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Study of microcomb threshold 
power with coupling scaling
Pei‑Hsun Wang*, Kuan‑Lin Chiang & Zong‑Ren Yang

We model the generation threshold and conversion efficiency of microcombs by scaling the cavity 
coupling. With the Lugiato–Lefever equation (LLE), quantitative analysis of threshold is established 
in the parameter space of pump power and coupling. Considering the large detuning and Kerr‑
induced phase shift, the threshold power is numerically solved with the minimum at over‑coupling, 
in agreement with that from the traveling wave theory. Furthermore, the coupling dependence on 
microcomb generation is discussed, providing the accessibility of high‑efficient, stable combs (≥ 40%) 
around the threshold. This work offers universal guidelines for the design of microcombs with low‑
power and high‑efficient operation.

Optical frequency comb generation in high quality factor (Q) microresonators has been widely studied within 
the past  decades1–5. By pumping with continuous-wave (CW) in high-Q resonators through tapered fibers or 
a bus waveguide, cascaded four-wave-mixing (FWM) process is initiated when the nonlinear gain balances 
the cavity loss. The small, compact, and CMOS-compatible platform provides the potential for on-chip comb 
applications ranging from  spectroscopy6 to  telecommunications7. Microcomb generation has been extensively 
reported both theoretically and experimentally. Theoretically, through the Kerr nonlinearity, parametric gain 
induces modulation instability (MI) in the microresonators with the anomalous dispersion. The parametric gain 
is dependent on the cavity power in a parametric oscillator, showing a strong correlation with the cavity loss 
and coupling; low threshold power at sub-mW levels is observed in an ultrahigh-Q  microcavity8. In numerical 
modeling, the optical system in microresonators can be described by a driven, detuned, and damped nonlinear 
Schrödinger  equation9, which is also well-known as the Lugiato-Lefever equation (LLE)9–12. Steady-state solutions 
are explored in the region of cnoidal waves (Turing rolls) or dissipative solitons, relating to the pump detuning, 
amplitude of cavity fields, and waveguide  dimensions13,14. However, although these reports based on the LLE 
provide significant insight into the generation dynamics for Kerr microcombs, the discussion on comb threshold 
with regard to the pump detuning, cavity loss, and coupling is still limited. Meanwhile, as for the conversion 
efficiency, the optimized comb state has been demonstrated through simulation trials over a parameter space 
consisting of group velocity dispersion (GVD), coupling, and pump  detuning15,16. It was shown that only a few 
percent efficiency is modelled for a bright pulse in the anomalous dispersion while high efficiency is possibly 
achieved for a dark pulse in the normal dispersion. Experimentally, since the cavity pump saturates in the pres-
ence of frequency  combs17, high conversion efficiency up to 30% can be observed with an initially over-coupled 
microcavity by employing dark  pulses18; more recently, low-noise combs with conversion efficiency up to 41% is 
obtained using a coupled-ring geometry in the normal dispersion  regim19. However, the conversion efficiency is 
mainly studied in the soliton regime, typically requiring high-power and delicate operation. There is still no clear 
guideline to design the coupling and initiate high efficient combs around the threshold with low-power operation. 
It now becomes crucial to address these issues and provide a pathway for the design of microresonator-based 
comb platform as a portable, battery-powered  system20.

In this article, we theoretically investigate the relation between the coupling, pump power, parametric oscil-
lation threshold, and conversion efficiency of combs by solving the generalized mean-field LLE. By slowly tuning 
the pump power in the cold cavity, the threshold and the comb dynamics are investigated under different cou-
plings. Here, we consider the comb process in the anomalous dispersion region, in which MI in a continuously 
pumped resonator is the main generation mechanism of Kerr microcombs. The threshold we investigate in this 
article is the minimal input power for the parametric gain overcoming the cavity loss to induce cavity MI. This 
work results in several new findings. First, the correlation between the cavity coupling and comb threshold is 
built by the LLE. Considering the pump detuning and the nonlinear phase accumulated by the intracavity field, 
non-zero phase shifts result in an increase of the MI threshold power. The optimized coupling for minimal thresh-
old moves from the under-coupling to over-coupling similar to that observed from the parametric threshold 
 equation8. Through the LLE, this work qualitatively verifies the required MI power for cnoidal wave generation 
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with a small detuning and the up-switching power for soliton generation with a large detuning. Second, the evolu-
tion of Kerr-comb formation near the threshold is discussed at different coupling regimes. Stable, high-periodic 
cnoidal waves boundaries are observed similar to that previously identified with different pump  detunings13. In 
the meantime, this approach allows us to build the relationship between the coupling and the required switching 
power to initiate cavity solitons. Third, by utilizing the traveling wave theory, we comprehensively explore the 
threshold under the dimensionalities of detuning, coupling, and cavity loss. These analytical solutions yield the 
complemental results with that from the LLE. Last, the conversion efficiency of comb generation is discussed 
near the threshold. Stable cnoidal waves are identified in the regime of strongly over-coupling with high conver-
sion efficiency, even up to 40% in the anomalous dispersion. Comparing with the complicated process for cavity 
soliton generation, cnoidal waves provide efficient, simple, and robust comb operation for potential applications 
such as in optical  communications21.

Method
We start our approach by numerically solving the generalized mean-field LLE, written  as12:

where TR is the roundtrip time of the cavity, αi is the intrinsic loss per roundtrip of the cavity, and δ0 is the pump 
detuning, respectively. βk = dkβ/dωk describes the kth-order dispersion coefficient of Taylor series expansion of 
the propagation constant at the pump frequency, γ is the Kerr nonlinearity coefficient, L is the circumference of 
the resonator, and θ is the coupling coefficient. t is the slow time describing the evolution of the intracavity field 
E (normalized such that the cavity power Pcavity =|E|2) while τ is the fast time describing the wave traveling at 
the group velocity in the resonator. Ein is the input pump field. The simulation parameters are set with intrinsic 
 Qin = 3 million ( αi = 0.0017), β2 = − 50  ps2/km, βk = 0 for k ≥ 3 (higher order dispersion is ignored), γ = 1  W−1  m−1 
(assuming effective area of waveguide Aeff = 1 μm2), and L = 2π (100 μm) with group index  ng = 2, unless mentioned 
otherwise. The free-spectral range (FSR) for the resonator is around 239 GHz. These parameters are based on 
traditional silicon nitride  microresonators5,14,16 which is currently the most popular on-chip comb platform. 
Unlike the previous studies emphasizing the comb dynamics to the pump  detuning10,13,14, our works here study 
the comb generation dynamics by varying the pump power. For integrated sources, although the wavelength 
tunability and linewidth reduction have been well-established by the control of external cavities and micro-
heaters22,23, developments of fixed wavelength on-chip lasers with ultra-narrow  linewidth24 are still advantageous 
for high-purity comb operation. This idea has been demonstrated by mode-locking solitons in microresonators 
with the aid of thermal  tuning25. Nonetheless, the discussion on comb generation with a fixed pump detuning 
is still limited. A few  literatures13,14 show the comb generation by varying the input power, but only a specific 
coupling case is studied. With the LLE, we would be able to model the comb threshold in relation to the pump 
power and cavity coupling while a locked, low-noise fixed-frequency laser is used as the pump.

Results
Comb generation dynamics for different couplings. In Fig. 1a,b, we show the simulation of the out-
put comb power in the parameter space of coupling and input (bus-) power by up-ramping the input power, and 
in Fig. 1c,d, we show the similar mappings of the comb power by down-ramping the input power. The white 
arrows show the direction of power ramping. The exemplary pump detuning is set at δ0 =  + 0.0015 (frequency 
detuning = 57 MHz) in Fig. 1a,c and + 0.02 (frequency detuning = 760 MHz) in Fig. 1b,d, corresponding to a 
small/large detuning in comparison to the cavity linewidth. The coupling factor K is defined as the intrinsic Q 
 (Qin)/external Q  (Qext). First, to characterize the cold-cavity threshold, we vary the input power at the bus wave-
guide slowly from zero and keep the pump detuning the same. This can be achieved by changing the current of 
the integrated semiconductor optical amplifier (SOA) and stabilizing the frequency with an integrated  sensor23. 
The boundary of MI threshold is mapped by solving the LLE within the region of the coupling and input power. 
We can observe that the minimal point of the threshold is found at under-coupling (K = 0.5) with δ0 =  + 0.0015 
in Fig. 1a but shifted to strong over-coupling (K = 11) with a large detuning δ0 =  + 0.02 in Fig. 1b. As stated in 
the previous  literatures8,26, the threshold equation can be solved by equating the parametric gain and cavity loss 
per roundtrip:

where ω is the pump (angular) frequency, n2 is the nonlinear refractive index, c is the speed of light in vacuum, 
ng is the waveguide group index, and λ is the pump wavelength in vacuum. This equation assumes that the pump 
is at resonance peak and the threshold is optimized at under-coupling (K = 0.5). Once the pump frequency shifts 
away from the resonance, the cavity power reduces and the minimal threshold moves into the over-coupling 
 regime8. Experimentally, the frequency shift could be introduced from either the thermally-induced resonance 
shift or pump detuning. Blue-to-red tuning method is used to achieve soft-thermal-locking and to maximize the 
circulating power for comb  generation2. However, with high power in the cavity, the Kerr nonlinearity contributes 
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to additional resonance shift toward the lower frequency regime. Before moving forward, we shed insights 
into the comb dynamics. Figure 1e,f show the cavity intensity first by up-ramping the input power with a fixed 
coupling factor K = 2, corresponding to Fig. 1a,b, and then by down-ramping the input power, corresponding to 
Fig. 1c,d. In Fig. 1e, comb power first grows into a stable (coherent) region with the rise of pump power. Periodic 
solutions of cnoidal waves are observed, similar to the earlier findings in the parameter space of pump power 
and  detuning13. The stable region exhibits cnoidal waves with periodicities N in the range of 6 ~ 14 which cor-
responds to a Kerr comb with frequency spacing N times the microresonator FSR. While the pump gets higher, 
the periodicity of the cnoidal waves evolves, e.g. from N = 11 into N = 13 in Fig. 1e, between a stability boundary, 
resulting the ragged, step-like feature in Fig. 1a. As further up-ramping the power, the cnoidal waves eventually 
collapse into the chaotic region. Then, by tuning the input power backward, stable cnoidal waves with similar 
evolution of periodicities are observed again.

However, comparing Fig. 1f to e, the comb directly reaches the chaotic region without forming cnoidal waves 
as up-ramping the input power. The required input power for cavity MI increases from tens of mW to hundreds 
of mW. This behavior is explained by the unstable solution of MI  branch27,28. For a small detuning, steady-state 

Figure 1.  Comb output power in the parameter space of input power and coupling at detuning δ0 =  + 0.0015 
and δ0 =  + 0.02 for (a, b) up-ramping the pump and for (c, d) down-ramping the pump. The color bar shows the 
total comb power at the output waveguide, excluding the pump line. (e, f) the corresponding evolution of cavity 
intensity as varying the input power with a fixed coupling factor K = 2. Stable cnoidal waves and a single cavity 
soliton are identified at detuning δ0 =  + 0.0015 and δ0 =  + 0.02, respectively.
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solutions of MI can be achieved by directly ramping up the input power; while for a large detuning, this process 
requires higher input power for switching the operation to the upper branch of the bistable hysteresis  cycle28. As 
down-ramping the power, we can observe the generation of single cavity soliton. This initiation process, similar 
to that identified in Ref.13, is because of the satisfaction of cavity soliton by selecting detuning above the up-
switching  point27. Last, comparing Fig. 1d to b, hysteresis behavior is prominently identified for up- and down-
ramps of the power. This is explained by operating at the upper branch of the bistablility curve. A boundary is 
now observed, corresponding to the transition from the chaotic waves to solitons. Due to the high peak power of 
the chaotic waves (hard excitation), it is not surprise that soliton solutions can exist in the regime where no MI is 
observed as increasing the pump power from the cold cavity. In addition, to verify the solution of single soliton in 
this system, we calculate the soliton number based on the nonlinear length LNL = 1/γP and the dispersion length 
LD = τp

2/|β2|, where P = 63 W is the soliton peak power and τp = 41 fs is the pulse duration. The evaluated soliton 
number 

√
LD/LNL  = 1.5, which supports the operation regime of a single soliton.

Parametric oscillation threshold from the LLE. Now, we emphasize our findings in the threshold 
curves. To define the threshold in the LLE, the simulation is initiated by a random-noise intracavity field with a 
standard deviation 3 ×  10–9  [W1/2], while the normalization Pcavity =|E|2 is equivalent to an average power of − 133 
dBm. By increasing the input power, the threshold is then determined at which the parametric signal is 15 dB 
above the noise background from the simulated frequency spectra, in order to avoid catching unwanted back-
ground noise. Figure 2a shows threshold curves for different detunings from δ0 = − 0.003 to + 0.004, exhibiting 
similar tilt, U-shaped curves as identified in Fig. 1a,b. By varying the detuning, the minimal threshold of each 
curve (black dots) follows an asymmetrical trajectory which passes through the under-coupling regime with a 
relatively small detuning; then this trajectory extends to the over-coupling regime with a larger detuning. We 
also show the corresponding curve of the minimal threshold versus the pump detuning in Fig. 2b. Clearly, the 
minimal point occurs with a small but non-zero detuning around δ0 =  + 0.0015.

Modified threshold equations from the traveling wave theory. To elaborate the identification from 
the LLE, we introduce the modified threshold equations from the traveling wave  theory29. By including the phase 
shift, the threshold at the bus waveguide can be now expressed as follows:

where ω − ω0 = (−δ0 + γ L|E|2)/TR is the frequency shift as described in the LLE. Equation (3.2) is obtained 
by rearranging Eqs. (2.1) and (3.1). The second part on the right side of Eq. (3.2) suggests the additional power 
required for comb generation at the bus waveguide due to the frequency shift (off peak resonance). In Fig. 3a, 
we numerically solve the threshold equation in the parameter space of  Qin (from  105 to  107) and pump detuning 
(-0.005 to + 0.005). Comparing the results to the previous LLE solutions, we now extend the coupling depend-
ency of the threshold power to different  Qin. The phase shift, coupling factor K, and the  Qext are also plotted in 
Fig. 3b–d, corresponding to those at the minimal threshold for a given  Qin and detuning. The phase shift shown 
here includes both the pump detuning (δ0) and Kerr-induced self-phase modulation (SPM).

First, we look at the relation between the threshold power and the cavity loss. Intuitively, for a given detun-
ing, the threshold exhibits quadratic growth as the  Qin decreases. It reaches the minimum when the  Qin is high 
and the phase shift is weak ( −δ0 + γ L|E|2 ≈ 0 ). For the negative pump detuning, the phase shift adds up and 
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Figure 2.  (a) Threshold power versus coupling for the pump detuning δ0 = − 0.003 to + 0.004. Each trace 
is obtained by solving the LLE individually. (b) Minimal threshold power versus the pump detuning, 
corresponding to the black dots in (a).
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results in large increase of the threshold power; on the other hand, for the positive detuning, it cancels out the 
phase induced by SPM. We can see that the curve of zero phase locates in the regime of the positive detuning 
in Fig. 3b. As  Qin decreases, more positive detuning is required—this is realized by the larger cavity power for 
comb initiation in a low-Qin device.

Next, we consider the coupling condition, shown in Fig. 3c. Following the curve of zero phase shift in Fig. 3b, 
the minimal threshold power is found to be close to K = 0.5 as expected by Eqs. (2.1) and (2.2). However, with 
large phase shifts, the coupling is altered from K = 0.5 (under-coupling) to larger values, even up to 9 (strong over-
coupling); the corresponding external quality factor  (Qext) is also mapped in Fig. 3d. To illustrate this coupling 
dependency, we show the scheme of cavity resonances at different couplings in Fig. 3e. In order to achieve the 
threshold condition, the optimized coupling with large phase shifts could be at over-coupling for better power 

Figure 3.  Results showing the prediction of (a) the threshold power, (b) the phase shift, (c) the coupling factor 
K, and (d) the external quality factor  Qext from the traveling wave theory. (e) The schematic illustration of cavity 
resonances at different couplings.
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enhancement than that at critical-coupling, especially for a high-Qin resonator with a narrow intrinsic cavity 
linewidth. Meanwhile, this large positive detuning contributes to a negative phase shift in which the detuning 
surpasses the Kerr-induced SPM—the regime (effectively red detuned) where the cavity soliton is typically 
 discussed10. Since the compensation between the positive detuning and SPM, the magnitude of the resulted 
phase shift is not as strong as that attributed from the negative detuning. Thus, the minimal threshold shows 
a gentler ramp-up rate. Take  Qin = 10 million cavity as an example, 15 times increase of the threshold power is 
observed at the detuning + 0.005 comparing to that at zero detuning; while 54 times increase is observed at the 
detuning − 0.005. We can also see the asymmetrical feature in Fig. 3c with respect to the curve of zero phase shift 
in Fig. 3b. For the phase shift with the same magnitude but opposite polarities (e.g. phase shift =  ± 0.002), the 
cavity power is not the same in each case due to the relative weighting of the Kerr-induced resonance shift and 
the pump detuning to the phase shift. This observation is unique in comparison with the traditional parametric 
oscillation threshold theory, considering the Kerr-induced frequency  shift8.

We should note here that strong over-coupling will also degrade the total quality factor in cavities. Therefore, 
even with optimized coupling, the threshold power is raised up to an order of magnitude for a large detuning. In 
practical applications, high coupling efficiency is typically realized by optimizing the gap between bus waveguide 
and microresonators. Strong over-coupling with coupling factor K > 9 is possibly  achieved30,31. However, for most 
of the cavities studied, the coupling factor K is compromised (K ≪ 9). It suggests an increase of threshold to reach 
the chaotic regime and later to initiate the cavity soliton, as previously identified in Fig. 1b.

Threshold comparison between the LLE and the traveling wave theory. To further verify this 
theory, the LLE is again utilized to model the comb generation threshold. Figure 4 show the simulated threshold 
power with  Qin = 1, 2, and 3 million at δ0 =  + 0.0015 and + 0.003, both from the traveling wave theory (solid lines) 
and from the LLE (dashed lines). We can see that these data are in close agreement with each other, proving the 
validity of this model. The slight offset especially for a relatively low-Q device can be explained by the required 
power above the noise background in the LLE as mentioned earlier. Again, in comparison with Fig. 3d at a fixed 
detuning, the minimal threshold moves from under-coupling to over-coupling with increasing  Qin. This effect 
is more notably for a larger detuning (e.g. δ0 =  + 0.003) as shown in Fig. 4b. We can clearly see that the minimal 
threshold moves from under-coupling (K ≈ 0.5 for  Qin = 1 million) to over-coupling (K ≈ 2 for  Qin = 3 million). 
With an even larger detuning, although not shown here, the optimized coupling of the minimal switching power 
at detuning δ0 =  + 0.02 in  Fig. 1b is also verified by this model, showing the coupling factor K ≈ 11. Another 
interesting point is that, with a sufficient pump detuning, the required threshold power is similar for different  Qin 
at under-coupling; especially at strong under-coupling (K < 0.4), the threshold power for  Qin = 2 million is even 
lower than that for  Qin = 3 million. An exemplary comb spectrum in the cavity is shown in the inset of Fig. 4b. 
With coupling factor K = 0.2 and input power 20 mW, the comb is generated for  Qin = 2 million but not for  Qin = 3 
million. This is because that, in order to satisfy the threshold condition, larger cavity power is needed for a low-Q 
device. The strong cavity power shifts the resonance by the Kerr nonlinearity and compensates the pump detun-
ing. It therefore results in less phase shift and reduces the required power at the bus waveguide. This identifica-
tion suggests that, for a preferable detuning, coupling design can be as critical as minimizing the cavity loss.

Comb efficiency. Finally, we look at the conversion efficiency of the input pump to all combs at the output 
waveguide. Figure 5 show efficiency color-maps at detuning δ0 =  + 0.0015 and + 0.003 by up-ramping the power 
from the cold cavity. Combs with efficiency up to 40% can be generated in the form of stable cnoidal waves from 
an over-coupled cavity, yielding higher efficiency than that from a critical-coupled cavity. This is in consistent 
with that observed from bright/dark soliton  combs16,18; however, unlike the soliton case, the high efficient combs 
are now operated in the low-power, cnoidal wave regime. There are two reasons for the preference of over-
coupling. First, as previously mentioned, the pump saturates in the cavity in the presence of comb formation as 

Figure 4.  Simulated threshold for resonators with  Qin = 1, 2, and 3 million. The detuning is set at (a) 
δ0 =  + 0.0015 and (b) δ0 =  + 0.003. Solid lines stand for the simulated results from the traveling wave theory while 
the dashed lines stand for that from the LLE.
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proposed  in17. It moves the optimal coupling to an initially over-coupling regime. Second, stronger coupling also 
enhances the transfer of the comb power from the microresonator to the output waveguide.

Meanwhile, step-like boundaries can be observed above the threshold in the color-maps. These boundaries 
correlate to cnoidal waves with different periodicities N. Since the cnoidal wave solutions with different periodici-
ties can be stable at the same point near the boundary, this evolutionary solution may yield ambiguous results 
in the adjacent step  regions13. To further study the comb dynamics, we show the exemplary output spectra in 
Fig. 6 for K = 1 to 2.5, detuning δ0 =  + 0.0015, and input power = 20 mW. Comparing these results, we can see 
that the periodicity N increases from 9 to 12, corresponding to increasing frequency spacing of the combs, as 
the coupling factor K increases. The conversion efficiency is found to be enhanced from 4.9 to 23.7%. It has been 
shown that for a soliton-comb with a fixed FSR, the conversion efficiency is inversely proportional to the num-
ber of comb  lines16, while for cnoidal waves with a N-periodic train, the efficiency is nearly proportional to the 

Figure 5.  Conversion efficiency color-maps of the coupling and the input power at detuning (a) δ0 =  + 0.0015 
and (b) δ0 =  + 0.003.

Figure 6.  Comb spectra with input power = 20 mW and detuning =  + 0.0015. The coupling factor is set at (a) 
K = 1, (b) K = 1.5, (c) K = 2, and (d) K = 2.5, respectively.
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periodicities  N13, which is qualitatively consistent with our findings here. Based on these results, for any given 
detuning, the optimized efficiency can be found in the parameter space of power and coupling. Figure 7 shows 
the comb spectrum with 40% efficiency for detuning δ0 = 0.003, input power = 28 mW, and coupling factor K = 2.8. 
Furthermore, despite the periodicity, the conversion efficiency also correlates to the coupling in the same step 
region, as previously shown in Fig. 5. While we modify the factor K from 2.8 to 3.4, the efficiency drops to 34.6% 
with the same periodicity N = 12. Using this map, we can optimize the coupling power and initiate efficient combs 
for low-power operation. To compare the solution of a bright pulse, we also compute the efficiency for the single 
soliton case in Fig. 1d, only 5.6% efficiency is seen even at over-coupling, a finding confirmed by simulation  in15,16.

Last, we analyze the dependence of periodicity on the coupling. As discussed above, the intracavity power 
is dependent on the coupling and detuning, determining the position of the maximum MI gain (at frequency 

fmax =
√

2γPcavity/|β2|
2π

 from the pump frequency)32. Therefore, the periodicity of primary comb generation can 
be evaluated by N = fmax/FSR . We take Fig. 6d as an example—with detuning δ0 =  + 0.0015 and K = 2.5  (Qext = 1.2 
million), the intracavity power at pump is 7.6 W, resulting in the periodicity of the primary comb N ≈ 12. This 
agrees well with the simulated spectrum. Interestingly, compared to that in Fig. 6a with K = 1, the periodicity 
decreases to N = 9 with even less cavity loss  (Qext = 3 million), which seems to contradict the relation above 
( N ∝

√

Pcavity  ). We should emphasize here again that, with non-zero phase shift, critical-coupling does not 
guarantee the largest build-up power in the cavity. For δ0 =  + 0.0015, the intracavity power at pump with K = 1 is 
actually less than that with K = 2.5 and thus results in the decrease of the periodicity. As for the fixed coupling and 
detuning, the periodicity increases when increasing the input power as shown in Fig. 1c, which is in consistent 
with the theory. Here, our work provides additional information of coupling on the periodicities of cnoidal waves.

Discussion
We should point out, although strong over-coupling is applied in the LLE model, the external Q  (Qext) is still 
high (>  105) in our analysis when the order of the discussed phase shift is <  10–2. Thus, it satisfies the mean-field 
assumptions that the field change over a single roundtrip is weak, asserting the validity of the  LLE9,12. Fur-
thermore, unlike the LLE, the threshold power evaluated based on the traveling wave theory is assumed to be 
independent to the fast-time temporal profile of the intracavity field. This assumption is valid while the pump 
power is below and close to the threshold power, resulting constant intensity in the cavity. This process can also 
be explained by replacing a CW for the cavity field in the LLE. The relation between detuning, threshold power, 
loss, and coupling is naturally analogous to the traveling wave theory. Therefore, for CW approximation, although 
we ignore the higher-order dispersion, the dispersion parameter has no contribution to the simulated threshold 
curves. We have verified this by replacing the dispersion parameter β2 from − 10 to − 100  ps2/km which are 
achievable values by waveguide engineering and no difference in threshold curves is identified.

In addition, although we do not take into account the thermally induced resonance shift which could be more 
significant than SPM, this red-shift effect could be approximated to be proportional to the intracavity  power33. 
Therefore, the frequency shift is expressed as:

where γT is the coefficient for the thermally induced shift which could be typically 5 to 10 times higher than γ33,34. 
We can use this approximation, at least qualitatively, to explain the thermally resulted resonance shift. Since both 
the Kerr nonlinearity and thermo-optic effect red-shift the resonance, this simplification shows a stronger power-
dependent shift for the analysis above. Figure 8 shows the exemplary map of the threshold power by including 
the thermal induced shift γT = 10γ . Clearly, as compared to that in Fig. 3a, more positive detuning is required 
to compensate the thermal induced shift for the minimal threshold. Meanwhile, the thermal-optic effect may 

(4)ω − ω0 = (−δ0 + γ L|E|2 + γTL|E|2)/TR

Figure 7.  Comb spectra with 40% efficiency for detuning =  + 0.003, input power = 28 mW, and coupling factor 
K = 2.8.
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also introduce thermal disturbance to the hybrid-integrated laser source when either to tune the wavelength or 
change the output power; accurate frequency control can be developed by integrated on-chip  sensors23.

Last, in addition to the silicon nitride platform discussed here, this finding can be applied to different mate-
rials or resonator-based cavities for chip-based comb generation. Unlike the coupling in integrated devices, 
suspended geometries, such as tapered fibers and prisms, have been widely used in wedges, micro-toroid, and 
crystalline resonators. Although these free-standing couplings offer a more flexible way to optimize the coupling, 
it requires complicated optical alignment and also limits the device  density35. For the integrated platform, a 
lithographically patterned bus waveguide overcomes these difficulties but the coupling strength is restricted by 
the fabrication capability. Therefore, for planar resonators with a compromised Q, the design of efficient coupling, 
such as a pulley-coupled bus waveguide used in silicon  nitride31 and gallium  nitride36 platforms, is desirable to 
achieve over-coupling for high efficient comb generation.

Summary
To conclude, we have determined the threshold boundary for comb generation within the parameter space of 
pump power and coupling by solving both the LLE and the traveling wave theory. The minimal position of the 
threshold power exhibits a strong dependence on the cavity coupling. We numerically show that, with a large 
phase shift, the coupling is optimized to be strongly over-coupled; while with zero phase shift, the optimized 
point moves to the under-coupled regime. In comparison with the previous methods, our work reveals the rela-
tion between pump detuning, coupling, and comb dynamics. In addition, the comb evolution is studied from 
a fixed wavelength approach. Cnoidal waves and solitons are both demonstrated by varying the input power at 
different couplings. It also evidences that the coupling design can be more critical than the intrinsic quality factor 
 Qin under specific conditions. Besides, the relation between comb efficiency and coupling is discussed, especially 
around the threshold. Unlike the previous discussion on bright / dark cavity solitons, high-efficient combs in 
the form of cnoidal waves are observed with less required power at the input. Our numerical results provide a 
promising pathway to design chip-based cavities with optimized coupling, especially for systems requiring low-
power operation and high-efficient (coherent) microcombs.
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