproduction
of chemicals. They do, however, not provide a prediction
of genes to be amplified for superior performance. This
rather important information on potential amplification
targets can be extracted on basis of experimental 13C met-
abolic flux data including comparative 13C flux studies of
mutants with different properties [6] or a bi-level optimi-
zation framework (OptReg) which predicts gene amplifi-
cation, attenuation or deletion targets on the basis of
experimental flux data and regulation strength parameters
[7]. The value of such approaches, exploiting 13C flux
data, has been successfully demonstrated e. g. for lysine
producing C. glutamicum [8,9]. They, however, require the
availability of experimental data as basis of identifying
amplification targets which is linked to increased experi-
mental effort and might not give access to all potentially
interesting gene candidates. Also metabolic control analy-
sis, allowing the prediction of rate-limiting steps, gives
access to amplification targets, but relies on experimen-
tally data, e.g. in vivo kinetic data of the enzymes involved
[10]. Thus, efficient in silico methods for simultaneous
genome-scale identification of targets to be amplified or
deleted, which do not rely on available experimental data
or a priori assumptions, are still lacking.

Among the available genome-scale modelling
approaches, elementary flux mode analysis constitutes an
important tool for the efficient study of cellular systems,
since it allows the in silico prediction of desirable cell phe-
notypes that result either from the variation of process
parameters or from the perturbation of genotypes [11]. In
comparison to alternative methods, such as linear pro-
gramming, elementary flux mode analysis enables the
investigation of all possible physiological states in the cell
and can identify all existing metabolic flux vectors with-
out any a priori knowledge or assumption on measured
fluxes [5]. Elementary flux mode analysis has been
applied to predict promising gene deletion strategies as
shown for rational design of L-methionine production in
bacteria [12], the identification of genetically independ-
ent pathways in recombinant yeast [13] or the construc-
tion of a minimal E. coli cell for high yield ethanol
production was enabled by prediction of gene deletion

targets using elementary flux mode analysis [5]. Here we
present an in silico approach for quantitative target pre-
diction towards superior cell factories. To this end we
extend elementary flux mode analysis to a network-wide
search for flux changes among all possible modes which
are specifically correlated to a chosen target flux, i.e. the
production capacity of the cell. Recent modelling studies
showed that such a coupling of fluxes is an important
behaviour of biological systems e.g. with respect to co-reg-
ulation of genes [14]. However, a direct application
towards target identification and superior production
strains has not been considered. The potential of our
approach is demonstrated for industrially relevant cell fac-
tories of different complexity. The soil bacterium C.
glutamicum is one of the dominating bacteria in biotech-
nology and applied to produce more than 2.000.000 tons
of amino acids per year [15]. Its valuable product lysine,
almost exclusively derived through fermentation by this
microorganism, is used in animal nutrition. Due to its
high relevance, C. glutamicum has been extensively inves-
tigated including the construction of a genome-scale
model [16] and different success stories towards optimi-
zation lysine production by metabolic engineering which
display an excellent basis as relevant test case for the sim-
ulations shown here [17]. The filamentous fungus A. niger
is widely exploited for the production higher-value
enzyme products [18]. The recently published genome-
wide network model of A. niger illustrates its complex
metabolism located in different intracellular compart-
ments [19]. Here we focus on the industrial enzymes
fructofuranosidase, used to obtain valuable oligosaccha-
rides [20], glucoamylase, applied in starch conversion
[21], and epoxide hydrolyase, a highly useful biocatalyst
for kinetic resolution of racemic epoxides [22].

Methods
Computation of elementary flux modes
Computation of elementary flux modes allows the calcu-
lation of a solution space of all possible independent met-
abolic pathways in a steady-state [23]. Elementary flux
modes are thermodynamically and stoichiometrically
possible pathways reducing the complex metabolism into
all, unique, non-decomposable biochemical pathways
[24], which connect the supplied substrates with the cor-
responding end products. Algorithms for computing ele-
mentary flux modes are based on two fundamental
equations. Assuming the existence of a (quasi) steady-
state metabolism throughout the metabolic network, the
first fundamental balancing equation can be written as:

Here, the metabolic network is expressed as stoichiomet-
ric matrix S with the dimension dim S = (m × q), where m
is the number of internal metabolites and q is the number

S r⋅ = 0 (1)
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of reactions, and r represents a flux distribution and is
consequently a q × 1 vector. Any biochemical reaction net-
work should fulfil the thermodynamic feasibility con-
straint, i.e. the following inequality should be valid for all
irreversible reaction rates:

In the present work, elementary flux mode calculation
was performed using the double description method (null
space approach) introduced by Wagner [25] and extended
with the recursive enumeration strategy with bit pattern
trees by Terzer and Stelling [26]. An implementation of
the algorithm in Java, with integration into MatLab
(Mathworks Inc., Natick, MA) is available at http://
csb.inf.ethz.ch and was applied in this work. On basis of
the determined elementary modes, a detailed investiga-
tion of metabolic network properties was carried out. This
included the estimation of theoretical (maximum) yield,
relative fluxes through intracellular metabolic pathways,
and target prediction for strain engineering. Calculations
were partially automated and implemented into MatLab
(Mathworks Inc., Natick, MA) and evaluated in Excel™
(Microsoft Office 2007, version 12.0).

Calculation of relative flux normalized to substrate uptake
For a given elementary mode j the relative metabolic flux
(νi, j) of each metabolic reaction i, normalized to the sub-
strate uptake flux, was determined. The symbol ξ refers to
the molar carbon content expressed in c-mol per mol. To
facilitate direct comparison between different carbon
sources, all relative fluxes were normalized to one unit of
hexose (Eqs. 3, 4). The variable q refers to the number of
metabolic reactions in the metabolic network. The varia-
ble n refers to the numbers of elementary modes respec-
tively.

Calculation of theoretical (maximum) yield
The theoretical product (YP/C, j) and biomass yield (YX/C, j)
was calculated for each elementary mode j according to
Eq. 5. Basically it displays the relative flux towards the
product or the biomass. The variable s refers to the stoichi-
ometric coefficient of the product (P) and carbon source
(C)

Since every real flux distribution in a biological system is
a linear combination of elementary modes, the mode
with the highest product or biomass yield, respectively,
gives direct access to the maximum capacity of the under-
lying network, i.e. the maximum theoretical yields YP/C,

max, and YX/C, max.

Target potential based on flux correlation
To investigate, whether a reaction i displays a potential
target, a chosen set of elementary flux modes was searched
for statistically relevant correlation between the relative
flux through the objective reaction obj and that through
the reaction i. For this purpose the slope of the linear
regression between the objective flux (νobj) and the corre-
sponding flux (νi) was determined. This was carried out
for each reaction, so that the entire network could be
screened for potential targets. Only statistically valid cor-
relations were considered further. For this purpose a cut-
off value of r2 = 0.7 was set for the regression coefficient of
each linear correlation. Such a cut-off has proven valid in
previous studies processing correlated data [27,28]. Addi-
tionally, the statistical significance of these targets was fur-
ther proven by the t-test (Eq. 6).

Here, the variable n is the number of pairs of values, r is
the correlation coefficient and r2 the regression coefficient.
If, TS > t(f, P), then there exists a statistically significant
relationship. Accordingly, statistical significance was a
quality criterion to classify the corresponding reaction as
a potential target. Subsequently, the potential of a meta-
bolic reaction as genetic target was expressed as target
potential coefficient (αi, obj), by the slope of the corre-
sponding linear regression αi, obj = (νi ± βi, obj)/νobj,
whereby βi, obj is the intercept of the ordinate (Eq. 7).

The calculation was carried out by determining the covar-
iance (cov) of the variables of νobj and νi divided by the
square of the standard deviation δ of the corresponding
objective flux νobj (Eq. 8).

Positive values of αi, obj account for amplification targets,
whereas negative values denote deletion or attenuation
targets.
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Metabolic modelling
The major characteristics of the models used in the
present work were as follows. A detailed description of the
biochemical reactions in the different networks is given in
the supplement files.

Small example network of TCA cycle and supporting 
pathways
The principle of the developed approach is elucidated
using a simple metabolic network from E. coli, which was
previously used for the discussion of the concept of ele-
mentary flux mode analysis [24]. It includes the TCA
cycle, the glyoxylate shunt and connected reaction of
amino acid bio-synthesis. In this example, 2-phos-
phoglycerate, ammonium, carbon dioxide, and the cofac-
tors, such as ATP and NAD, are considered as external
metabolites. Arbitrarily, succinyl-CoA was defined as
desired product and its formation as objective reaction.
The stoichiometric equations of the metabolic model are
listed in the supplement [Additional file 1].

Metabolic network of C. glutamicum
The metabolic reaction model of C. glutamicum consid-
ered the actual knowledge from the genome scale model
recently created [16]. It included all relevant pathways of
central carbon, nitrogen and sulphur metabolism as well
as the entire subset of anabolism and the corresponding
reactions linked to formation and secretion of extracellu-
lar products. For elementary flux mode analysis, 7 external
compounds were considered including the substrates glu-
cose, ammonium, sulphate and oxygen and the products
lysine, biomass and carbon dioxide. Additionally, ATP,
required for maintenance, was considered as an external
metabolite. The stoichiometric equation for biomass syn-
thesis included all relevant precursor metabolites. The rel-
ative amount and composition of the macromolecules
DNA, carbohydrates, lipids, protein and RNA was taken
from thorough analysis of cellular composition [29]. For
ATP production from NADH and menaquinol in the res-
piratory chain, a P/O ratio of 2 was assumed [16]. The sto-
ichiometric equations of the metabolic model are listed in
the supplement [Additional file 2].

Metabolic network of Aspergillus niger
The metabolic reaction model of the central metabolism
of A. niger contained was constructed on basis of the
genome scale model recently published [19]. The model
included all relevant pathways of central carbon, nitrogen
and sulphur metabolism as well as the entire subset of
anabolism and the corresponding reactions linked to for-
mation of extracellular products. Hereby, the cellular
compartment mitochondrion, glyoxysome and cytosol
were considered together with the respective transport
reactions. For elementary flux mode analysis, external
compounds were substrates (sources of carbon, nitrogen,

sulphur, oxygen) and products (enzyme, biomass, carbon
dioxide, gluconate, oxalate, citrate). Additionally, ATP for
maintenance was included in the model and considered
as an external metabolite. For ATP production the P/O
ratio for mitochondrial NADH was assumed as 2.64 and
that for succinate and cytosolic NADH as 1.64 [19]. The
stoichiometric equation for biomass synthesis included
all relevant precursor metabolites from the central carbon
metabolism. The relative amount and composition of the
macromolecules DNA, glucan, glycogen, lipid and RNA
was taken from [30]. The amino acid composition of the
cell protein was calculated from the average protein con-
tent of A.niger using the program IdentiCS [31]. Glyco-
sylation of cellular protein was considered, taking
Galf2Man8(GlcNAc) as average composition of the glyco-
sylation residues in filamentous fungi [32] and an average
number of 33 sugar residues [33] into account. This
resulted in the stoichiometric fraction of Galf6Man24(Glc-
NAc)3 per protein. For the calculation of the exact demand
it was assumed that on average 64% of all proteins are gly-
cosylated [34]. The cellular demand for synthesis of the
enzymes fructofuranosidase, glucoamylase and epoxide
hydrolase was calculated as follows. Fructofuranosidase is
highly glycosylated [20], whereby half of the enzyme con-
sists of glycosylation chains (NetNGlyc, http://
www.cbs.dtu.dk/). Hereby, the glycosylation pattern
Galf18Man308(GlcNAc)8.5, as previously determined for
this enzyme, was considered [35]. The amino acid compo-
sition of fructofuranosidase was derived from the corre-
sponding open reading frame-ID An08 g11070 [36].
Similarly, the amino acid composition (An03 g06550)
and the glycosylation pattern [37] was taken into account
for glucoamylase. Epoxide hydrolase is non-glycosylated
so that only the protein itself had to be considered (An16
g02170). The stoichiometric equations of the metabolic
model are listed in the supplement [Additional file 3].

Results
Target identification based on flux correlation - small 
example network
A small network comprising TCA cycle, glyoxylate shunt
and connected amino acid metabolism from E. coli serves
as example to introduce the principle of the developed
approach for target identification (Figure 1A). In the
present example, succinyl-CoA is considered as desired
product. The network comprises 16 different elementary
modes (see also [24]). These display the basic solution
space for the prediction of amplification and deletion tar-
gets. In a first step, all flux modes with zero flux towards
the target product are eliminated, resulting in a subset of
6 relevant modes. Subsequently, the remaining modes are
normalized to the substrate entry reaction (here enolase)
and arranged in matrix form (Figure 2). Obviously, the
modes differ in the objective flux which is linked to sub-
stantial differences in the other network fluxes. This can
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Principle of target identification by search for flux correlation to desired properties, here succinyl-CoA production in a small example network taken from [24]Figure 1
Principle of target identification by search for flux correlation to desired properties, here succinyl-CoA pro-
duction in a small example network taken from [24]. Calculation (A) of the target potential α by correlation analysis 
and data visualization (B) as heat map or in network form with colour coded representation of amplification targets (solid 
green arrow) and deletion targets (red arrows).
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now be exploited by scanning through the network reac-
tions for their correlation to the objective flux as exempli-
fied in Figure 1B. Several reactions show insignificant or
even no correlation. Phosphoenolpyruvate carboxylase
(Ppc), however, is clearly identified as amplification tar-
get. Moreover, a number of reactions, including pyruvate
kinase (Pyk), pyruvate dehydrogenase (aceEF), citrate syn-
thase (GltA), aconitase (Can) and succinyl-CoA dehydro-
genase (SucCD) reveal negative correlation, i. e. are
identified as deletion or attenuation targets. The visualiza-
tion of the resulting target potential coefficient (α) as heat
map or in network form provides direct access to promis-
ing targets with ranked priority (Figure 1A).

Lysine production in C. glutamicum
Maximum production performance using glucose as carbon source
Overall, 289 modes resulted for lysine production in C.
glutamicum. As shown, a large number of elementary flux
modes with different yield for lysine and biomass were
obtained (Figure 3). Among the modes observed, the
majority are extreme modes exclusively linked to produc-
tion of either biomass or lysine. These are given on the
two axes of the plot. In addition also flux modes with
simultaneous production of biomass and lysine resulted.
Among all modes, 6 modes enabled the optimum yield of
0.75 (mol lysine)/(mol glucose) which agrees with the
value obtained by flux balance analysis [16]. The average
flux map from these optimum modes reveals the key path-
ways contributing to efficient lysine formation such as
pentose phosphate pathway, ammonium metabolism,
lysine biosynthesis and secretion (Figure 4A). The flux
through most of these pathways is conserved. ATP linked

reactions, however, reveal a substantial flexibility. The
consumption of ATP under optimum production condi-
tions either involves cellular maintenance requirement or
"futile" cycling recruiting the carboxylation and decarbox-
ylation reactions at the pyruvate node or the two enzymes
phosphofructokinase and fructose bisphosphatase.

Prediction of amplification and deletion targets
The obtained alternative optima and the various interest-
ing suboptimal solutions now provided a rich source for
target search. The elementary modes were now screened
for statistically significant correlation of fluxes as indicator
of targets to be amplified or deleted. Most targets were
identified for the subset of non-growth modes which do
not exhibit biomass formation. Here, flux correlation
analysis clearly identified a number of reactions as poten-
tial targets (Figure 4B). Targets to be amplified are attrib-
uted to all reactions of the pentose phosphate pathway, as
well as ammonium uptake and assimilation, different
enzyme of the lysine biosynthesis and the lysine secretion.
Interestingly, also the entry enzyme into the glycolysis,
glucose 6-phosphate isomerase is classified as amplifica-
tion target. This can be understood from its role in re-
cycling carbon back into the pentose phosphate cycle ena-
bled by its reversible nature (Figure 4A). Deletion or atten-
uation targets are located in the glycolysis, the TCA cycle
and also the oxidative respiratory system. When ranked by
priority, i.e. the value of the target potential coefficient α,
the most striking targets predicted are located at the glu-
cose 6-phosphate node, which reveal this node as key to
successful engineering of C. glutamicum for improved
lysine production. The simultaneous consideration of the

Stoichiometric matrix including all succinyl-CoA producing elementary modes which are normalized to the substrate uptake reaction (Eno) in the first columnFigure 2
Stoichiometric matrix including all succinyl-CoA producing elementary modes which are normalized to the 
substrate uptake reaction (Eno) in the first column. The modes are sorted with increasing size of the succinyl-CoA 
yield νSucCoACon (reaction: SucCoACon).
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potential targets reveals a systems-wide redirection of flux
towards a superior producer as indicated by the desired
flux distribution at optimal performance (Figure 4A).

Enzyme production in Aspergillus niger
Maximum production performance using glucose as carbon source
Figure 5 presents a condensed view of the metabolic net-
work of A.niger for the production of fructofuranosidase.
Overall, about 21.100 modes were obtained on glucose
and ammonium. The modes differed substantially in the
corresponding yield for the enzyme or the biomass (Fig-
ure 6A). The dominating fraction of modes was linked to
exclusive production of either fructofuranosidase or bio-
mass, respectively. The maximal carbon yield was 0.76 c-
mol/c-mol for fructofuranosidase and 0.67 c-mol/c-mol
for biomass (Table 1). In comparison, 1986 elementary
modes (9%), located within the interior of the triangular
solution space, exhibited simultaneous formation of both
compounds. Only 0.8% of all modes allowed maximum
enzyme yield, all at zero growth.

Optimal pathways for glucose based production
The average flux distribution from the modes with maxi-
mum enzyme yield provides a detailed picture on the
reactions involved (Figure 7A). The contribution the non-
oxidative PPP, the glycolysis, the fructofuranosidase syn-
thesis as well as transport processes was rather constant as
indicated by the low deviation of corresponding fluxes.
Other reactions showed a higher flexibility suggesting that

key functions of the network under optimum production
conditions can be realized by different flux states. Interest-
ingly, this included a number of cytosolic enzymes which
are all involved in supply of NADPH, i.e. the oxidative
PPP, malic enzyme and isocitrate dehydrogenase as well
as mannitol 2-phosphate dehydrogenase. Furthermore,
maximum production was linked to zero by-product for-
mation. The entire ATP formed was completely recruited
for fructofuranosidase production.

Impact of alternative carbon and nitrogen source
Elementary flux mode analysis was further carried out for
the industrially relevant carbon sources xylose, glycerol
and oleic acid (Table 1). The reduced substrate glycerol
revealed an optimal production of 0.83 c-mol/c-mol and
was the best carbon source (Figure 6B). Oleic acid (0.72 c-
mol/mol) and xylose (0.73 c-mol/c-mol) were slightly
less efficient Figures 6C, D). Glycerol was metabolized by
simultaneous usage of the NADH-dependent glycerol-
dehydrogenase and the FAD-dependent glycerol 3-phos-
phate dehydrogenase (Figure 7B). Due to this reducing
equivalents were released into the cytosol and mitochon-
drion, respectively. This caused an increased flux through
the NADH-ubiquinone oxidoreductase, counterbalancing
the NADH excess in the cytosol. Probably linked to the
different entry point of glycerol into metabolism, the sup-
ply of NADPH differed for this carbon source with respect
to the reactions involved. Here, the oxidative PPP played
only a minor role, whereas the mannitol cycle and the
malic enzyme were recruited. For oleic acid the flux distri-
bution differed drastically (Figure 7C). For optimal pro-
duction, degradation involved two parallel routes, that in
the mitochondrion as well as that in the glyoxysome
resulting in a large relative flux through the glyoxylate
shunt and reactions of the TCA cycle with the correspond-
ing mitochondrial shuttle systems (Figure 7C). Addition-
ally, the high supply of NADH by the degradation of the
reduced fatty acids was obviously utilized by the mannitol
cycle to form NADPH. The oxidative PPP was not
involved in NADPH supply. Production on xylose
demanded for increased NADPH supply, as indicated by
average flux through the oxidative PPP (48 mol/mol hex-
ose unit), the mannitol cycle (60 mol/mol hexose unit)
and the malic enzyme (60 mol/mol hexose unit) (Figure
7D). This at least partly attributed to the NADPH demand
linked to the xylose uptake system [38]. As for glucose, by-
product formation was not observed for the alternative
carbon sources under maximal production. The degree of
reduction also played a role for the nitrogen source. The
optimum yield decreased by about 18% for all carbon
sources when nitrate was used instead of ammonia.

Prediction of amplification and deletion targets
The reactions in the elementary modes were now screened
for statistically significant correlation to the enzyme pro-
duction. The potential of a metabolic reaction as genetic

Elementary modes for lysine and biomass production in C. glutamicum on glucose the solution space of the elementary modes, represented by the black dots, is marked through the interior as well as the sides of the rectangular triangleFigure 3
Elementary modes for lysine and biomass production 
in C. glutamicum on glucose the solution space of the 
elementary modes, represented by the black dots, is 
marked through the interior as well as the sides of 
the rectangular triangle. The modes on the axes repre-
sent extreme modes exclusively linked to production of 
lysine or biomass.
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target was then expressed quantitatively whereby positive
values denote amplification and negative values deletion
targets, respectively. First investigations, considering the
whole set of all 21,000 elementary modes, revealed only a
few targets. A closer inspection revealed that most targets
are specifically attributed to the cellular state. To exploit
this observation systematically, the elementary modes
were grouped into sub sets of growth-associated (simulta-
neous production of target protein and biomass) and
non-growth-associated ones (production of target pro-
tein, no production of biomass) prior to analysis. Hereby,
only modes with zero by-product formation were consid-
ered. This increased the hit rate of the approach substan-
tially. The results for production on glucose, xylose,
glycerol and oleic acid under growth-associated (+) and

non-growth-associated conditions (-) are visualized as
heat map (Figure 8). Fructofuranosidase synthesis and
secretion and mannose 6-phosphate isomerase were iden-
tified as amplification targets independent of the biologi-
cal state and also of the carbon source. These targets were
also identified when all elementary modes were screened
(data not shown). Other predicted targets strongly
depended on the metabolic growth state. As example the
amplification of the PPP and deletion/attenuation of the
glycolysis display promising targets only under growth
associated conditions. Cytosolic NADPH dependent isoc-
itrate dehydrogenase, however, displayed a non-growth
associated amplification target independent on the
applied carbon source. Deletion or attenuation targets for
non-growth conditions were found within the TCA cycle

Prediction of genetic targets for improved lysine production in C. glutamicum based on correlation of flux through metabolic reactions with lysine production flux among the calculated elementary modes: Optimal flux distribution for lysine production in Corynebacterium glutamicum on glucose as obtained from elementary mode analysis (A) and resulting target potential coeffi-cients (B)Figure 4
Prediction of genetic targets for improved lysine production in C. glutamicum based on correlation of flux 
through metabolic reactions with lysine production flux among the calculated elementary modes: Optimal 
flux distribution for lysine production in Corynebacterium glutamicum on glucose as obtained from elementary 
mode analysis (A) and resulting target potential coefficients (B). In the flux map all fluxes are given as relative molar 
flux normalized to the uptake flux. The data shown display the average fluxes and deviations from the different elementary 
modes under optimum production conditions. The coloured arrows reflect amplification (green) and deletion/attenuation tar-
gets (red). In the heat map, listing the predicted targets, a positive value (green) relates to a reaction, which positively corre-
lates with the production (amplification target), whereas negative correlation (red) displays a deletion/attenuation target. Black 
colour indicates statistically insignificant values.
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Metabolic model for Aspergillus nigerFigure 5
Metabolic model for Aspergillus niger. Reactions and metabolites are compartmentalized between extracellular [e], 
cytosolic [c], mitochondrial [m] and glyoxysomal [g] compartments. Numbers next to the arrows refer to the detailed model 
description in the supplement.
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and also reactions linked to respiration and ATP metabo-
lism. In comparison, no statistically valid correlations
could be obtained for oleic acid as substrate in addition to
the general findings. At this stage it appears that the
underlying network for utilization of this complex sub-
strate mixture is highly flexible and capable to achieve effi-
cient production with significantly different underlying
pathway usage.

Other target enzymes studied, including glucoamylase or
epoxide hydrolase which differ in amino acid composi-
tion and glycosylation degree yielded rather similar tar-
gets for all metabolic scenarios studied.

Discussion
Elementary mode analysis provides a rigorous basis to sys-
tematically characterize cellular phenotypes, metabolic flexi-
bility and robustness which facilitates the understanding of

Comparison of elementary modes for biomass and fructofuranosidase production in A. niger on different carbon sourcesFigure 6
Comparison of elementary modes for biomass and fructofuranosidase production in A. niger on different car-
bon sources. A: glucose, B: glycerol, C: soybean oil, D: xylose. The solution space of the elementary modes, represented by 
the black dots, is marked through the interior as well as the sides of the rectangular triangle. The modes on the axes represent 
extreme modes exclusively linked to production of biomass or fructofuranosidase (FFase).
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cell physiology [39,40]. In the present work, this pathway
analysis tool was applied and extended to predict systems-
wide amplification and deletion targets in metabolic engi-
neering towards improved bio-production in systems with
optimally designed fluxes (FluxDesign). First evidence that
the reactions derived here open realistic chances for
improvement can be obtained from recent studies. An excel-
lent test case is the very well studied C. glutamicum. From the
targets predicted, various reactions have been successfully
implemented towards superior production of lysine. This
includes amplification of glucose 6-phosphate dehydroge-
nase [8], 6-phosphogluconate dehydrogenase [41], reactions
within the lysine pathway [42] as well as product secretion
[43], all shown to enhance lysine production Additionally,
deletion of glucose 6-phosphate isomerase [44] or pyruvate
dehydrogenase [45], have been successfully implemented
into C. glutamicum for improved performance. Moreover,
not yet validated targets such as the amplification of ammo-
nium metabolism or reactions of the non-oxidative PPP or
deletion/attenuation of TCA cycle reactions are predicted.
For enzyme production in A. niger, much less metabolic
engineering progress of central carbon metabolism is
reported. The few studies available, however, illustrate that
targets predicted here have proven valuable. As example, the
amplification of the synthesis of glycosylation residues
increased protein over-production [46,47]. Similarly, the
amplification of the protein assembly route itself, has been
shown to result in enhancement of production in A. niger
[48]. Beyond, these experimental studies on more obvious
targets, flux balance analysis and also stoichiometric flux
analysis indicate the importance of sufficient NADPH supply
for protein production in A. niger [49,21] and A. oryzae
[21,50] whereby the PPP plays an important role which was
also found in the present study.

The present approach did not reveal all relevant targets
previously reported to redirect carbon flux. As example,
the amplification of fructose bisphosphatase [9] or the

deletion of phosphoenolpyruvate carboxykinase [51]
both identified from 13C flux analysis as major targets for
improved lysine production in C. glutamicum, was not
predicted here. Still, the presented approach can be gener-
ally used to identify priority sorted amplification and
deletion targets for metabolic engineering purposes under
various conditions and thus displays a useful strategy to
be combined with existing in silico tools [1] for strain
engineering.

Due to the fact that elementary flux mode analysis enables
the investigation of all possible physiological states in the
cell, detailed insights into the underlying metabolism
could be obtained. This includes the visualization of dif-
ferent flux states for optimum production which result
from complementary pathways for the supply of NADPH
(A. niger) or the regeneration of ATP (C. glutamicum). A
closer inspection showed that this characteristic mainly
originates from a small sub set of reactions, adding flexi-
bility and robustness to the networks. The possibility to
recruit different pathway modes for high production
appears advantageous when approaching metabolic engi-
neering strategies. Since it can be expected that certain
genetic engineering strategies might not work for reasons
of growth deficiency or undesired regulatory behaviour,
the possibility to choose among different promising direc-
tions seems useful. Interestingly, the prediction of genetic
targets depended on the metabolic state of the cell (Figure
7). Thus it turned out as relevant to focus the target search
to a specific relevant scenario. Growing cells and non-
growing cells pose different burdens on the metabolism,
competing with product formation, so that different con-
clusions are derived. From practical perspective, both sce-
narios seem relevant, since for production were non-
growing as well as growing cells can be applied [52,53].
The metabolic state is therefore an important point to be
considered.

Table 1: Elementary flux mode analysis of fructofuranosidase (FFase) production by A. niger on different carbon and nitrogen sources.

Maximum carbon yield
[c-mol/c-mol]

Number of Elementary Modes

Carbon Source/Nitrogen 
Source

FFase Biomass Total Modes linked to FFase
production

(% of total EFM)

Modes linked to biomass and
FFase production

(% of total EFM)

glucose/NH3 0.76 0.67 21,147 7,045 (33) 1,986 (9)
glycerol/NH3 0.83 0.73 21,122 8,070 (38) 2,267 (11)
oleic acid/NH3 0.75 0.72 20,895 9,071 (43) 1,702 (8)
xylose/NH3 0.73 0.64 13,364 3,896 (29) 187 (1)
glucose/NO3 0.61 0.54 29,435 13,160 (45) 1,425 (5)
glycerol/NO3 0.67 0.59 33,462 14,090 (42) 2,984 (9)
oleic acid/NO3 0.65 0.59 27,753 12,652 (46) 1,724 (6)
xylose/NO3 0.59 0.52 24,098 8,443 (35) 249 (5)
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Optimal flux distribution for fructofuranosidase production in A. nigerFigure 7
Optimal flux distribution for fructofuranosidase production in A. niger. A: glucose, B: glycerol, C: soybean oil, D: 
xylose. The relative fluxes are averaged from 52 (glucose), 89 (glycerol), 354 (soybean oil) and 48 (xylose) elementary flux 
modes for maximal fructofuranosidase production obtained. All fluxes are given as relative molar flux normalized to 1 mol of 
hexose unit [mol. (mol hexose)-1.100].
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The models used in the present work are a condensed rep-
resentation of the genome-wide metabolism relevant for
the present study. Guided by the focus of the study we
have considered industrially relevant substrates and clear
objective products, whereas unusual substrates or other
possible products appeared irrelevant here. It seems, how-
ever, easily possible to extend our approach to larger net-
works if desired, with additional substrates or even
mixtures or also more detailed resolution of anabolic
routes at the network periphery which were lumped here.
The latter would, however, require a more detailed exper-

imental basis on cellular composition as currently availa-
ble.

Conclusions
Combining elementary flux mode analysis with correla-
tion of fluxes to desired network properties, potential
amplification and deletion targets could be identified in
industrially relevant production strains. Hereby, different
scenarios considering the bioprocess environment or the
metabolic state of the cell provided a detailed insight into
the underlying pathway network. These findings appear
very useful to guide strain engineers towards improved

Prediction of genetic targets for improved fructofuranosidase production in A. niger based on the target validity coefficientFigure 8
Prediction of genetic targets for improved fructofuranosidase production in A. niger based on the target valid-
ity coefficient. The target validity coefficient was obtained from correlation of flux through metabolic reactions with fructo-
furanosidase production flux within the calculated elementary modes. A positive value (green colour) relates to a reaction, 
which positively correlates with the production, whereas negative correlation is indicated by a negative value (red colour). 
Black colour indicates statistically insignificant values (no correlation = nc). The investigated biological scenarios comprise 
growth- (+) and non-growth-associated production (-) on glucose (Glu), glycerol (Gly), xylose (Xyl) and oleate (Ole) as carbon 
source. The absolute values for the target validity coefficients together with statistical information are additionally available in 
the supplementary material (Table A2 -- A7).
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bio-production. This also might include a comparison
among different potentially interesting hosts [12]. Admit-
tedly, not every target predicted by FluxDesign will neces-
sary lead to improved production, since stoichiometric
modelling as applied here cannot consider e.g. cellular
regulation or enzyme properties limiting or even blocking
the desired network response towards targeted genetic
perturbation. Still, the presented approach can be easily
used to identify priority sorted amplification and deletion
targets for metabolic engineering purposes under various
conditions and thus displays a useful strategy to be incor-
porated into strain and bioprocess optimization.
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