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Simple Summary: There is a clinical need for biomarkers predictive of resistance to taxane therapy
for patients with metastatic castration-resistant prostate cancer (mCRPC). Based on existing evidence
for the role of ATP-binding cassette (ABC) transporters in taxane resistance, we sought to assess the
association between ABCB1 gene amplification and primary resistance to docetaxel or cabazitaxel
in mCRPC patients using sparse whole genome sequencing from plasma-derived cell-free DNA
(cfDNA). Because sparse whole genome sequencing is more cost-effective than traditional cfDNA
profiling and less invasive than tissue biopsies, a clinically useful biomarker of taxane resistance
discovered using this technique has the potential to be broadly applied in clinical practice. We did
not detect a statistically significant association between ABCB1 amplification detected by this method
and docetaxel or cabazitaxel resistance in our cohort. Future studies with larger samples including
ABCB1 amplification in a suite of putative biomarkers are warranted to draw definitive conclusions.

Abstract: There are no biomarkers predictive of resistance to docetaxel or cabazitaxel validated
for patients with metastatic castration-resistant prostate cancer (mCRPC). We assessed the associa-
tion between ABCB1 amplification and primary resistance to docetaxel or cabazitaxel for patients
with mCRPC, using circulating cell-free DNA (cfDNA). Patients with ≥1 plasma sample drawn
within 12 months before starting docetaxel (cohort A) or cabazitaxel (cohort B) for mCRPC were
identified from the Dana–Farber Cancer Institute IRB approved database. Sparse whole genome
sequencing was performed on the selected cfDNA samples and tumor fractions were estimated using
the computational tool ichorCNA. We evaluated the association between ABCB1 amplification or
other copy number alterations and primary resistance to docetaxel or cabazitaxel. Of the selected
176 patients, 45 samples in cohort A and 21 samples in cohort B had sufficient tumor content. No
significant association was found between ABCB1 amplification and primary resistance to docetaxel
(p = 0.58; odds ratio (OR) = 1.49) or cabazitaxel (p = 0.97; OR = 1.06). No significant association was
found between exploratory biomarkers and primary resistance to docetaxel or cabazitaxel. In this
study, ABCB1 amplification did not predict primary resistance to docetaxel or cabazitaxel for mCRPC.
Future studies including ABCB1 amplification in a suite of putative biomarkers and a larger cohort
may aid in drawing definitive conclusions.
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1. Introduction

Prostate cancer is currently the most diagnosed cancer, with 191,930 estimated new
cases in 2020, and the second most common cause of cancer-related mortality in Amer-
ican men [1]. Most deaths occur when the disease progresses to metastatic castration-
resistant prostate cancer (mCRPC) [2]. Currently, docetaxel and cabazitaxel are the stan-
dard chemotherapy options for mCRPC based on the results of four large phase 3 clinical
trials [3–6]. Only approximately half of the patients receiving docetaxel for mCRPC have a
biochemical response, while the rest have primarily resistance to docetaxel [3]. The rate of
innate resistance to cabazitaxel for men with mCRPC progressing on docetaxel is higher at
~60% [5]. In addition, initially responding patients will progress in time. Several potential
mechanisms of resistance have been investigated in the past, including the upregulation
of multi-drug resistance (MDR) transporters [7] and the upregulation of phosphorylated
AKT [8], with a potential predictive role for the detection of intranuclear androgen re-
ceptor splice variant 7 (AR-v7) in circulating tumor cells [9,10]; however, no biomarker
of taxane resistance or response for patients with mCRPC has been validated for clinical
decision-making. Finding biomarkers predictive of resistance or response to docetaxel
and/or cabazitaxel would allow the clinician to use the most efficient drug, avoiding
the administration of ineffective chemotherapy and thus sparing the patient unnecessary
toxicity. Therefore, the discovery of response/resistance biomarkers is an important unmet
clinical need.

The molecular mechanisms underpinning primary or acquired resistance to either
taxane are not fully understood. Nonetheless, several studies reported a temporal correla-
tion between the acquisition of docetaxel resistance and the upregulation of the Multidrug
Resistance Protein 1 (MDR1) or ATP-Binding Cassette Sub-Family B Member 1 transporter
(encoded by the ABCB1 gene locus) in ovarian, breast, and prostate cancer [11–13]. The
ABCB1 gene encodes one of the major ATP-binding cassette (ABC) drug transporters,
known for increasing drug efflux from tumor cells [12,13]. Among the other forms of
genomic instability postulated as mechanisms underlying the increased expression of
ABCB1, the amplification of this gene and its locus 7q21 was demonstrated in ovarian and
breast cancer cells resistant to docetaxel [12]. As such, ABCB1 amplification could also be
potentially associated with taxane resistance in mCRPC. Other genetic alterations found
associated with taxane resistance in pre-clinical studies of mCRPC were ERG-TMPRSS2
translocation and deletion of KDM5D, a gene encoded on the Y chromosome [14–16]. These
gene aberrations were frequently observed in patients with castration-resistant prostate
cancer [17,18], and thus are also worth being evaluated as putative biomarkers of resistance
to taxane therapy in mCRPC.

The Prostate Cancer Working Group (PCWG3) highlighted the importance of serial bi-
ologic tumor profiling using blood-based diagnostics to gain greater insight into the disease
mechanisms of resistance and potentially detect clinically useful predictive biomarkers [19].
In this regard, plasma-derived circulating cell-free DNA (cfDNA) provides an accurate
liquid tumor biopsy allowing for comprehensive tumor characterization including gene
copy number alterations (CNAs) [20]. Previous analyses suggested the potential prognostic
and predictive value of both the total quantity of cfDNA in the blood and the estimated
tumor-derived portion of cfDNA (tumor fraction) [21,22].

We previously reported the utility of a computational tool ichorCNA, developed by
investigators at the Broad Institute of MIT and Harvard, in estimating tumor fraction
using 0.1× coverage whole genome sequencing (termed Ultra-Low Pass Whole Genome
Sequencing, ULP-WGS) [22–24]. In addition to estimating tumor fraction, ichorCNA
can also identify CNAs in cfDNA in a much more cost-effective manner than existing
targeted sequencing platforms. In this study, we sought to assess the association of ABCB1
amplification and primary resistance to docetaxel or cabazitaxel therapy for mCRPC. Given
that ichorCNA does not identify translocations nor CNAs in chromosome Y, ERG-TMPRSS2
fusions and KDM5D deletions cannot be detected through this method [23]. However,
since ichorCNA allows for the assessment of the genome-wide copy number profile, a
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secondary endpoint was to explore the association of any other identified CNA and primary
resistance to either taxane for mCRPC. Because it is often difficult to obtain metastatic
tissue from patients for genomic testing, if successful, our method would provide a non-
invasive biomarker predictive for docetaxel and/or cabazitaxel resistance, thus enabling
an accessible and personalized approach to therapy management.

2. Materials and Methods
2.1. Study Population

A cohort (A) of patients with at least 1 plasma sample collected and stored within
12 months prior to initiating docetaxel for mCRPC (between 2001 and 2016) and a cohort
(B) of patients with at least 1 plasma sample collected and stored within 12 months prior
to starting cabazitaxel for mCRPC (between 2010 and 2016) were identified from the
Institutional Review Board approved Prostate Clinical Research Information System (CRIS)
database at Dana–Farber Cancer Institute [25]. Patients who received cabazitaxel before
docetaxel or any taxane in combination with other agents were excluded. All patients
had consented to Dana–Farber/Harvard Cancer Center protocol no. 01-045 “Collection of
Specimens and Clinical Data for Patients with Prostate cancer or at High Risk for Prostate
Cancer”. This protocol allows for banking of tissue and blood specimens for research use,
including comprehensive genetic sequencing and data sharing.

2.2. Study Design

We analyzed the cfDNA of mCRPC patients who were treated with docetaxel and/or
cabazitaxel and had plasma samples drawn and stored per protocol no. 01-045 within
12 months before treatment start. When multiple banked samples were available for a
patient, we prioritized the sample that was collected closest to therapy initiation. The DNA
isolated from banked plasma samples was subjected to ULP-WGS through ichorCNA to
identify cases with sufficient tumor content to build sequencing libraries and detect ABCB1
amplifications and any other CNA. The primary objective was to assess the correlation
between ABCB1 amplification (established biomarker) and primary resistance to docetaxel
or cabazitaxel. The secondary objective was to evaluate the correlation between any
detected CNA (exploratory biomarkers) and primary resistance to docetaxel or cabazitaxel.
Primary resistance was defined as the absence of a response or death within 4 months from
treatment initiation. In turn, response was defined as any of the following: (1) PSA decline
≥50% from baseline; (2) radiologic response according to RECIST criteria version 1.1 [26].

2.3. Study Procedures

The identified banked plasma samples (1000 µL/subject) were retrieved from the
genitourinary Gelb tumor bank. These frozen aliquots of plasma were thawed at room tem-
perature and then subjected to high-speed spin. The Qiagen Circulating DNA kit (QIAGEN,
Germantown, MD, USA) on the QIAsymphony liquid handling system was used to extract
the cfDNA from the plasma samples. ULP-WGS was performed on the extracted cfDNA
and sequencing information was run through ichorCNA to detect cases harboring de-
tectable tumor DNA content and CNAs. In detail, the isolated cfDNA was quantified using
the PicoGreen (Life Science Technologies, Waltham, MA, USA) assay on a Hamilton STAR-
line liquid handling system. CfDNA sequencing libraries were constructed using the Kapa
Hyper Prep kit with custom adapters (Integrated DNA Technologies, Coralville, IA, USA).
A median of 5 ng of cfDNA input (3–20 ng) was used for ULP-WGS, which was performed
using a Hamilton STAR-line liquid handling system (Hamilton Company, Reno, NV, USA).
Constructed sequencing libraries were pooled (2 µL of each × 96 per pool) and sequenced
using 100 bp paired-end runs over 1× lane on a HiSeq2500 (Illumina, San Diego, CA,
USA) for ULP-WGS (~0.1× coverage). The genome was fractioned into T non-overlapping
bins of 1 Mb and the HMMcopy Suite1 (http://compbio.bccrc.ca/softwar/hmmcopy/
(accessed on 12 August 2019)) tools were used to count aligned reads based on overlap
within each bin. The read counts were then normalized to correct for GC-content and
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mappability biases using HMMcopy R package. Tumor copy number prediction and tumor
DNA estimate were achieved using a hidden Markov Model. The software ichorCNA
(available at https://github.com/broadinstitute/ichorCNA (accessed on 19 August 2019))
was used to derive genome-wide copy number plots. Samples passed a quality threshold
(median absolute deviation score < 0.115) for accurate purity estimate. Considering the
Broad Institute preliminary results [23], up to 40% of samples were estimated to yield >7%
tumor purity, which was set as threshold to guarantee the quality of the data. As ichorCNA
does not account for subclonal events, to guarantee accuracy, a gene was defined ampli-
fied or deleted when ≥5 copies or ≤1 copy, respectively, were found. The analyses were
performed by Genomics Platform at the Broad Institute. In order to validate the output
achieved with ichorCNA, GISTIC2.0 was rerun on the previously identified sequencing
libraries. The GISTIC2.0 module, an evolution of the GISTIC (Genomic Identification of Sig-
nificant Targets in Cancer) algorithm, identifies probable CNAs by evaluating the frequency
and amplitude of observed events [27]. GISTIC was applied to several cancer types [28,29]
and aided identifications of several new targets of amplifications and deletions [30,31], and
thus was an ideal tool to provide quality metrics for confidence.

2.4. Statistical Analysis

Patient baseline clinical characteristics are presented as count and percentages and
95% confidence interval for proportion was calculated using exact method. The odds of
docetaxel or cabazitaxel resistance (yes vs. no) for patients with ABCB1 amplification or
without were compared by odds ratio (OR). An OR greater than 1 indicates a higher likeli-
hood of taxane resistance for patients with ABCB1 amplification. OR and corresponding
p-value were calculated using Firth’s bias-reduced logistic regression with profile penalized
log-likelihood [32,33].

For the analysis of exploratory biomarkers, only amplifications or deletions with preva-
lence >10% (>4 and >2 patients in cohort A and B, respectively) were evaluated. ORs of
taxane resistance for patients with an amplification (or deletion) vs. no amplification (or no
deletion) were calculated and raw p-values for all observed gene aberrations were generated
using Firth’s bias-reduced logistic regression with profile penalized log-likelihood and pre-
sented using volcano graphs (x-axis represents log(OR) and y-axis represents −log10(raw
p-value)). To control for false discovery rate, p-values were adjusted by Benjamini–Yekutieli
procedure. The biomarker was considered promising if the adjusted p-value was <0.05.

3. Results
3.1. Cohorts

Of the 242 patients initially selected from the CRIS registry, 180 in cohort A and 62 in
cohort B, 64 men were excluded from the study (Figure 1). Reasons for exclusion were
the following: previous use of docetaxel for hormone sensitive disease or in combination
with other drugs within clinical protocols, only plasma sample collected within 1 year
prior to cabazitaxel start being the same available for docetaxel or drawn when the patient
was still on docetaxel, and no PSA or radiological data available. Of the 176 remaining
patients, 134 had at least one plasma sample collected and banked within 1 year prior to
starting docetaxel and 42 prior to commencing cabazitaxel. Of these samples, ULP-WGS
identified a total of 68 with sufficient tumor purity (>7%) to confidently detect ABCB1
amplification and other CNAs. Because one patient in cohort A had three available samples
with sufficient tumor content, the sample drawn closer to docetaxel start was prioritized
and the other two were excluded. Thus, overall, 66 patients were eligible for this analysis:
45 patients in cohort A and 21 in cohort B. Four patients had one plasma sample available
prior to docetaxel start and one prior to cabazitaxel initiation, and thus were counted in
both cohorts.

https://github.com/broadinstitute/ichorCNA
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3.2. Patient Characteristics

Patient clinical and radiological characteristics are described in Table 1. At the time of
data annotation (May 2017), 98% of patients (44 of 45) in cohort A and 71% (15 of 21) in
cohort B had died. More than half of men (51%; 23 of 45) in cohort A received 1–3 lines
of therapy for mCRPC prior to starting docetaxel and 22% (10 of 45) had four or more
previous treatments. Abiraterone acetate, enzalutamide, or radium-223 were not commonly
administered before docetaxel. In cohort B, more than 2/3 of men (71%; 15 of 21) had
progressed on at least four lines of therapy before receiving cabazitaxel; in particular, all
patients had received docetaxel, 12 (57%) abiraterone acetate, and 7 (33%) enzalutamide.
Most patients (53%; 24 of 45) in cohort A received at least six cycles of docetaxel. In
cohort B, most patients (57%; 12 of 21) received less than four cycles of cabazitaxel. A
PSA decline ≥ 50% was achieved in 42% (19 of 45) and 14% (3 of 21) of men in cohort A
and B, respectively. Two of 45 men (4%) in the docetaxel cohort had a radiologic response
within 4 months of the start of therapy, while none was observed in the cabazitaxel cohort.
Primary resistance was observed in 26 of 45 patients (58%) in cohort A and in 18 of 21 (86%)
in cohort B.

3.3. Laboratory and Clinical Outcomes

No statistically significant association was found between ABCB1 amplification and
primary resistance in cohort A (unadjusted p = 0.58; OR = 1.49, 95% CI: 0.36–7.11; Table 2)
or B (unadjusted p = 0.97; OR = 1.06, 95% CI: 0.06–158.91; Table 3). The putative biomarker
was observed in 9 of 45 patients (20.0%; 95% CI, 9.6–34.6) in cohort A and 6 of those (66.7%;
95% CI, 29.9–92.5) showed innate resistance to docetaxel. The rate of ABCB1 amplification
among patients with docetaxel innate resistance was 23.0% (95% CI, 9.0–43.7).
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Table 1. Patient characteristics.

Variables

Cohorts

Docetaxel (A)
n = 45

Cabazitaxel (B)
n = 21

Still alive, n (%)
No 44 (98) 15 (71)
Yes 1 (2) 6 (29)

Prior treatments for mCRPC, n (%)
0 12 (27) 0 (0)

1–3 23 (51) 6 (29)
≥4 10 (22) 15 (71)

Prior abiraterone acetate, n (%)
No 39 (87) 9 (43)
Yes 6 (13) 12 (57)

Prior enzalutamide, n (%)
No 43 (96) 14 (67)
Yes 2 (4) 7 (33)

Prior radium-223, n (%)
No 44 (98) 19 (90)
Yes 1 (2) 2 (10)

Prior docetaxel, n (%)
No 45 (100) 0 (0)
Yes 0 (0) 21 (100)

Resistance, n (%)
No 19 (42) 3 (14)
Yes 26 (58) 18 (86)

PSA decline ≥ 80% within 4 months from taxane
start, n (%)

No 36 (80) 20 (95)
Yes 9 (20) 1 (5)

PSA decline ≥ 50% within 4 months from taxane
start, n (%)

No 26 (58) 18 (86)
Yes 19 (42) 3 (14)

Radiological response within 4 months from taxane
start, n (%)

No 42 (93) 21 (100)
Yes 2 (4) 0 (0)

N/A 1 (2) 0 (0)
Cycles of taxane, n (%)

1–3 12 (27) 12 (57)
4–6 4 (9) 2 (10)
>6 24 (53) 7 (33)

N/A 5 (11) 0 (0)
Abbreviations: mCRPC, metastatic castration-resistant prostate cancer; N/A, not available; PSA, prostate-
specific antigen.

Table 2. Association between ABCB1 amplification and primary resistance to docetaxel in cohort A
(n = 45).

ABCB1
Amplification, n (%)

No ABCB1
Amplification, n (%) Total, n (%)

Resistance, n (%) 6 (13.3) 20 (44.5) 26 (57.8)

No resistance, n (%) 3 (6.7) 16 (35.5) 19 (42.2)

Total, n (%) 9 (20.0) 36 (80.0) 45 (100.0)
p-value = 0.58; Odds Ratio = 1.49 (95% CI: 0.36–7.11); p-value and odds ratio were calculated using Firth’s
bias-reduced logistic regression.
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Table 3. Association between ABCB1 amplification and primary resistance to cabazitaxel in cohort B
(n = 21).

ABCB1
Amplification, n (%)

No ABCB1
Amplification, n (%) Total, n (%)

Resistance, n (%) 2 (9.5) 16 (76.2) 18 (85.7)

No resistance, n (%) 0 (0.00) 3 (14.3) 3 (14.3)

Total, n (%) 2 (9.5) 19 (90.5) 21 (100.0)
p-value = 0.97; Odds Ratio = 1.06 (95% CI: 0.06–158.91); p-value and odds ratio were calculated using Firth’s
bias-reduced logistic regression.

In cohort B, 2 of 21 patients (9.5%; 95% CI, 1.2–30.4) had ABCB1 amplification prior to
starting cabazitaxel and both of them showed primary resistance to cabazitaxel (Table 3).
The rate of ABCB1 amplification among the patients with cabazitaxel innate resistance was
11.1% (95% CI, 1.4–34.7).

We also explored the association of genome-wide CNAs with sensitivity and resis-
tance to docetaxel and cabazitaxel, as depicted in the volcano plots in Figure 2. This
analysis did not identify any CNAs (amplification or deletion) predictive of primary
resistance to docetaxel or cabazitaxel after adjusting for the false discovery rate. Interest-
ingly, in this cohort, the amplification of the AR gene locus trended towards association
with resistance to docetaxel and sensitivity to cabazitaxel, while RB1 deletion trended
towards association with resistance to both agents. The amplified gene segment most
highly associated with docetaxel resistance was in chromosome Xp13.1, and the deleted
segment most highly associated with docetaxel sensitivity was in chromosome 2q21.
The amplified gene segment most highly associated with cabazitaxel sensitivity was
in chromosome Xp13.1, and the deleted gene segment most highly associated with
cabazitaxel sensitivity was in chromosome 1p33. Genes of interest within these seg-
ments are depicted in the figure, and a list of genes with the smallest and identical
p-values classified by docetaxel or cabazitaxel cohort and type of CNA is reported in
Table S1 of the Supplementary Information.
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Figure 2. Volcano plots of exploratory biomarkers (amplifications, above; deletions, below) of resistance to docetaxel (left)
or cabazitaxel (right). Note: x-axis = log(OR), y-axis = −log10(raw p-value). The vertical dash lines indicate an effect size
(OR) of 2 and 0.5; the horizontal dash line indicates a (unadjusted) p-value of 0.05. The p-values are the raw p-value prior to
false discovery rate adjustment. Specific genes of interest were indicated with colored dots. Among the genes with the
most significant and identical p-values, a selected 5 are shown in each panel. #: 24 genes have most significant and identical
p-values; $: 14 genes have most significant and identical p-values; &: 17 genes have most significant and identical p-values;
@: 26 genes have most significant and identical p-values (Supplementary Table S1).

4. Discussion

Although several new treatment options have recently been approved for mCRPC,
docetaxel and cabazitaxel remain the standard chemotherapeutics for this state of disease.
Despite their demonstrated efficacy for most patients with mCRPC, there is a portion
of men who have primary resistance to these agents [3–5]. In the past, several studies
aimed to correlate biological or genetic features in prostate cancer with resistance to taxane-
based therapy [7–10]. However, no biomarker of resistance to taxane-based therapy has
been validated. Based on existing evidence for the role of ATP-binding cassette (ABC)
transporters in taxane resistance, we sought to assess the correlation between the putative
biomarker ABCB1 gene amplification or other CNAs detected through ULP-WGS used on
plasma-extracted cfDNA and innate resistance to docetaxel or cabazitaxel for mCRPC.

No statistically significant association was observed between the putative biomarker
or any other exploratory CNA and primary resistance to docetaxel or cabazitaxel in this
study. This analysis was underpowered due to the relatively small sample size (45 patients
for A and 21 for B) resulting from the requirement for selecting specimens from the original
population (n = 176) with sufficient tumor purity (>7%) for reliable output quality. The
rates of samples with tumor-derived cfDNA >7% detected in cohort A (33%) and in cohort
B (50%) are consistent with our previous report, where tumor fraction in cfDNA >10% was
found in ~29% of mCRPC patients [23]. This requirement does limit the applicability of
this method in patients with lower tumor fraction.

For the docetaxel cohort, given the sample size in this analysis (n = 45), prevalence
of ABCB1 amplification (20%), and resistance observed in these patients (n = 26, 58%), the
maximum power attainable for putative effect is about 60% with a detectable odds ratio of
more than eight (assuming no multiple comparison adjustment). For the cabazitaxel cohort,
given the sample size in this analysis (n = 21), prevalence of ABCB1 amplification (10%), and
resistance observed in these patients (n = 18, 86%), the maximum power attainable is about
30% with a protective OR of 0.1. Given the modest prevalence of ACBC1 amplification (20%)
and high proportion of resistance (58%), a sample size around 100 will provide an 80% power
to detect an OR of 9.5, and a sample size around 200 will provide an 80% power to detect an
OR of 3.71. As such, the data we present here are intended to provide a proof of principle for
the techniques described that copy number profiling from cfDNA is feasible and potentially
clinically relevant in the subset of patients with high tumor fraction. Future studies with a
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larger sample size are warranted to achieve proper statistical power to test whether ABCB1
amplification or the copy number alterations depicted in Figure 2 are predictive for taxane
resistance or response.

Another limitation of this study is that, due to sparse sequencing and the requirement
for binning over 1 Mb segments, ichorCNA can identify CNAs over large genomic regions
but would not detect more focal amplification events. Additionally, this method is intended
to detect the amplification of the ABCB1 gene locus and would not be able to identify
overexpression of the ABCB1 protein through non-genetic mechanisms. Of note, ABCB1
amplification was observed more frequently in cohort A (20.0%) and B (9.5%) compared to
what has been previously reported in the Stand Up 2 Cancer database (~2%). This could be
due to different methodologies or thresholds for calling amplifications, the tumor fraction
>7% cut-off selecting for patients more likely to have ABCB1 amplification, or our study
population reflecting a more heavily pre-treated cohort [34–36]. We are currently in the
process of performing deep targeted-sequencing of the same cfDNA libraries achieved in
the present analysis, which would permit the detection of a variety of genetic alterations,
including more focal ABCB1 amplification as well as the other putative biomarkers KDM5D
deletion and ERG-TMPRSS2 translocation, even in cfDNA samples with tumor purity <7%.

Despite the limitations of our analysis, our observations that patients with ABCB1
amplification have a higher frequency of innate resistance to docetaxel (66.7% vs. 57.8%
in the overall population) and cabazitaxel (100% vs. 85.7%) are promising data, which
warrant further investigation in a larger dataset. Future analyses demonstrating ABCB1
amplification as a biomarker of primary resistance to either taxane for mCRPC would allow
for the consideration of alternative treatment strategies, including the selection of patients
for co-administration of an inhibitor of ABCB1/P-glycoprotein. These inhibitors have shown
promising activity in reversing taxane resistance in vitro [37–39], and ritonavir is being used
as a P-glycoprotein inhibitor in combination with oral docetaxel to increase the bioavailability
of the taxane [40]. Because prior clinical trials of ABCB1/P-glycoprotein inhibitors have
demonstrated notable toxicities, while novel inhibitors are in development [41], the ability to
select for patients most likely to benefit from these agents is potentially clinically relevant.

Our analysis also nominates novel amplification and deletion events for validation
of association with docetaxel and cabazitaxel sensitivity and resistance in larger datasets.
Banked plasma is generally more readily available than metastatic tissue specimens for
retrospective analyses, so the expansion of these studies using frozen plasma from existing
biospecimen banks is feasible. Further, because obtaining cfDNA is certainly less invasive
than achieving tumor biopsy specimens, and ULP-WGS is a much less expensive technique
than deep sequencing from cfDNA or the analysis of circulating tumor cells, the present
analysis could pave the way to larger studies using this method to investigate biomarkers
predictive of taxane therapy, which, if validated, could have the potential to be more easily
accessible and broadly used in clinical practice.

5. Conclusions

In a small sample of patients treated with docetaxel or cabazitaxel for mCRPC, no
significant association was observed between the putative biomarker ABCB1 amplification,
identified using ULP-WGS on plasma-derived cfDNA, and primary resistance to docetaxel
or cabazitaxel. However, data were promising and future analyses using deeper genomic
profiling or with larger datasets may aid in drawing definitive conclusions.
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