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Abstract

Background—Infants admitted to the neonatal intensive care unit (NICU), and especially those 

born with very low birth weight (VLBW; <1500 grams), are at risk for respiratory decompensation 

requiring endotracheal intubation and mechanical ventilation. Intubation and mechanical 

ventilation are associated with increased morbidity, particularly in urgent unplanned cases.

Methods—We tested the hypothesis that the systemic response associated with respiratory 

decompensation can be detected from physiological monitoring, and that statistical models of 

bedside monitoring data can identify infants at increased risk of urgent, unplanned intubation. We 

studied 287 VLBW infants consecutively admitted to our NICU and found 96 events in 51 

patients, excluding intubations occurring within 12 hours of a previous extubation.

Results—In order of importance in a multivariable statistical model, we found the characteristics 

of reduced O2 saturation, especially as heart rate was falling, increased heart rate correlation with 

respiratory rate, and the amount of apnea all were significant independent predictors. The 

predictive model, validated internally by bootstrap, had receiver-operating characteristic area of 

0.84 ± 0.04.

Conclusions—We propose that predictive monitoring in the NICU for urgent unplanned 

intubation may improve outcomes by allowing clinicians to intervene non-invasively before 

intubation is required.
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INTRODUCTION

Infants born prematurely have extended stays in the neonatal intensive care unit (NICU). 

This is particularly true of infants born at very low birth weight (VLBW, <1500 grams), at 

least 65% of whom will require endotracheal intubation for administration of mechanical 

ventilation (Data for 2009–2010, from Vermont Oxford Network of over 900 centers, http://

www.vtoxford.org/). These long ICU stays can be punctuated by clinical deterioration, 

including frequent apneas 1, 2 or other forms of respiratory decompensation leading to urgent 

unplanned intubation, in which the infant is provided mechanical ventilation through an 

endotracheal tube.

In addition to worsening neonatal apnea, urgent unplanned intubation can result from sepsis, 

respiratory distress syndrome, pneumonia, exacerbation of chronic lung disease, or critical 

illness from conditions such as necrotizing enterocolitis. While intubation for the purpose of 

mechanical ventilation is an effective intervention for respiratory decompensation, it is also 

associated with substantial morbidity and mortality, including pneumonia 3, barotrauma and 

volutrauma leading to pneumothorax or bronchopulmonary dysplasia, and oxygen toxicity 

leading to pulmonary and retinal injury. Early detection of respiratory decompensation may 

allow for early and less obtrusive treatment, such as initiation or increase of non-invasive 

respiratory support such as continuous positive airway pressure (CPAP), administration of 

bronchodilators, or evaluation and treatment of infection.

We hypothesize that some episodes of apparently sudden clinical deterioration in the NICU 

have precursors of altered control of heart rate and other physiological processes that require 

finely adaptive coupling among organs 4. This is the case with late-onset neonatal sepsis, 

where reduced heart rate variability and transient decelerations can precede clinical signs of 

illness by 24 hours 5–11. In a recent very large randomized clinical trial, we found that 

display of a multivariable statistical model that relates these abnormal heart rate 

characteristics (HRC) to the fold-increase in risk of sepsis in the next 24 hours led to a more 

than 20% reduction in VLBW NICU mortality 12.

We have tested the hypothesis that respiratory decompensation leading to urgent unplanned 

intubations can also be preceded by changes apparent from bedside physiological 

monitoring. Similar to the development of the HRC index, or HeRO score, we have 

developed logistic regression models based on physiological waveforms conventionally 

recorded in the NICU, including cardiac, respiratory, and pulse oximetry vital signs. Unlike 

the HeRO score, though, the new predictive model includes information from the respiratory 

as well as the cardiac system, and the interactions between the two.

RESULTS

Patient population

Times where no vital signs were recorded because of technical problems were excluded, 

leaving a population of 309 VLBW infants who had monitoring data available. Of the 309 

VLBW infants with available data, 22 patients only had data while mechanically ventilated 

and were therefore excluded from the study. The total number of patients included in the 
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study is N=287. Table 1 shows demographic information for patients in the study and that of 

the subset of patients who had an urgent unplanned intubation. In the population of 287 

VLBW infants where data were recorded for at least 12 hours prior to intubation we found 

96 unplanned intubation events in 51 patients.

An example of the analysis

Figure 1 shows time series of cardiorespiratory parameters for a patient born weighing 1460 

grams at 29 weeks estimated gestational age. This infant had an urgent unplanned intubation 

for respiratory acidosis nine days after birth, and parameters are shown relative to the time 

of this event. The clinical goal is to identify patterns that are predictive of urgent unplanned 

intubations in VLBW infants.

The left column in Figure 1 shows mean and standard deviations of conventionally 

monitored vital signs, including heart rate, respiratory rate, and pulse oximetry level. During 

the time leading to intubation this infant’s physiological measurements present conflicting 

information. For example, the heart rate variability and arterial oxygen saturation are rising, 

consistent with improving status. Concurrently the respiratory rate is falling and pulse 

oximetry variability is rising, consistent with deteriorating status.

The right column of Figure 1 shows correlations between the vital signs, as well as three 

measures of physiological stability: the level of cardiorespiratory coupling 13, duration of 

time spent in apnea with associated bradycardia and desaturation (or apnea burden) 14, and 

the output of a model for predicting neonatal sepsis based on heart rate characteristics, the 

HeRO score 12. Correlations between heart and respiratory rates, and between heart rate and 

pulse oximetry, rise in the two days prior to urgent unplanned intubation. At the same time, 

the correlation between respiratory rate and pulse oximetry falls. The level of 

cardiorespiratory coupling one day prior to intubation is 25% of the value two days prior and 

falls nearly to zero by the time of intubation. The patient’s apnea burden is high throughout, 

and the HeRO score increases by four fold over the day leading up to intubation.

Thus the clinician has multiple streams of physiological data, all time varying, interrelated to 

various degrees, and often with inconsistent trajectories. This justifies an approach using 

multivariate time series methods.

Univariate analyses

Examination of patient records indicated that patient physiology undergoes changes prior to 

clinically relevant incidents 15 and urgent unplanned intubation in particular. We exploit this 

fact by developing logistic regression models for intubation based on physiological 

parameters. Figure 2 shows the relative risk of unplanned intubation in the next 24 hours on 

the ordinate and the percentile of each physiological parameter on the abscissa. For example, 

the lowest and highest heart rates observed in our sample of infants are represented by the 0 

and 100%-tiles, respectively. The nomenclatures µi and σi indicate the mean and standard 

deviation of vital sign i, respectively, and <i j> indicates the cross-correlation coefficient 

between vital signs i and j at zero lag. High respiratory and heart rate, and high respiratory 

and oxygenation variability, are associated with increased risk of intubation, as is low 

oxygen saturation. Risk of intubation has a non-linear relation with heart rate variability.
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The curves in Figure 2 indicate the importance of each physiological parameter in predicting 

intubation. Parameters that provide a large dynamic range between risks at 0 and 100%-tiles 

are good candidates for a model. Mean and variability of the pulse oximetry level, 

correlation between heart rate and pulse oximetry, cardiorespiratory coupling, and the HeRO 

score all have high dynamic ranges. The association of HeRO is in part due to the 11 of 96 

urgent unplanned intubation events in response to sepsis.

We deployed candidate predictor variables in a univariate logistic regression model to 

predict urgent unplanned intubation in the next 24 hours. Table 2 shows the performance of 

these models, including the receiver-operating characteristic (ROC), significance (P value) 

and sign of the coefficient, and the goodness-of-fit (Chi-square). In order to account for the 

nonlinear relation for heart rate variability, we recast it as the absolute difference between 

the variability and the median variability for all patients at all times. Univariate models were 

based only on times where the parameter was available.

Heart rate itself had little predictive information. Low and, counter-intuitively, high heart 

rate variability were both associated with upcoming unplanned intubation16. The HeRO 

score had the best association with upcoming intubation, with ROC area 0.81 and chi-square 

49, followed by the cross-correlation of heart rate and O2 saturation (0.74 and 48). The 

former reflects the reduced heart rate variability and transient decelerations that can 

accompany early phases of neonatal sepsis, and the latter reflects the coordinated 

bradycardia and O2 desaturation that accompany neonatal apneas.

Multivariable analysis

We used the parameters whose univariate coefficients were significant (Table 2, p≤0.05) as 

inputs to a multivariate logistic regression model, 11 in total for 96 events. We determined 

this to be acceptable, as meaningful multivariate models are known to require 6–10 events 

per predictor17. During periods where a parameter was not available, the median value of 

that parameter (for all patients at all times) was used. Parameters whose multivariate 

regression coefficients did not reach significance were eliminated from the model, and a new 

model created. We note that the HeRO score, the best performing individual predictor, did 

not make the final model. The HeRO score does not add information to models that include 

the correlation between heart rate and pulse oximetry: the two measures have a moderate 

correlation (r = 0.45). Table 3 shows the coefficients and standard errors for each parameter 

used in the final model. The area under the receiver-operating curve for the final model is 

0.84 ± 0.04 as determined by bootstrapping 5, 18.

The output of the multivariate logistic regression model is the probability of urgent 

unplanned intubation in the next 24 hours. Figure 3(left) shows the model output for 96 

events in 51 patients, normalized to the relative risk by dividing by the average rate of 

intubation in the next 24 hours (0.5%). The median increases by 2/3 during the day prior to 

intubation, and the median output 12 hours before intubation is significantly higher than that 

36 hours before intubation (gray dots, p=0.001).

Figure 3 (right) shows the probability (solid) that the null hypothesis of the Wilcoxon signed 

rank test is true, i.e., that the median model output t days before intubation is equal to the 
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corresponding median model output (t-1.5) days before intubation. The cutoff for rejecting 

the null hypothesis (p=0.05) is shown as the dashed horizontal line. Model outputs 

throughout the 24 hour period prior to urgent unplanned intubation are significantly higher 

than model outputs 36–60 hours prior to intubation.

Internal validation

Bootstrapping showed the 95% confidence interval to be ±0.04 18.

Implementation of the predictive model for an individual patient

Figure 4 shows the relative risk for the patient whose records are shown in Figure 1 based on 

our multivariate logistic regression model, Table 3. The relative risk increases five fold from 

24 and 12 hours before the event.

DISCUSSION

We studied changes in bedside physiological monitoring parameters in premature infants at 

risk for respiratory decompensation. We used conventional and cross-correlation measures 

based on vital signs, novel variables based on cardiorespiratory waveforms, and multivariate 

logistic regression to predict episodes of urgent, unplanned intubation. Our predictive 

statistical model has good performance, with ROC area 0.84, and allowed identification of 

characteristics that added independent information to one another after taking them all into 

account. The clinical characteristics of the decompensating infant includes, in order of 

decreasing predictive importance based on goodness-of-fit, low O2 saturation, coincident 

fluctuations in heart rate and O2 saturation, correlated heart rate and respiratory rate, and 

increasing apneas. The heart rate-based HeRO score, which had the highest univariate 

predictive performance with ROC area of 0.81, was displaced in the final model by these 

other parameters, all of which incorporate information about respiration.

The value of these findings is in the possibility of bedside predictive monitoring for neonatal 

respiratory decompensation. The strengths of this analysis are that we used data that are 

conventionally available in the NICU and require no new sensors or contact with the infant. 

A limitation is that the model is not yet externally validated. In addition, further studies 

should investigate the impact that changing respiratory support and medication 

administration may have on the model output.

Inputs to the multivariate model listed in Table 3 were selected to optimize model 

performance and fit to the data. The significance of physiological parameters, including 

those not in the multivariate model, provide insight into mechanisms underlying clinical 

decompensation leading to the need for urgent unplanned intubation. The importance of 

mean and variability of pulse oximetry, and correlation between it and heart rate as well as 

heart rate and respiratory rate, indicates a role for hypoxemia. The association of increased 

HRC index with intubation indicates a decline in cardiac control through extracellular 

signaling 19 and the autonomic nervous system 20, 21. Decreased cardiorespiratory coupling 

is an indicator of critical deterioration, in agreement with the concept of systemic 

inflammatory response syndrome in adult patients 15.
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The modern age of high-speed data analysis allows great opportunities for synthesizing the 

large number of data streams available to the intensive-care clinician. While the insights 

about the clinical picture of the decompensating infant from this study are not surprising, 

there is potentially great value in bedside predictive monitoring that is constantly available, 

requires no new contact with the infant, and optimally leverages data that are already 

present. Such monitoring could never replace the clinical judgment of experienced doctors 

and nurses; however, when considering an apparently stable infant in a busy NICU, a rising 

risk score might place the clinician at the right bedside at the right time.

METHODS

Patient Population

We collected cardiorespiratory waveforms and vital signs from 1438 consecutive admissions 

to the University of Virginia (UVA) NICU from January 2009 through June 2011. For the 

320 VLBW infants, we also collected demographic data including admission and discharge 

dates, types and times of respiratory support, nursing documentation of apnea and 

bradycardia, and disposition and status at discharge. Times where no vital signs were 

recorded because of technical problems were excluded. The UVA Institutional Review 

Board gave permission for this study with waiver of consent status.

Definition of urgent unplanned intubation

Urgent unplanned intubations were defined as non-elective initiation of mechanical 

ventilation. Accepted causes included worsening respiratory status from primary lung 

disease, increasing apnea, respiratory acidosis, and increasing requirement for inspired 

oxygen. There is no protocol in the UVA NICU that defines when to intubate for these 

causes. Decisions are made on a case by case basis when less invasive treatment (e.g. CPAP) 

proves ineffective. Often, intubations occur overnight based on need as perceived by the 

NICU staff, and by their nature are considered urgent and unplanned.

We excluded planned intubations prior to surgery or other elective procedures, as well as 

protocol-driven surfactant administration requiring less than 12 hours of intubation. We also 

excluded 19 instances of re-intubation within 12 hours of a prior extubation. These clinically 

important events are excluded because they do not provide 12 hours of non-ventilated data 

on which to develop a model. Two clinical experts independently investigated patient 

records for each intubation, and only events deemed by both reviewers to meet our criteria 

for urgent unplanned intubation were included.

Data collection

Vital signs and waveforms were collected from all bedside monitors in our 45-bed NICU by 

a centralized server (BedmasterEx, Excel Medical, Jupiter, FL) behind the clinical firewall. 

Vital signs (heart rate, respiratory rate, and pulse oximetry) were calculated by the monitor 

by averaging over the previous 10 seconds, and collected every 2 seconds. Waveforms 

included signals from three electrocardiogram leads (EKG) digitized at 240 Hz, chest 

impedance pneumograph digitized at 60 Hz, and oximetry plethysmography digitized at 120 

Hz. Data were transferred to our parallel computing and storage cluster. All babies had 
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continuous HeRO monitoring (Medical Predictive Science Corp., Charlottesville, VA) and 

heart rate characteristic (HRC) indices12 were collected hourly.

Data analysis

Calculations were made on 30-minute blocks of data collected during periods of 

spontaneous ventilation, i.e. while the baby was not receiving mechanical ventilation. As 

candidate predictors, we calculated the mean and standard deviation of each vital sign – 

heart rate, respiratory rate, and O2 saturation – along with the cross-correlation of each vital 

sign with the others. From the continuous waveforms - EKG, chest impedance and oximetry 

plethysmography - we calculated more complex physiological and statistical measures: 

cardiorespiratory coupling, cardioventilatory coupling, fraction of heartbeats during inhale, 

apnea burden, and the HeRO score.

Cardiorespiratory coupling (hereafter referred to as “coupling”) and fraction of heartbeats 

during inhalation were calculated every 30 seconds over the previous 4 minutes where data 

were of sufficient quality for analysis13. Coupling is preferential alignment of heartbeats 

within the respiratory cycle, was defined as epochs where the distribution of heartbeats 

within the respiratory cycle had less than 0.1% chance of occurring from random numbers13. 

Each half hour, the fraction of measures that exhibited coupling was calculated and averaged 

over the previous 12 hours. The fraction of beats during inhale was defined as the mean over 

the previous 12 hours. Cardioventilatory coupling (CVC) is the preferential alignment of 

inhalation to the heartbeat, and was calculated every 30 seconds over the previous 10 

minutes. We defined CVC as epochs where the relationship between inhale and the previous 

R-wave had less than a 5% chance of occurring from noise given the number of 

intervals22, 23. Each half hour, the fraction of measures that exhibited cardioventilatory 

coupling was calculated and averaged over the previous 12 hours.

Cardiorespiratory waveforms were automatically analyzed to detect central apnea using the 

methods of Lee et al 14. Briefly, breathing cessations were detected as low variance epochs 

in the chest impedance pneumograph after notch filtering in heart-clock time to eliminate 

cardiac artifact, and high-pass filtering to remove movement artifact. Heartbeats were 

detected using a threshold based algorithm 24 as implemented by Clifford and co-

workers 25, 26. Apneas were defined as breathing cessation of at least 10 seconds with 

associated bradycardia (HR <100 BPM) and desaturation (SaO2 <80%) 14, 27. Apnea burden 

was defined as the number of seconds that the infant was apneic during the previous 12 

hours.

HRC indices were collected from monitors in the NICU each hour, and values were carried 

over to the subsequent half hour. The HRC index is an output of a logistic regression model 

based on RR interval standard deviation, sample asymmetry, and sample entropy that detects 

reduced variability and transient decelerations and reports the fold-increase in risk of 

neonatal sepsis in the next 24 hours. It has been externally validated, shown to add 

information to the laboratory tests and clinical signs and to reduce mortality when 

displayed 4–12.
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Development and internal validation of logistic regression models

We used these conventional and novel physiological variables as inputs to logistic regression 

models. Measurements within the 24 hours prior to an urgent unplanned intubation event 

were labeled as outcome of 1 and used as events to be predicted. All other measurements 

(excluding data prior to failed extubation) were labeled as outcome 0. Standard maximum 

likelihood estimation was used to determine the coefficients for the logistic regression 

model28. This approach corrects both for unequal variances and correlated responses from 

individual patients. More specifically, estimates of regression coefficients and other 

parameters of the model are obtained in standard fashion, but the p-values are corrected 

using the “sandwich” estimator of standard errors29. For internal validation, we used a 

cluster bootstrap technique whereby 1000 new samples of the same size were obtained by 

resampling the infants with replacement 30. The 2.5 and 97.5 percentiles of the sample of 

risks are used as lower and upper limits for a 95% confidence interval.

The multivariate predictive model for urgent unplanned intubation was developed by first 

creating univariate models for each conventional and novel physiological variable based on 

all available data for that variable. Variables that yielded statistically significant models (as 

defined by coefficients with p<0.05) were incorporated into a multivariate model. Variables 

whose coefficients were not significant in the multivariate model were removed. Not all 

parameters could be measured at all times, and we replaced missing data with the median 

value for all measurements of that variable from all patients when creating the multivariate 

model. Values were imputed in this way to allow the model to be calculated as often as 

possible, with the tradeoff of decreasing the accuracy of the final model.
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Figure 1. 
Time series of physiological measures for one patient prior to unplanned intubation. 

Unplanned intubation occurs at zero, on the right edge of the plots. During this time period 

(A) mean heart rate dips, (B) heart rate standard deviation increases, (C) mean respiratory 

rate decreases, (D) respiratory rate standard deviation remains unchanged, (E) oxygen 

saturation remains unchanged, and (F) oxygen saturation standard deviation increases. Also 

during this time (G) correlation between heart rate and respiratory rate increases, (H) 

correlation between heart rate and oxygen saturation increases, (I) correlation between 

respiratory rate and oxygen saturation decreases, (J) cardiorespiratory coupling decreases, 

(K) apnea burden increases, and (L) the HeRO score increases.
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Figure 2. 
Relative risk of unplanned intubation in the next 24 hours as a function of variable 

percentile. Percentiles are based on all values observed for a given variable, and variables are 

calculated over half-hour windows. (A) Relative risk versus percentile of mean heart rate 

(solid line), respiratory rate (dashed line), and pulse oximetry (dashed-dotted line). (B) 

Relative risk versus percentile of standard deviation of heart rate (solid line), respiratory rate 

(dashed line), and pulse oximetry (dashed-dotted line). (C) Relative risk versus percentile of 

correlation between heart rate and respiratory rate (solid line), heart rate and pulse oximetry 

(dashed line), and respiratory rate and pulse oximetry (dashed-dotted line). (D) Relative risk 

versus percentile of the HeRO score (solid line), coupling (dashed line), fraction of beats 

during inhale (dashed-dotted line), and apnea burden (gray dotted line).
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Figure 3. 
(A) Median (solid) and 25%, 75% (dashed) model output for 96 urgent unplanned intubation 

events in 51 patients. The median model output 12 hours prior to intubation is significantly 

higher than the output 36 hours prior (grey dots, p=0.001 based on a signed rank test). (B) 

The probability that the null hypothesis of the Wilcoxon signed rank test is true. Paired data 

are separated by n = 36 hours. The dashed line shows the cutoff for rejecting the null 

hypothesis (p=0.05). Model outputs in the day prior to intubation are significantly higher 

than the values 36 hours prior.
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Figure 4. 
Relative risk of urgent unplanned intubation for the patient shown in Figure 1 based on the 

multivariate logistic regression model defined in Table 3. From one day prior to unplanned 

intubation to the time of intubation, the estimated risk increases 8-fold.
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Table 1

Demographic characteristics of the study population.

All infants in study (N = 287)

EGA (weeks) 27 (25, 29)

Males 147

Birth weight (grams) 1010 (783, 1268)

Length of stay (days) 61 (35, 95)

Ventilator days 15 (2, 37)

PMA at discharge (weeks) 37 (36, 39)

Infants with events (N = 51)

Events 96

Events due to sepsis 11

Males 32

EGA (weeks) 26 (25, 28)

Birth weight (grams) 810 (708, 1060)

Length of stay (days) 97 (67, 107)

Ventilator days 27 (8, 43)

PMA at discharge (weeks) 39 (37, 41)

PMA at urgent, unplanned intubation 29 (26, 31)

Data are presented as median (25th, 75th percentile)
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Table 2

Performance of univariate logistic regression models for unplanned intubation.

Variable ROC P value Sign Chi-square

Vital signs

µHR 0.53 0.18 + 0.2

σHR
a 0.61 0.007 + 7.2

µRR 0.60 0.05 + 7.8

σRR 0.61 * + 13.2

µSpO2 0.70 * − 37.1

σSpO2 0.62 * + 13.0

Correlations

<HR RR> 0.65 * + 15.6

<HR SpO2> 0.74 * + 47.5

<RR SpO2> 0.57 0.06 − 3.7

Physiological stability

Coupling 0.62 0.03 − 4.8

CVC 0.50 0.95 − <0.1

Beat fraction 0.58 0.02 + 5.0

Apnea burden 0.70 * + 31.5

HeRO score 0.81 * + 49.5

*
denotes p<0.001

a
A nonlinear transform was applied to heart rate variability prior to use in a logistic regression model. Specifically, the absolute difference between 

the measured heart rate variability and the median of all heart rate variability values was used.
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