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A B S T R A C T   

Background: Glioma is the most frequent malignant primary brain tumor, and mitochondria may 
influence the progression of glioma. The aim of this study was to analyze the role of nuclear 
mitochondria related genes (MTRGs) in glioma, identify subtypes and construct a prognostic 
model based on nuclear MTRGs and machine learning algorithms. 
Methods: Samples containing both gene expression profiles and clinical information were 
retrieved from the TCGA database, CGGA database, and GEO database. We selected 16 nuclear 
MTRGs and identified two clusters of glioma. Prognostic features, microenvironment, mutation 
landscape, and drug sensitivity were compared between the clusters. A prognostic model based on 
multiple machine learning algorithms was then constructed and validated by multiple datasets. 
Results: We observed significant discrepancies between the two clusters. Cluster One had higher 
nuclear MTRG expression, a lower survival rate, and higher immune infiltration than Cluster Two. 
For the two clusters, we found distinct predictive drug sensitivities and responses to immune 
therapy, and the infiltration of immune cells was significantly different. Among the 22 combi-
nations of machine learning algorithms we tested, LASSO was the most effective in constructing 
the prognostic model. The model’s accuracy was further verified in three independent glioma 
datasets. We identified MGME1 as a vital gene associated with infiltrating immune cells in 
multiple types of tumors. 
Conclusion: In short, our research identified two clusters of glioma and developed a dependable 
prognostic model based on machine learning methods. MGME1 was identified as a potential 
biomarker for multiple tumors. Our results will contribute to precise medicine and glioma 
management.  
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1. Introduction 

Glioma is a prevalent form of tumor that accounts for a significant proportion of primary malignant brain tumors in adults, 
comprising 80% of such cases [1]. Despite representing only 2% of all primary cancers, gliomas have been found to lead to 7% of 
deaths among individuals under the age of 70 [2]. Because it behaves aggressively and almost cannot be cured by current treatments, 
glioma is regarded as one of the most destructive and traumatic cancers [3]. It has a 5-year survival of 35% with many clinical 
symptoms, seriously affecting patients’ quality of life [4]. Approximately 50–80% of patients with glioma develop seizures, while 15% 
patients have symptom of increased intracranial pressure, resulting in high symptomatic burden [5,6]. Despite advancements in cancer 
therapies, few methods have been applied in glioma due to cancer heterogeneity and the blood brain barrier [7]. The effective 
management of glioma is still a great challenge. 

According to the WHO 2021 classification of gliomas, gliomas should be subdivided not only by histological diversity but also by 
molecular data. This trend is reflective of the growing understanding that the identification of specific molecular alterations, such as 
those involving MYB, MN1, and BCOR, plays a significant role in determining the type of glioma [8,9]. In the past decade, scientists 
have found many biomarkers for glioma, including mutations in special families and common inherited variants in independent ge-
netic loci [10]. Recently, the advent of comprehensive molecular analysis techniques and bioinformatics has had a large impact on 
tumor research and treatment [10]. Many studies have explored the molecular biomarkers of glioma to enable accurate disease 
prediction with the goal of improving the treatment and prognosis of glioma. Some molecular biomarkers such as MEOX2 [11], PDIA5 
[12], and DDX3X [13], possess strong predictive capabilities. However, the molecular mechanisms underlying glioma remain unclear 
due to its complexity. 

Mitochondria perform many interconnected functions including energy metabolism and cell apoptosis, playing an important part 
in neoplastic development. Mitochondria can support cancer cell growth and survival in harsh environments [14,15]. Nuclear 
mitochondria-related genes (nuclear MTRGs) are the mitochondria-related genes encoded by the nuclear genome, whose protein 
products are imported into mitochondria following cytoplasmic synthesis [16,17]. These proteins from the nucleus play important 
roles in the mitochondria-related genes related processes, such as replication, transcription, degradation, and the occurrence and 
development of tumors. For example, MFN1 is able to promote tethering and fusion of the outer mitochondrial membrane and DRP1 
promotes mitochondrial fission. Knockdown of MFN1 or forced overexpression of DRP1 can promote mitochondrial division, 
enhancing the viability of hepatocellular carcinoma cells [18–20]. Previous studies have shown that mitochondrial dysfunction has a 
strong connection to the development and treatment of glioma [21–23]. However, the function of the nuclear MTRGs in cancer has not 
been fully studied. 

In the current study, we first identified differentially expressed nuclear MTRGs in glioma using open data including mRNA 
expression profiles and the corresponding clinical information of glioma patients. Subsequently we performed a clustering analysis on 
the TCGA cohort. We compared the abundance of various immune cells and the expression of immune checkpoint-related genes 
(ICRGs), and predicted the effect of immune checkpoint blockade (ICB) therapy and drug sensitivity between the clusters. We then 
developed a prognostic model for glioma utilizing multiple machine learning algorithms, which has been demonstrated to possess a 
high level of reliability. A single gene, MGME1, was selected for further examination. We investigated the expression and function of 
MGME1 in glioma, and pan-cancer analysis was applied for further research in terms of expression and immune relevance. Our study 
provides novel insights into the molecular mechanism associated with the tumor-immune microenvironment and mutations in glioma 
and helps enhance patient stratification and personalized treatment of glioma. 

2. Materials and methods 

2.1. Data collection and processing 

The RNA-sequencing expression profiles and clinical information of 666 glioma samples were collected from TCGA (https://tcga- 
data.nci.nih.gov/tcga/). Normal tissues were downloaded from Genotype-Tissue Expression (GTEx, http://commonfund.nih.gov/ 
GTEx/). In addition, we collected 325 tumor samples from CGGA (http://www.cgga.org.cn/) and 180 tumor samples from 
GSE184941, GEO (https://www.ncbi.nlm.nih.gov/gds/) to verify our prognostic model. The nuclear MTRGs were obtained from 
MITOMAP (http://www.mitomap.org/). All nuclear MTRGs (including 114 nonstructural nuclear MTRGs and 33 structural nuclear 
MTRGs) were grouped into one gene set called “MTRGs” for subsequent analysis. The online tool Sangerbox was used to sort and 
organize the clinical information [24]. 

2.2. Recognition of differentially expressed genes in glioma 

To identify the differentially expressed nuclear MTRGs, we used the “limma” package in R software to study the mRNA [25]. 
Glioma samples from the TCGA database and normal samples from the GTEx database were used. “Adjusted P < 0.05 and | Log2 (Fold 
Change) | > 1” were set as the threshold for selection. Then we calculated the intersections between nuclear MTRGs and differentially 
expressed genes (DEGs) through Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/). 

The potential mechanism of the differentially expressed nuclear MTRGs were explored by Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) using the “ClusterProfiler” R package. The R packages “ggplot2” and “pheatmap” were used to 
draw the boxplot and heatmap [26]. P value < 0.05 and FDR <0.1 were considered statistically significant. 
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2.3. Consensus cluster analysis for glioma based on nuclear MTRGs 

A total of 16 genes were selected by the least absolute shrinkage and selection operator (LASSO) regression algorithm from the 
DEGs. This procedure was performed using the “glmnet” R package, and 10-fold cross-validation was used. Kaplan-Meier (KM) survival 
curves were generated by using GEPIA2 [27]. 

The selected 16 genes were then used to generate a consistency analysis with the “ConsensusClusterPlus” R package (v1.54.0) in the 
TCGA cohort, and the number of the clusters was set as two [28]. Eighty percent of the samples were taken at random, innerLinkage =
“ward.D2”, clusterAlg = “hc”. For the KM curves, we used log-rank tests to compare the two groups. Under a 95% confidence interval, 
hazard ratio (HR) and P value were calculated by log-rank tests and univariate Cox proportional hazards regression. We used the 
“ggplot2” and “ggsci” R packages to perform principal component analysis (PCA). 

2.4. Immune infiltration between two clusters 

To obtain accurate immune scores, the “immunedeconv” R package was used [29]. TIMER was applied to compare the immune cell 
score between the two clusters. CIBERSORT was used to estimate the abundance percentage of immune cells infiltrating tumors in each 
tumor tissue. Different colors represent different kinds of immune cells. For immune checkpoints, we screened eight ICRGs, TIGIT, 
SIGLEC15, CD274, CTLA4, PDCD1, PDCD1LG2, LAG3, and HAVCR2, and compared their expression. This step was finished with the 
“ggplot2” R package and “heatmap” R package. We then used Tumor Immune Dysfunction and Exclusion (TIDE) to predict the ICB 
response. P < 0.05 was considered statistically significant. 

2.5. Mutation landscape between two clusters 

The mutation landscape showed the mutated genes and the frequency of variants using the “maftools” R package [30]. We 
compared the mutation rates by the “ggplot2” R package. 

2.6. Drug sensitivity prediction 

We predicted the efficacy of four common drugs used for the treatment of glioma with the “oncoPredict” R package and the training 
set from the GDSC dataset (https://www.cancerrxgene.org/) [31]. A lower IC50 value represents higher sensitivity, and the boxplot 
was generated using the “ggplot2” R package. 

2.7. Construction and validation of a nuclear MTRG signature for glioma 

The data from the TCGA database was divided into a training set and a validation set at a ratio of 7:3. The counts data with 
corresponding clinical data were transformed to TPM and changed to log2(TPM+1) format. To construct a prognostic model, 22 
combinations of ten machine learning algorithms, including RSF, GBSA, SSVM, SDL, Enet, Stepwise Cox, Coxboost, SuperPC, plsRcox, 
and LASSO, were used and trained based on the TCGA training set and the selected 16 genes. The full name of each algorithm is shown 
in Supplementary Table 1. TCGA validation set, CGGA dataset, and GSE184941 were used to estimate the effect of different algorithms 
and screen out the most valuable nuclear MTRG signature with the highest Area Under Curve (AUC). The nuclear MTRG signature was 
established by the Python scikit-survival library (version 0.19.0) and the “randomForestSRC”, “glmnet”, “plsRcox”, “superpc”, and 
“CoxBoost” R packages [32,33]. The immunohistochemical figures were retrieved from the HPA database (https://www.proteinatlas. 
org/). 

2.8. Selection and analysis of MGME1 

Among the genes in the prognostic model, univariate and multiple Cox regression analysis were performed to select the single gene 
with the strongest prognostic ability. The Tumor Mutation Burden (TMB) score, microsatellite instability (MSI) score, and TIDE score 
were compared between the high-expression and low-expression groups of MGME1. The “TIMER” R package was applied to calculate 
the relationship between the expression of MGME1 and the abundance of infiltrating immune cells. 

2.9. Pan-cancer analysis 

The RNA-sequencing expression profiles and corresponding clinical data were downloaded from the TCGA database. The 
expression of MGME1 in 33 types of tumor tissues and the corresponding normal tissues was compared. The immune score of MGME1 
in all types of tumors was shown using the “immunedeconv” R package. The relationship between the expression of immune- 
checkpoint-related genes and MGME1 in multiple types of tumors was visualized by the “heatmap” R package. A significance level 
of P < 0.05 indicated a significant difference. 
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3. Results 

3.1. Identification of the differentially expressed nuclear MTRGs in glioma 

We used TCGA and GTEx databases to select DEGs between glioma and normal tissues. The result of the “limma” R package analysis 
was shown in Supplementary Table 2. A volcano plot displayed the overall gene expression in glioma and a total of 10,065 DEGs were 
identified (Fig. 1A). To determine the intersection between the nuclear MTRGs and DEGs, a Venn diagram was employed, and 97 genes 

Fig. 1. Heatmap and Venn diagram of DEGs and nuclear MTRGs. (A) DEGs of the TCGA dataset. Red represents significantly upregulated genes; 
blue represents significantly downregulated genes. (B) Venn diagram of the differentially expressed nuclear MTRGs. (C–F) The enriched KEGG 
signaling pathways (C), GO cellular components analysis (D), GO biological processes analysis (E), and GO molecular functions analysis (F) of the 97 
selected nuclear MTRGs. Different colors represent the corresponding significance of the P value. 
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were selected (Fig. 1B).To explore the function of the 97 selected genes, we performed KEGG pathway analysis and GO enrichment 
analysis for the selected genes. The KEGG results indicated that these genes were mainly involved in metabolic pathways and ther-
mogenesis (Fig. 1C). In the GO analysis, we found that these genes were highly related to mitochondria, oxidoreductase activity, and 
electron transfer reaction (Fig. 1D–F). 

Fig. 2. Consensus clustering analysis of nuclear MTRGs. (A, B) CDF and relative change in the area under the CDF curve (CDF Delta area). (C) 
Heatmap for clustering. (D) Heatmap of gene expression in different clusters. Red represents high expression and blue represents low expression. (E) 
The PCA shows the difference between the two clusters. (F) The overall survival of the two clusters is shown by KM curves. (G) The expression of the 
16 selected nuclear MTRGs was compared between Cluster One and Cluster Two. (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001). 
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3.2. Consensus clustering analysis of nuclear MTRGs revealed a significant distinction between two clusters 

To select key genes for the prognosis of glioma, we used the LASSO algorithm and identified 16 genes of the 97 selected nuclear 
MTRGs (Supplementary Fig. 1A, 1B). The KM curves of the 16 selected nuclear MTRGs are presented in Supplementary Fig. 2A-P. 
All the genes were differentially expressed in glioma (Supplementary Fig. 2Q). We then conducted consensus clustering analysis using 
these 16 genes. Considering the ratio of ambiguous clustering metrics and the expression levels of the identified nuclear MTRGs, we 
determined that k = 2 is the optimal clustering stability among the range of k values from 2 to 6 (Fig. 2A, 2B). According to these 
criteria, the patients from TCGA were divided into two groups: Cluster One with 213 samples and Cluster Two with 453 samples 
(Fig. 2C). The two clusters displayed opposite gene expression patterns and were clearly separated (Fig. 2D, E). However, the two 
clusters did not show any statistically significant differences in terms of gender or racial distribution (Table 1). The patients in Cluster 
Two had a longer survival rate (median OS: 1.3 years for Cluster One and 7.9 years for Cluster Two, Fig. 2F). All 16 nuclear MTRGs 
were significantly differentially expressed between the two clusters (Fig. 2G). 

3.3. Immune microenvironment and ICB therapy efficacy between the two clusters 

As illustrated in Fig. 3A, Cluster One exhibited a higher level of immune cell infiltration, including CD8+ T cells, neutrophils, 
myeloid dendritic cells, and macrophages than Cluster Two. The percentage of immune cells was visualized through heatmap (Fig. 3B). 
The expression of eight ICRGs was also compared between the clusters. Except for TIGIT, all these genes including CD274 had an 
increased expression level in Cluster One (Fig. 3C). We further evaluated the different effects of immune checkpoint blockade (ICB) 
therapy on patients from the two clusters using TIDE scores. The results indicated a higher score in Cluster One than Cluster Two, 
which meant that patients in Cluster One had higher response rate to ICB therapy (Fig. 3D). Previous studies have proven that TMB is 
related to the therapeutic efficacy of ICB for glioma patients, and MSI-high tumors have a promising response to ICB [34,35]. We 
compared the TMB score (Fig. 3E) and MSI score (Fig. 3F) between the two clusters. However, the results indicated that Cluster One 
had a higher TMB and lower MSI (Fig. 3E, F). 

3.4. The nuclear MTRGs based cluster was associated with drug sensitivity 

The drug sensitivity of four commonly utilized chemotherapy agents for glioma [36,37] was investigated between the two clusters. 
The results suggested that Temozolomide (Fig. 3G), Carmustine (Fig. 3H), and Dabrafenib (Fig. 3J) displayed improved efficacy in 
Cluster Two. Trametinib had better efficacy in Cluster One (Fig. 3I). 

3.5. Mutation landscapes and drug sensitivity of the two glioma clusters 

As shown in Fig. 4A, we drew the mutation landscapes of glioma and highlighted the top ten genes exhibiting the highest mutation 
frequency. Patients in Cluster Two had a higher mutation frequency than patients in Cluster One (Fig. 4B, C). The predominant 
mutation observed in both clusters was missense mutation with single nucleotide polymorphism being more frequent than insertion 
and deletion (Fig. 4B, C). We then chose four key genes that displayed important roles in the development of glioma as previously 
reported [38,39]. The comparison of samples carrying mutations between the two clusters was conducted for these four genes (Fig. 4D, 
E, Supplementary Fig. 3). Patients in Cluster Two had a higher IDH1 mutation rate, a lower EGFR mutation rate, and a higher IDH2 
mutation rate than patients in Cluster One (Fig. 4D-F), whereas the mutation of TERT appeared to be uncorrelated with the clusters 
(Supplementary Fig. 3). 

Table 1 
Clinical characteristics between the two clusters.  

Characteristics C1 C2 P value 

n 213 453  
Vital status demographic, n (%)   <0.001 
Alive 47 (7.1%) 365 (54.8%)  
Dead 164 (24.6%) 87 (13.1%)  
Not Reported 2 (0.3%) 1 (0.2%)  
Gender demographic, n (%)   0.077 
female 80 (12%) 203 (30.5%)  
male 133 (20%) 250 (37.5%)  
Age at initial pathologic diagnosis, median (IQR) 59 (52, 67) 39 (31, 49) <0.001 
Race demographic, n (%)   0.019 
white 189 (28.4%) 421 (63.2%)  
not reported 1 (0.2%) 10 (1.5%)  
asian 6 (0.9%) 7 (1.1%)  
black or African american 16 (2.4%) 15 (2.3%)  
American Indian or alaska native 1 (0.2%) 0 (0%)  
Radiation therapy, n (%)   <0.001 
YES 161 (27.3%) 239 (40.6%)  
NO 30 (5.1%) 159 (27%)   
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3.6. Development of a prognostic signature for glioma using machine learning algorithms 

To construct MTRG prognostic signatures for glioma, we performed ten machine learning algorithms including RSF, GBSA, SSVM, 
SDL, Enet, Stepwise Cox, Coxboost, SuperPC, plsRcox, and LASSO based on the previously selected 16 nuclear MTRGs. A total of 22 
combinations were generated and 10-fold cross-validation was applied to find the most effective and reliable signature with the highest 
AUCs in the three validation sets (TCGA validation set, CGGA, and GSE184941) (Fig. 5A). The results indicated that LASSO had the 
highest AUC with an average value of 0.868, and was identified as the most effective model. to further verify the model, we utilized the 
LASSO model to divide each of the above four datasets into a high-score group and a low-score group. The high-score group had a 
relatively lower survival rate, indicating the reliability of our prognostic model (Fig. 5B-D). 

Fig. 3. Tumor microenvironment in the two clusters. (A–B) Infiltration level of several immune cells in the two glioma clusters (A) and the 
percentage of immune cells in tumor tissues (B). Different colors represent the corresponding immune cells. (C–F) The expression of the ICRGs (C), 
TIDE score (D), TMB score (E), and MSI score (F) of the two clusters. (G–J) Predicted sensitivity scores of Temozolomide (G), Carmustine (H), 
Trametinib (I), and Dabrafenib (J). (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001). 
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Fig. 4. Mutation landscape of the two clusters. (A) Oncoplot shows the somatic landscape of the glioma cohort. (B, C) The cohort summary plots 
for Cluster One (B) and Cluster Two (C) show the distribution of variants. (D–F) We compared the mutation of IDH1 (D), EGFR (E), and IDH2 (F) 
between the two clusters. 
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3.7. Identification of MGME1 as a key gene for glioma 

Based on the selected 16 nuclear MTRGs, univariate and Cox regression analysis were utilized to select the genes with strong 
prognostic ability. MGME1 was identified for its strong prognostic ability (Fig. 5E and F), indicating its crucial role in the progression of 
glioma. High expression of MGME1 was associated with a lower survival rate (Fig. 6A). The immunohistochemical results from the 
HPA database indicated the high expression of MGME1 in glioma tissue (Fig. 6E). In addition, TMB score (Fig. 6B), MSI score (Fig. 6C), 
and TIDE score (Fig. 6D) between the high-expression and low-expression groups exhibited significant differences. 

The expression of MGME1 was also associated with the tumor microenvironment (Fig. 6F-K). MGME1 expression was found to be 

Fig. 5. The prognostic value of the nuclear MTRG signatures. (A) A total of 22 combinations of machine learning algorithms for the nuclear 
MTRG signatures. The AUCs of each model at 1, 3, and 5 years were calculated based on different datasets, including the TCGA validation set, CGGA, 
and GSE184941. (B–D) The KM curves of the high-risk and low-risk patients in the TCGA validation set (B), CGGA (C), and GSE184941 (D). 
Univariate and multiple Cox regression analysis were performed on the 9 genes in the signature (E–F). 
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Fig. 6. The function of MGME1 in glioma. (A) KM curves of the high and low MGME1 expression groups. TMB score (B), MSI score (C), and TIDE 
score (D) in the high and low MGME1 expression groups. (E) The immunohistochemical results of MGME1 from the HPA database. (F–K) The 
relationship between the expression of MGME1 and the abundance of immune cells. 
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significantly correlated with the abundance of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and endothelial cells. 

3.8. Pan-cancer analysis of MGME1 across human tumors 

Considering the key role of MGME1 in glioma, we further explored the function of MGME1 across 33 human tumors. The full names 
of the tumors are presented in Supplementary Table 3. First, the relative expression of MGME1 was analyzed using the GTEx and TCGA 
databases (Fig. 7A-D). The results indicated that MGME1 was significantly upregulated in 27 tumor types (ACC, BLCA, BRCA, CESC, 
CHOL, COAD, DLBC, ESCA, GBM, HNSCT, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, READ, SARC, SKCM, STAD, TGCT, 
THCA, UCEC, and USC, P < 0.001), and downregulated in PCPG (P < 0.001). Furthermore, MGME1 was closely related to the tumor 
microenvironment in multiple kinds of tumors, including KICH, KIRC, LGG, LIHC, LUSC, MESO, OV, PAAD, PCPG, PRAD, READ, 
SKCM, THCA and THYM (Fig. 7E). In addition, MGME1 had a strong relationship with the expression of the ICRGs in COAD, KICH, 
KIRC, LIHC, LUSC, MESO, PAAD, PRAD, SKCM, THCA, THYM, UCEC, and UVM (Fig. 7F). The expression of MGME1 was also 
correlated with TMB and MSI in multiple tumors (Supplementary Fig. 4A,4B). In short, MGME1 may function as a molecular biomarker 
across human tumors. 

Fig. 7. Pan-cancer analysis of MGME1. (A–D) MGME1 is differentially expressed in 27 tumor types. MGME1 expression is related to the abun-
dance of cells in the tumor microenvironment (E) and the expression of ICRGs (F) in a variety of tumor types. (*P < 0.05, **P < 0.01, ***P < 0.001). 
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4. Discussion 

Gliomas are the most common tumors within the central nervous system and are characterized by their high proliferation and 
invasiveness potential [40]. Despite the use of debulking surgery, chemotherapy, and adjuvant radiotherapy, the survival prospects of 
individuals remain constricted, with a median survival rate of 12–15 months [41]. The management of glioma still requires 
improvement, and effective prognostic models are desperately needed. 

Reactive oxygen species (ROS) are byproducts of the formation of ATP. A low level of ROS functions as an antitumor agent, whereas 
an abnormal level of ROS was reported to be related to the development of cancer and may induce DNA damage [42]. Mitochondria 
play crucial roles in the energy metabolism and oxidative stress of glioma [43]. Research on mitochondria-mediated cancer therapy 
has been conducted [44,45]. Nuclear MTRGs are highly associated with the progression and prognosis of many cancers including 
breast cancer and bladder cancer [46,47]. However, the potential function of nuclear MTRGs in glioma is still unknown. In this study, 
we aimed to investigate the association between nuclear MTRGs and the characteristics of glioma. 

First, we identified DEGs of glioma and took the intersection of the DEGs and nuclear MTRGs. Subsequently, we utilized LASSO 
regression and selected 16 prognosis-related genes. The patients were stratified into two distinct clusters by consensus clustering 
analysis. Cluster One was characterized by features such as high nuclear MTRG expression, low survival rate, increased expression of 
ICRGs, high TIDE score, and high immune infiltration. Compared to those in Cluster One, Cluster Two had low nuclear MTRG 
expression, a better survival rate, decreased expression of ICRGs, a low TIDE score, and low immune infiltration. Interestingly, we 
found that the higher immune signature in Cluster One leads to worse survival. Previous research has reported a negative correlation 
between glioma-associated macrophages and myeloid dendritic cells with respect to survival [48]. This may be associated with the 
localization of macrophages in glioma. Scientists have found that tumor-educated macrophages entrenched in the glioma microen-
vironment play supportive roles in promoting angiogenesis [49]. In addition, in mice, gliomas that developed under CD8+ T cell 
pressure exhibited more malignant histological characteristics compared to gliomas developed without CD8+ T cells, which indicates a 
potential mechanism of immune evasion [50]. 

The above findings revealed that nuclear MTRGs played complex roles in glioma; therefore, we explored the mutation landscape of 
the two clusters. Previous research found that tumors with IDH1 or IDH2 mutations had unique clinical and genetic characteristics, and 
patients with these mutations tended to have better survival [38]. Our findings corroborated those of prior studies. We found that 
patients in Cluster Two had higher IDH1 or IDH2 mutation rates. Cluster One had a higher frequency of EGFR mutations, which can 
promote invasion, proliferation, and resistance to chemotherapy [39]. We calculated the IC50 between the two clusters, and Temo-
zolomide, Carmustine, and Dabrafenib had a better effect on Cluster Two. Trametinib had better effect on Cluster One. These findings 
may contribute to precision medicine for glioma treatment. 

Considering the poor survival of gliomas, the construction of an accurate and reliable prognostic model for gliomas appeared to be 
particularly important. Existing models seldom use machine learning algorithm and had limited verification sets [51,52]. We con-
structed prognostic models based on multiple machine learning algorithms and previous selected 16 previously nuclear MTRGs. The 
model constructed by LASSO had the highest AUC and was the most effective model. The model was further verified by three datasets, 
including the TCGA validation set, CGGA, and GSE184941. Compared to the existing model, our LASSO model is more accurate and 
reliable, with a better AUC for predicting the prognosis of glioma patients [53–55]. 

Among the 16 selected nuclear MTRGs, MGME1 was selected for its vital prognostic ability. MGME1 is a mitochondria-specific 
DNase with high conservation [56]. It belongs to the PD-(D/E)XK nuclease superfamily and plays an important role in the replica-
tion and degradation of mtDNA. In vitro studies have demonstrated that it possesses the ability to cleave single-stranded DNAs in both 
the 5’→3′ and 3’→5′ directions [57]. Moreover, deleterious mutations in MGME1 may result in significant mitochondrial disorders 
affecting multiple bodily systems [58]. A previous study revealed that MGME1 was a possible cancer-promoting molecule in colorectal 
cancer [59]. Additionally, MGME1 was found to be associated with poor prognosis of glioma and closely related to the cell proliferation 
in LGG [60]. However, research on the function of MGME1 in tumorigenesis is still limited and the function and expression of MGME1 
in the tumor microenvironment, TMB, and MSI are unknown. In our research, we illustrated that MGME1 was a potential biomarker 
associated with infiltrating immune cells, ICB therapy, TMB, and MSI in glioma, and MGME1 also played an important role in the 
tumor microenvironment, TMB, and MSI across human tumors. Overall, our findings indicated that MGME1 is not only an effective 
prognostic biomarker in glioma, but also a potential target in multiple types of tumors. 

Despite the valuable insights gained through our study, it is important to acknowledge certain limitations. Specifically, further 
research utilizing a larger sample size is necessary to enhance the analysis. In addition, we will conduct in vitro and in vivo experi-
mental validation to further confirm our results in the future. 

In conclusion, we systematically investigated how nuclear MTRGs contribute to glioma classification and prognosis. Two inde-
pendent subtypes of glioma based on nuclear MTRGs were identified. These two clusters exhibited divergent prognosis, tumor 
microenvironment, mutation types of genes, response to ICB therapy, and drug sensitivity. Additionally, we developed a reliable and 
robust prognostic signature using machine learning algorithms. Furthermore, we highlighted MGME1 as a novel molecular biomarker 
in multiple tumors. These results provide potential targets and improve precision medicine for glioma treatment. 
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