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Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour.
Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental,
psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on
dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel
the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key
regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies
their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated
in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling
process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but
may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range
of neurological disorders.

1. Introduction

Brain function is an emergent property of the connec-
tions between neurons. Proper wiring of the brain during
development is critical for cognition and memory [1–3],
while, conversely, abnormal wiring due to neurological dis-
order, disease, or brain injury results in dysfunction [4–6].
Understanding how neural circuitry underlies information
storage and processing is a fundamental challenge facing
modern neuroscience [1, 3]. Though modest inroads into
deciphering brain wiring have been made, very little is
known about how this wiring contributes to its function. A
primary obstacle to progress is the staggering complexity of
neural circuits; in mammalian brains, trillions of synapses
impinge on billions of neurons. One approach to managing
this complexity is to limit focus to synapses of a single
neurotransmitter type. Glutamatergic synapses are highly

plastic, play essential roles in learning, memory, as well as
cognition, and comprise the majority of the connections
between pyramidal neurons in the forebrain [7–9]. A defin-
ing characteristic of these synapses is that they occur at
specialized postsynaptic compartments known as dendritic
spines (Figures 1(a)–1(c)). These micron-scale, actin-rich
structures garnish the dendritic arbour and typically consist
of a spine neck and a spine head [10, 11]. It is within
the spine head that the protein-rich postsynaptic density
(PSD) is found (Figure 1(c)). Embedded in the PSD are 𝑁-
Methyl-D-aspartic acid (NMDA) and 𝛼-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate
receptors which mediate excitatory synaptic transmission
(Figure 1(c)) [10, 12]. Dendritic spines exhibit both transient
and enduring lifetimes, persisting from minutes to years in
vivo [7, 13]. A myriad of dendritic spine morphologies are
observed in the brain and the notion that spine structure
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Figure 1: Dendritic spines are small protrusions along dendrites that contain postsynaptic densities. (a) Example of a cortical neuron
expressing green fluorescent protein (GFP). The main dendrite is branched and has dendritic spines along its length. Dashed box indicates
area magnified in (b). The neuron’s axon is much thinner than the dendrite and has no spines. (b) Magnified region of dendrite of a cortical
neuron expressing GFP and stained for the presynaptic protein bassoon. Dendritic spines can clearly be seen protruding from the dendrite,
andmany spines colocalize with bassoon, suggesting the formation of synaptic connections. In this colour scheme, colocalization is indicated
by white. (c) Schematic of a mature dendritic spine making contact with an axon; note the enrichment of glutamate receptors, the scaffold
protein PSD-95, and F-actin within the spine head and postsynaptic density (PSD).

is highly correlated with important synaptic properties has
become a recurrent theme over the last decade [14, 15]. For
example, large dendritic spines are likely to feature large
PSDs and make strong connections, while small dendritic
spines are indicative of weak connections and may be highly
plastic [16]. Accordingly, larger spines tend to persist for
long periods of time, whereas smaller, thinner spines are
more transient [15, 17]. However, recent data suggests that

these phenomena may be different between the cortex and
hippocampus, with spines on CA1 hippocampal neurons
demonstrating a more rapid turnover as compared to those
found in cortical regions [18]. Nevertheless, many reports
demonstrate that dendritic spines are not static structures
and can rapidly reorganize in response to diverse stimuli
including experience-dependent learning [19–21], as well as
neuromodulatory and even hormonal signals [22–25]. One
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key sequela of this structural dynamism is the ability to
sample the surrounding neuropil for incident axons [19, 26,
27].

It is widely recognized that dendritic spines are an integral
component in circuit formation, but the precise nature of
their contribution is still a topic of inquiry and debate.
Dendritic spines exhibit a wide spectrum of structural reor-
ganization, from formation and elimination, to more subtle
changes in size and shape. These structures are estimated to
contain over 1000 different proteins [28], including scaffolds,
receptors, adhesion proteins, signalling proteins, F-actin, and
cytoskeletal proteins (Figures 2(a) and 2(b)). Current theories
postulate that dendritic spines provide a chemical and elec-
trical signalling domain that is partially discrete from their
parent dendrite, thus enhancing the computational capacity
of the neuron [3], and that they are sufficiently enriched
with the molecular components necessary for structural
and function modifications [29]. Critically, the development,
refinement, and maintenance of telencephalic neural circuits
are essential for sensory perception,motor control, cognition,
andmemory [1, 8, 30, 31]. Importantly, a better understanding
of circuit dynamics can provide a bridge between plasticity
phenomena observed at the synapse and animal behaviour
[8, 9, 18, 19]. Thus it is essential to examine mechanisms that
rewire the brain and the current review is dedicated to this
purpose. In the past decade, enormous progress has been
made in dissecting themolecularmechanisms that contribute
to the structural plasticity of dendritic spines [10, 12, 32, 33]. A
key molecular determinant of dendritic spine plasticity is the
actin cytoskeleton and its regulators. Here we review recent
work that has begun to unravel the complexmanner in which
the family of small GTPases proteins, their regulators, and
effectors modulate the actin cytoskeleton to control dendritic
spine morphology in support of synaptic function.

2. Actin: A Key Determinant of Dendritic
Spine Morphology

The morphological malleability of dendrite spines has been
shown to be due to a dynamic actin cytoskeleton [34, 35].
Spines are rich repositories of filamentous and monomeric
actin and achieve both stability and dynamism through a
turnover process known as treadmilling, where monomers
are simultaneously added to the barbed end (at the spine
periphery) and removed from the pointed end of the filament
(near the spine’s core) [36, 37]. A variety of proteins exhibit
control over the actin cytoskeleton andmanyof these proteins
are potent spine morphogens and synaptic modulators [23,
38–42].

Tight control of the actin cytoskeleton is crucial to proper
synaptic function. Indeed, actin treadmilling controls the
distribution of proteins in the postsynaptic density, including
AMPA receptors, as revealed bywork employing fluorescence
recovery after photobleaching [43]. Thus, understanding the
complex signalling pathways impinging on actin filaments
is critical for revealing mechanisms underlying normal
and pathological synaptic transmission. To this end, much
research effort has focused on identifying and characterizing
actin regulatory proteins. By considering the positioning of

these proteins in signalling cascades relative to the extracel-
lular space and the actin cytoskeleton, they can be organized
into hierarchical functional groups including actin binding
proteins, small GTPases, and small GTPase regulators and
effectors (Figure 2(b)) [32, 44].

3. Small GTPases: Morphological Signalling
Hubs in Dendritic Spines

The super family of small GTPases is classified into 5 subfam-
ilies: the Ras, Rho, Rab, Sar1/ARF, and Ran families.Members
of this superfamily regulate diverse cellular functions and are
often referred to as molecular switches as they exist in binary
“on” and “off” states when bound to GTP and GDP, respec-
tively [45, 46].The present review will be limited to members
of Rho and Ras families as these proteins have been most
directly linked with actin remodelling. Further, Rho- and
Ras-mediated signalling pathways exhibit substantial cross
talk that has important implications for spine morphological
and functional plasticity. While our understanding of small
GTPase control of the actin cytoskeleton has been greatly
enhanced by work in nonneuronal cells, the dendritic spine
represents a unique microdomain, with distinct functional
requirements. As such, we will focus on studies conducted in
dendritic spines unless otherwise noted.

Extensive literature links the Rho subfamily to regulation
of synaptic actin structure and dynamics [47]. Perhaps best
studied among these family members are Rac1 and RhoA,
which have potent and opposite effects on the structure of
dendritic spines [48]. Overexpression of dominant negative
Rac1 leads to reduced spine density in hippocampal slices
and dissociated cultures [49, 50], while overexpression of a
constitutively active form or RhoA leads to spine loss [51].
It is generally accepted that Rac1 activation stimulates F-
actin polymerization and stabilizes dendritic spines through
the activation of downstream effectors p21-activated kinase
(PAK), LIM-kinase-I (LIMK-I), and the actin binding protein
cofilin [52, 53]. Conversely, RhoA activation stimulates F-
actin polymerization through its downstream protein kinase
ROCK, which in turn directly regulates LIMK-1 phospho-
rylation in nonneuronal and neuronal cells [54, 55]. Rho
GTPases are rapidly and locally activated in spine heads
following potentiating stimuli as revealed by two-photon
fluorescence lifetime imaging of FRET-based probes [55].
Interestingly, Cdc42, a Rac-related Rho GTPase, and RhoA
exhibited differential spatial activity, reflecting their unique
contributions to spine morphology regulation; blockade of
the RhoA signalling cascade inhibited initial spine growth
while Cdc42 pathway inhibition prevented sustained spine
enlargement. Reinforcing the importance of Rho GTPases
in forebrain plasticity is a recent study demonstrating active
Rac1-induced spine proliferation in cortical pyramidal neu-
rons as well as enhanced plasticity of visual circuits in
monocularly deprived animals [56, 57]. In concordance with
this idea, disruption of signalling through Rho/Rac pathways
is frequently associated with intellectual disability (ID), a
condition characterized by abnormalities in dendritic spine
morphology [58–60].
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Figure 2: Dendritic spines, small GTPases, and the cytoskeleton. (a) Example of a cortical neuron immunostained with phalloidin, a marker
of endogenous F-actin. Immunofluorescence reveals an enrichment of actin in dendrites and dendritic spines. (b) Schematic drawing of
how extracellular signals can act via specific receptors and act via small GTPases to regulate actin dynamics and/or receptor trafficking. The
dynamic actin cytoskeleton confersmuch of the structure of the dendritic spines, and alterations in synaptic expression of glutamate receptors
(e.g., AMPA receptors) are thought to play a major role in modulating synaptic function.

Though most investigations of neuronal structure have
focused on the Rho GTPase subfamily, other GTPases have
been shown to regulate dendritic spine morphology. Mem-
bers of the Ras subfamily of small GTPases have also been
found to regulate dendritic spine structure anddynamics [61].
One of the first studies to linkRaswith structural remodelling
of dendritic spines was from a mouse model where a con-
stitutive active form of H-Ras was overexpressed [62]. These
mice displayed increased neuronal complexity, which was
mirrored in subsequent studies which also revealed abnormal
spine formation and connectivity [63, 64]. Consistent with
a role in mediating dendritic spine plasticity, it has also
been shown that Ras is activated concurrently with spine
enlargement induced by uncaging of glutamate in hippocam-
pal neurons [65]. Interestingly, the spatiotemporal dynamics
of Ras activation was again different to that of the Rho
GTPases, RhoA, andCdc42, reinforcing the idea that both the
temporal activation and the localization of these molecules
are critical in determining their impact on cellular function
[55, 65, 66]. Prior work in nonneuronal cells has also linked
Rap, amember of the Ras subfamily, to cytoskeletal dynamics
[67]. In neurons, activation of Rap1 by NMDA receptors in
cultured cortical neurons results in a decrease in spine size
[41]. Another powerful regulator of small GTPase activity
in neuronal cell is the estrogen hormone, 17𝛽-estradiol [68–
70]. Interestingly, when mature cortical neurons are acutely
exposed to 17𝛽-estradiol, a rapid increase in active Rap1
is seen concurrent with an increase in spine density [25].
Critically, overexpression of RapGAP, a protein that inhibits
Rap activation, blocked the effect of 17𝛽-estradiol on spine
density [25]. In contrast, overexpression of constitutively
active Rap2 causes a loss of dendritic spine density and
an increase in the number of filopodia-like protrusions in

culture hippocampal neurons [71]. Consistent with these
observations in vitro, mice that express a constitutively active
Rap2 display fewer dendritic spines and impaired learning
[72]. Collectively, these data demonstrate that Rho and Ras
family GTPases have potent regulatory effects on dendritic
spines which can impact cognitive function.

4. Small GTPase Regulators

GTPases are themselves tightly regulated by two classes of
proteins: guanine nucleotide exchange factors (GEFs) which
facilitate the binding of GTP by the GTPase and GTPase
activating proteins (GAPs) which catalyze the hydrolysis
of GTP to GDP. These proteins convey diverse signals
from the extracellular space to GTPases and differ in their
cellular expression patterns and intracellular distributions.
Each GTPase can be regulated by a variety of different GEFs
and GAPs, allowing for both signalling diversity and spatial
specificity. Through catalyzing the exchange of the GTPase
bound GDP to GTP, GEFs serve to activate GTPases. By
responding to extracellular signals including neuromodula-
tors and neuronal activity, GEFs can achieve bidirectional
control over spine morphology and synaptic strength by
acting through their target GTPases.

As RhoA is associated with spine shrinkage and destabi-
lization, GEFs that activate this GTPase have similar effects
on dendritic spine morphology. For example, GEF-H1 has
been shown to colocalize with the AMPA receptor complex
and negatively regulate spine density and length through
a RhoA signalling cascade [73]. Similarly, activation of
the Eph receptor A4 (EphA4) results in the retraction of
dendritic spines, an effect that is dependent on activation
of RhoA via its GEF, ephexin1 [74]. Another GEF involved
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in the destabilization and shrinkage of spines is Epac2. This
multidomain Rap1 GEF is activated by cAMP and leads to
reduced spine AMPA receptor content, depressed excitatory
transmission, and spine destabilization as demonstrated by
live imaging studies. Conversely, inhibition of Epac2 leads
to spine enlargement and stabilization [23]. Interestingly,
rare de novo mutations of the Epac2 gene have been found
to be associated with individuals with autism spectrum
disorders (ASDs) [75]. The resulting mutant Epac2 proteins
displayed altered abilities to activate Rap and when expressed
in primary cortical neurons, they resulted in a range of abnor-
mal dendritic spine morphologies [23]. Analysis of Epac2
knockout mice has further revealed deficits in social and
communicative behaviours, whereas memory and leaning
behaviours are seemingly unaffected [76]. Interestingly, these
mice also display reduced dendritic spine turnover in vivo,
consistent with what has been shown previously in vitro [23,
76]. However, it is not clear how alterations in dendritic spine
plasticity are linked with altered social and communicative
behaviours. More recently, using in utero electroporation
to express an RNAi construct against Epac2 in a subset of
layer 2/3 cortical neurons, a role for Epac2 in maintenance
of basal, but not apical, dendrites has been revealed [77].
Interestingly, regulation of basal dendrite formation by Epac2
requires Ras signalling, as a ASD-associated mutant Epac2
protein, which has a reduced ability to bind active Ras, also
induces deficits in basal dendrite maintenance [77]. This
demonstrates that there can be a level of cross talk between
small GTPase systems. Consistent with this, it has recently
been shown that the polo-like kinase 2 (Plk2) regulates both
Ras and Rap activity through directly influencing the activity
regulatory proteins of each small GTPase in response to
homeostatic plasticity [78]. These studies demonstrate that
the synchronized regulation of both Ras and Rap small
GTPases via their GEFs and GAPs plays an important role
in homeostatic plasticity and in the maintenance of neuronal
morphology [77, 78].

The regulation of Rac by its GEFs has also been well
studied. One suchGEF is kalirin-7, which is especially unique
due to the fact that it is the only known Rac1 GEF expressed
in the cortex of adult mice [32]. Overexpression of this
kalirin-7 in cortical cultures leads to an increase in spine
head area and density. Concomitantly, knockdown of kalirin-
7 through an RNAi approach reduces the spine area and
density [42]. Interestingly, mice in which the kalirin gene
has been deleted exhibit many phenotypes reminiscent of
schizophrenia including deficits in working memory as well
as reduced dendritic spine density in the cortex [79]. In
the hippocampus, the role of kalirin-7 is obscured due to
the presence of two other Rac1 GTPases, Tiam1 and 𝛽-PIX
[32, 52, 80]. Tiam1 is regulated by NMDA receptor activation
and has also been implicated in EphB receptor-dependent
dendritic spine development [80, 81]. Likewise, the Rac1 GEF
𝛽-PIX, a downstream target of NMDA receptors, has been
shown to be regulated by CaM kinase kinase and CaM kinase
I [52].

Select GAPs have received research attention due to their
putative roles in ID. Loss of the Rho-GAP oligophrenin-1, a
gene implicated in ID, disrupts activity-dependent synapse

and spinematuration [82]. Another such gene is the Ras-GAP
SYNGAP1, which can regulate spine morphology through
its target Ras as well as downstream signalling to Rac and
cofilin [83].This study illustrates that small GTPase signalling
is often complex and nonlinear and may feature cross talk
between pathways. Mutations in SYNGAP1 have also been
associated with both ID and ASD [84]. Interestingly, an ani-
mal model of human SYNGAP1 haploinsufficiency displayed
accelerated dendritic spine maturation resulting in dis-
rupted excitatory/inhibitory balance in neural networks [85].
Moreover, these mice also developed persistent behavioural
abnormalities. Critically, these effects were most prominent
when SYNGAP1was disrupted during early development and
minimal when disrupted in adulthood [85]. More recently,
SYNGAP1 has been shown to be phosphorylated by CaMKII,
resulting in the trafficking of this protein away from synapses
in response to LTP stimulation. Importantly, removal of this
GAP protein from synapses is thought to be required for LTP-
dependent Ras activation and subsequent AMPA receptor
insertion and spine enlargement [86].

A number of extracellular signals are known to exert pro-
found influences over dendritic spine morphology, through
the activation of small GTPase pathways. The predominant
receptor in regulating dendritic spine plasticity in response to
synaptic activity is the NMDA receptor. Following activation
of NMDA receptors, dendritic spines undergo a transient
increase in calcium concentration [87, 88]. This rise in
calcium activates the calcium-sensing calmodulin (CaM):
calcium-bound CaM subsequently activates the CaMK fam-
ily of serine/threonine kinases including CaMKI, CaMKII,
and CaMKIV [89]. These kinases go on to phosphorylate
a variety of targets involved in spine structural plasticity,
including the Rac-GEF kalirin-7, as well as other signalling
and scaffolding proteins involved in plasticity [42, 90]. Aside
from glutamate, other neurotransmitters have been shown
to modulate dendritic spine plasticity. Activation of 5-HT2A
receptors in pyramidal neurons increased spine size through
a kalirin-7-Rac1-PAK-dependent mechanism [22].This study
is of particular importance as it provides a direct link between
serotonergic signalling and dendritic spine morphogenesis,
both implicated in schizophrenia. Another important neuro-
transmitter implicated in the modulation of dendritic spines
and small GTPase function is dopamine [91]. For example,
treatment of rats with 6-hydroxydopamine, a neurotoxin that
selectively ablates dopaminergic and noradrenergic neurons,
resulted in a decrease in dendritic spine density in the
prelimbic cortex 3 weeks after toxin administration [92].
Intriguingly, cognitive deficits in schizophrenia have been
linked with dopamine dysfunction [93, 94] and reduced
dendritic spine density has been observed in postmortem tis-
sue taken from schizophrenic patients [95–97]. Results from
Solis et al. suggest that there may indeed be a pathological
link between dopamine dysfunction and loss of dendritic
spine density. A finding consistent with this idea is that
treatment with the atypical antipsychotic olanzapine, but not
the typical antipsychotic haloperidol, was able to rescue 6-
hydroxydopamine-induced spine loss in the rat prefrontal
cortex [98]. At the molecular level, activation of the D1/D5
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receptors with the selective agonist SKF-38393 leads to spine
shrinkage through activation of the Rap GEF Epac2 [23].

Less conventional neuromodulators have also been impli-
cated in the regulation of dendritic spines. Classically defined
as a hormone, estrogens have recently come into the spotlight
as an important modulator of dendritic spine plasticity [99].
Treatment of primary cortical cultures with 17𝛽-estradiol
increased spine density while decreasing the AMPA receptor
content of spines. These “silent synapses” were potentiated
by activation of NMDA receptors, reminiscent of activity-
dependent maturation of silent synapses during develop-
ment [25]. These effects were mediated by the Rap/AF-
6(afadin)/ERK1/2 signalling pathways, as inhibiting or inter-
fering with the actions of these proteins was sufficient to
block 17𝛽-estradiol’s effects on spines [25]. Additionally,
recent studies have demonstrated that acute treatment of rat
cortical cultures with 17𝛽-estradiol leads to phosphorylation
of WAVE1 and its subsequent targeting to spines, resulting in
the polymerization of actin.This is thought to be required for
the formation of immature dendritic protrusions in young
cortical neurons [100]. Similar findings have been reported
in hippocampal cultured neurons. Here, chronic treatment
of hippocampal cultures with 17𝛽-estradiol resulted in an
increased number of synapses and increased localization of
kalirin-7 to dendritic spines [101]. However, these actions
of 17𝛽-estradiol seem to be mediated through the estrogen
receptor beta (ER𝛽) as activation of ER𝛽 but not ER𝛼 agonists
is able to recapitulate these effects [101–104].

5. Small GTPase Effectors and
Actin Binding Proteins

Downstream of small GTPases is a series of effector pro-
teins which convey signals to direct regulators of the actin
cytoskeleton. A particularly well-described family of effectors
of the Rho GTPases Rac1 and Cdc42 are the p21-activated
kinases (PAKs) [105] and the Rho kinases (ROCK) [106].
The PAKs are critical for spine morphogenesis and synaptic
structure, particularly in the cortex [107]. More recently,
a series of studies has explored the consequences of PAK
and ROCK knockout in the forebrain. Deletion of PAK1
or ROCK-2 results in the loss of F-actin from spines [108,
109]. Further, both knockout animals demonstrated deficits
in hippocampal LTP, highlighting the importance of these
Rho kinases for synaptic plasticity. Intriguingly, codeletion
of PAK1 and PAK3 resulted in a more severe structural
and functional phenotype; the PAK1/3 knockouts showed
impaired bidirectional plasticity in the hippocampus, deficits
in learning and memory, and gross structural abnormalities
in the forebrain [110]. Shared features of these Rho kinase
knockout animals include disruption of the kinase cascade
downstream of the Rho GTPases, a release of cofilin from
inhibition, and a subsequent loss of F-actin from dendritic
spines.

More insight into the effects of PAK and ROCK family
members on the actin cytoskeleton is provided bywork exam-
ining LIM-kinase (LIMK). Active Pak1 can phosphorylate
LIMK-1 which in turn inhibits cofilin activity [111]. As a
result, genetic ablation of LIMK-1 results in elevated cofilin

activity, aberrant spine morphology, and enhanced LTP [53].
Intriguingly, recent work has identified a new mechanism
of regulation for LIMK-1 via lipid modification [24]. N-
terminal palmitoylation of LIMK-1 targets the kinase to
dendritic spines and is necessary for activity-dependent spine
growth. Palmitoylation is emerging as a critical modulator of
spiny synapse function [112]; small GTPases themselves are
targeted to various microdomains through dynamic palmi-
toylation [113–115], though the implications of this signalling
have yet to be explored thoroughly in neurons.

As their name suggests, actin binding proteins directly
influence actin dynamics through nucleating, stabilizing, or
severing actin filaments. Members of the Wiskott-Aldrich
syndrome protein (WASP) family bind both monomeric and
filamentous actin [116] and are relieved from autoinhibition
by Rho GTPases [117]. N-WASP, a brain enriched WASP,
appears to be critical for spine and excitatory synapse for-
mation [40]. Small GTPases also exert control over a similar
WASP-family verprolin-homologous protein (WAVE) family.
These proteins play a role in spine maintenance [118] and
formation [119]; deficient WAVE1 expression is accompanied
by spatial memory deficits in mice [120].

The Arp2/Arp3 complex is a well-studied actin nucleator
and facilitator of actin branching [121]. The Arp2/Arp3
complex is downstream of Rho family GTPases, WASP,
and WAVE proteins [122] and is likely to be instrumental
in dendritic spine remodelling during spine growth [123].
Inhibition of the Arp2/Arp3 complex by protein kinase C
binding protein (PICK1) is necessary for spine shrinkage
during LTD [124]. More recently, PICK1 has been shown to
signal downstream of AMPARs to inactivate Cdc42 [125]. As
mentioned above, cofilin is another critical determinant of
actin skeletal dynamics and competes with the Arp2/Arp3
complex by severing and debranching actin filaments [126].
Though prolonged cofilin activation promotes a reduction
in spine size [127], it appears that a transient burst of
cofilin activity is required for spine growth during chemically
induced LTP [128]. A recent review of small GTPase control
of the actin cytoskeleton covers these pathways in greater
detail [44].

Among the list of Rap effectors are a number of actin
cytoskeleton regulators. Rap1 binds directly to afadin, also
known as AF-6 [129] which is a multidomain scaffolding
protein instrumental in cell-cell adhesion [130]. Indeed,
active Rap was responsible for the subcellular targeting of
afadin in neurons under basal and after NMDA recep-
tor activation [41, 131]. Intriguingly, following activation of
NMDA receptors, afadin translocates to both synapses and
the nucleus in a time-dependent manner. At synapses, afadin
is required for activity-dependent and Rap-dependent spine
modifications [41], whereas in the nucleus, afadin is required
for the time-dependent phosphorylation of H3 histones,
suggesting a potential role in regulating activity-dependent
gene transcription [131]. Afadin also directly interacts with
the actin-polymerizing protein profilin [129] and with the
adhesion protein, N-cadherin [132], and the AMPA receptor
subunit, GluA2 [133]. Consistent with these interactions,
afadin is required for linking N-cadherin with the kalirin-
7, therefore allowing regulation of Rac activation and linking
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N-cadherin with the dynamic modulation of dendritic spine
morphology [132]. Moreover, knockdown of afadin using
an RNAi approach results in a loss of dendritic architec-
ture, dendritic spine density, and AMPA receptor mediated
transmission [133]. Rap has also been shown to interact with
and activate the Rac-GEFs Vav2 and Tiam1 [134], providing
another example of small GTPase pathway cross talk.

Thus, a stereotyped spine-morphogenic signalling cas-
cade begins with an extracellular signal that is conveyed to
GEFs or GAPs that control small GTPase activity, which
in turn influences actin binding proteins through small
GTPase effectors. It is now emerging that, in addition to
activity-dependent signalling via NMDA receptors, other
extracellular signals, including neuromodulators [22, 23] and
neurosteroids, may act via similar pathways.

6. Conclusions

Understanding how neurons encode information is a funda-
mental challenge in determining how we store and retrieve
information about our surrounds, allowing us to adapt at
a behavioural level. Growing evidence indicates that a key
cellular correlate of information encoding is the regulation
of dendritic spines and thus excitatory synaptic connections
[1, 3]. In this review, we have presented recent evidence that
places small GTPase proteins as an important intermediate
between extracellular signals and the actin cytoskeleton,
allowing for the regulation of synapse structure and function.
Important advances have beenmade in our understanding of
the molecules that exert a tight regulation of small GTPase
function in neurons [32, 61], and it is also emerging that
these molecules have unique spatiotemporal dynamics that
are critical to their cellular functions [55, 65, 66]. Our
current understanding suggests that small GTPases can act
independently, via their effectors, directly regulating the actin
cytoskeleton, to exert effects of dendritic spine structure and
numbers, as well as on synaptic function. However, several
studies have now demonstrated that multiple small GTPases
can act in cooperation to bring about changes in dendritic
spine, or on themaintenance of overall neuronalmorphology
[77, 78]. Moreover, it is also emerging that a wide range of
extracellular signals also signal via small GTPases to exert
morphogenic actions [22, 25, 42, 47, 50, 65, 74, 80, 81]. Many
of these extracellular signals can activate the same small
GTPases, suggesting that within a single neuron multiple
factors canmodulate the activity of a single subfamily of small
GTPase. Elucidating how neurons integrate multiple signals
and how they in turn summate impacting the function of the
cell and ultimately affect cognition is fast emerging as another
challenge. It is likely that gaining a greater understanding of
the spatiotemporal dynamics of small GTPase signalling will
provide an insight into how neurons handle this amount of
information. In addition, further determining the complex
manner in which regulators of small GTPase signalling inter-
act and determining the nonlinear manner in which multiple
pathways are activated by the same signals will provide a
more comprehensive understanding of how multiple factors
regulate spine plasticity.

It is also of note that multiple neurodevelopmental,
psychiatric, and neurodegenerative disorders have been
strongly associatedwith disruptions of neural circuits [6, 135].
Indeed, numerous neuropathological postmortem studies
have strongly linked abnormal spine morphology with the
pathogenesis of a number of neuropsychiatric, neurodevel-
opmental, and neurodegenerative disorders [135, 136], such
as ID [137], fragile-X [138], Down’s syndrome [139], autism
spectrum disorders (ASDs) [140–142], schizophrenia [96,
143], depression [144], and Alzheimer’s disease [145, 146]. It
is currently posited that dendritic spine dysmorphogenesis
can lead to defective or excessive synapse function and
connectivity, resulting in disruptions in neural circuitry.This
topic has recently been reviewed in depth [2, 6, 135]. Dys-
regulation of the complex mechanisms that control dendritic
spine structure and functionmay contribute to these synaptic
irregularities. Understanding the cellular mechanisms by
which dendritic spine morphogenesis occurs will expand
not only our knowledge of normal brain function, but
that of abnormal brain function as well. Though a greater
understanding of the cellular mechanisms that underpin
cortical plasticity will be required, harnessing structural
plasticity may offer a powerful future therapeutic avenue for
neuropathologies.
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