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Kidney renal clear cell carcinoma (KIRC) has high morbidity and gradually increased in
recent years, and the rate of progression once relapsed is high. At present, owing to
lack of effective prognosis predicted markers and post-recurrence drug selection
guidelines, the prognosis of KIRC patients is greatly affected. Necroptosis is a
regulated form of cell necrosis in a way that is independent of caspase. Induced
necroptosis is considered an effective strategy in chemotherapy and targeted drugs,
and it can also be used to improve the efficacy of immunotherapy. Herein, we quantified
the necroptosis landscape of KIRC patients from The Cancer Genome Atlas (TCGA)
database and divided them into two distinct necroptosis-related patterns (C1 and C2)
through the non-negative matrix factorization (NMF) algorithm. Multi-analysis revealed
the differences in clinicopathological characteristics and tumor immune
microenvironment (TIME). Then, we constructed the NRG prognosis signature
(NRGscore), which contained 10 NRGs (PLK1, APP, TNFRSF21, CXCL8, MYCN,
TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3). We confirmed that NRGscore
could be used as an independent prognostic marker for KIRC patients and performed
excellent stability and accuracy. A nomogram model was also established to provide a
more beneficial prognostic indicator for the clinic. We found that NRGscore was
significantly correlated with clinicopathological characteristics, TIME, and tumor
mutation burden (TMB) of KIRC patients. Moreover, NRGscore had effective
guiding significance for immunotherapy, chemotherapy, and targeted drugs.
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INTRODUCTION

Kidney cancer is the third largest malignant tumor in the genitourinary system, with growing
morbidity and mortality in recent years. It is estimated that in 2018, >400,000 new cases were
diagnosed and >175,000 people died of this disease (Bray et al., 2018). About 90% of kidney
cancer was renal cell carcinoma (RCC), 70% of which was kidney renal clear cell carcinoma
(KIRC) (Atkins and Tannir, 2018). About 30% of patients have metastasis by the time they are
diagnosed. With advances in RCC pathologic staging, the 5-year disease-specific survival (DSS)
rate has been reduced by about 10%; however, the median overall survival (OS) for advanced

Edited by:
Chunquan Li,

Harbin Medical University, China

Reviewed by:
Qian Chen,

Guangxi Medical University Cancer
Hospital, China
Emil Bulatov,

Kazan Federal University, Russia

*Correspondence:
Wen Song

songwen922@163.com
Xiaodong Song

songxdd@126.com

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 09 December 2021
Accepted: 19 January 2022

Published: 14 February 2022

Citation:
Xin S, Mao J, Duan C, Wang J, Lu Y,
Yang J, Hu J, Liu X, Guan W, Wang T,
Wang S, Liu J, Song W and Song X

(2022) Identification and Quantification
of Necroptosis Landscape on Therapy
and Prognosis in Kidney Renal Clear

Cell Carcinoma.
Front. Genet. 13:832046.

doi: 10.3389/fgene.2022.832046

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8320461

ORIGINAL RESEARCH
published: 14 February 2022

doi: 10.3389/fgene.2022.832046

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.832046&domain=pdf&date_stamp=2022-02-14
https://www.frontiersin.org/articles/10.3389/fgene.2022.832046/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.832046/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.832046/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.832046/full
http://creativecommons.org/licenses/by/4.0/
mailto:songwen922@163.com
mailto:songxdd@126.com
https://doi.org/10.3389/fgene.2022.832046
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.832046


RCC is just 10–15 months (Cairns, 2011). Medication
(immunotherapy, chemotherapy, and targeted drugs) is the
preferred treatment approach for patients with end-stage or
recurrent KIRC. However, due to secondary effects of drugs,
individual differences in drug sensitivity, and lack of reliable
prognostic biomarkers, there is usually little improvement in
the median OS probability after the first round of therapy
(Cairns, 2011; Luo et al., 2019). The tumor microenvironment
(TME) is closely related to tumor progression and efficacy of
immunotherapy and chemotherapy (Wu and Dai, 2017;
Hinshaw and Shevde, 2019; Newton et al., 2019). Altering
the TME has been a potential strategy for improving the
efficacy of anticancer treatments and clinical outcomes.

Necroptosis is a regulated form of cell necrosis in a way that
is independent of caspase (Gong et al., 2019). RIPK1 and
RIPK3 are upstream molecules of necroptosis, which form
oligomeric complexes of necrotic bodies and cause rapid
membrane permeability of necrotic cells through MLKL
(Galluzzi et al., 2012; Cai et al., 2014). Therefore,
necroptosis shows morphological characteristics of cell
membrane rupture, gradually translucent cytoplasm, and
organelle swelling (Vandenabeele et al., 2010; Chan, 2012).
In addition, the release of cell contents leads to exposure of
damage-associated molecular patterns (DAMPs) and a strong
inflammatory response (Pasparakis and Vandenabeele, 2015).
In apoptosis, DAMPs are mostly solidified, so necroptosis is
significantly diverse from apoptosis not only in morphology
but also in immunology (Kaczmarek et al., 2013). In multiple
tumors, the key molecular expression of the necroptosis
signaling pathway was reduced, which was related to poor
prognosis and enhanced tumor progression and metastasis
(Park et al., 2009; Ke et al., 2013; Wang et al., 2013; Feng et al.,
2015; Ertao et al., 2016; Stoll et al., 2017). Inducing necroptosis
is considered an effective strategy to solve the problem of
apoptosis resistance in the process of chemotherapy, and a
variety of anticancer drugs have been developed to induce
necroptosis (Gong et al., 2019). Furthermore, necroptosis
induces NF-κB–derived signals, activates dendritic cells
(DCs), increases antigen presentation, and enhances CD8 +
T cell–mediated tumor clearance (Snyder et al., 2019).
Bioinformatics analysis suggests that RIPK1, RIPK3, and
MLKL are associated with T cell dysfunction, and their
overexpression predicts prolonged survival in many clinical
studies of immune checkpoint inhibitors (ICIs) (Tang et al.,
2020). Several animal experiments have explored the synergy
of necroptosis in ICIs to produce novel immunotherapy
strategies (Kang et al., 2018; Van Hoecke et al., 2018;
Snyder et al., 2019). These suggest that necroptosis has
great potential in providing effective drug therapy for
advanced KIRC patients.

To address the abovementioned point, we clustered 526
KIRC patients from The Cancer Genome Atlas (TCGA)
database on the basis of the expression patterns of
necroptosis-related genes (NRGs). The differences between
necroptosis-related patterns were analyzed in multi-omics
analysis, including survival analysis, clinical relevance,
tumor immune microenvironment (TIME), and so on. A

prognostic signature (NRGscore) that could be used to
predict the OS of KIRC patients was then constructed,
confirming that it was an independent prognostic indicator.
Moreover, a nomogram model was constructed with
NRGscore and several clinicopathological characteristics to
provide accurate prognosis predictions for clinical patients.
Eventually, we have verified that NRGscore was significantly
correlated with TIME, somatic mutation, and
immunotherapeutic and chemotherapeutic efficacy in KIRC
patients.

MATERIALS AND METHODS

Retrieval of Necroptosis-Related Genes
We first obtained eight NRGs from the
GOBP_NECROPTOTIC_SIGNALING_PATHWAY gene set
in the Molecular Signatures database (MSigDB) (http://www.
gsea-msigdb.org/gsea/msigdb/index.jsp). After screening a large
number of previous research literature on necroptosis, a
necroptosis gene set containing 74 NRGs was finally retrieved
(Supplementary Table S1).

Acquisition and Process of Original Data
Transcription RNA sequencing, clinical information, and
somatic mutation of TCGA-KIRC cohort were publicly
available in TCGA database (https://portal.gdc.cancer.gov/).
Transcription RNA sequencing consisted of 539 KIRC tumor
tissues and 72 surrounding normal tissues. It was downloaded
as fragments per kilobase of transcript per million mapped
reads (FPKM), and gene expression was annotated in an
average when an individual gene symbol contained more
than one Ensembl ID. After removing the samples without
complete OS information, 526 patients were incorporated into
the training set. 328 TCGA samples included in the study had
somatic mutation information. The E-MATB-1980 dataset
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-
1980/) provided the RNA-seq data and clinical information of
101 KIRC samples to be an external test set. All sequencing
data were processed with log2 transformation and eliminated
batch effects between cohorts before establishing and verifying
the prognostic signature through the “sva” package in R.

Non-Negative Matrix Factorization
Clustering
We integrated the RNA-seq data and overall survival (OS)
information of TCGA-KIRC and gained the prognosis-related
NRGs through univariate COX regression analysis (p < 0.05).
Non-negative matrix factorization (NMF) was applied to
determine distinct necroptosis-related patterns with the help
of the “NMF” R package. The NMF algorithm divided the
original matrix into two non-negative matrices to identify the
potential features in the gene expression profile (Brunet et al.,
2004). The deposition was repeated and the results were
aggregated to obtain consistent clustering. According to the
cophenetic coefficient, contour, and sample size, k = 2 was
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determined as the best cluster number. All the prognosis-
related NRGs were selected to construct a principal
component analysis (PCA) scoring system with the
“prcomp” function in R.

Gene Set Enrichment Analysis
GSEA is a nonparametric and unsupervised algorithm that
transforms an isolate gene expression matrix to an expression
matrix of particular gene sets as features. The algorithm is
implemented based on the “clusterProfiler,” “enrichplot,” and
“DOSE” R packages. We downloaded the gene sets of “c2.
cp.kegg.v7.4. symbols,” “h.all.v7.4. symbols,” “c2.
cp.reactome.v7.4. symbols,” “c2. cp.biocarta.v7.4. symbols,” and
“c2. cp.pid.v7.4. symbols” from the MSigDB database for GSEA.
The statistical differences of the expression matrix after
transformation were analyzed by the “limma” package.

Evaluation of the Tumor Immune
Microenvironment
Single-sample gene set enrichment analysis (ssGSEA),
ESTIMATE, and CIBERSORT were used in R to assess the
TIME status of each KIRC sample. ssGSEA investigated
congenital and adaptive immune cells as well as a variety of
immune-related functions. The normalized enrichment score
(NES) was to embody the relative amount of each TIME
infiltration unit in patients. ESTIMATE predicted the level of
infiltrating matrix and immune cells by calculating stromal and
immune scores and comprehensively obtained the ESTIMATE
score for evaluating the TIME. We also assessed the relative
fraction of 22 tumor-infiltrating immune cells (TIICs) in each
cancer sample with the CIBERSORT algorithm. P < 0.05 was the
threshold of a credible sample for estimating the proportion of
immune cells.

Functional Enrichment Analysis of
Differentially Expressed Genes Between
Necroptosis-Related Patterns
After NMF clustering, to identify DEGs between two different
necroptosis phenotypes, we used the “limma” package in R to
evaluate gene expression differences through T statistics and p
values (p < 0.001) calculated by empirical Bayesian estimation in
the linear model (Ritchie et al., 2015). Then, we used Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of DEGs
between necroptosis-related patterns through the
“clusterProfiler,” “enrichplot,” and “DOSE” R packages. The
GO terms were in the biological process (BP), cellular
component (CC), and molecular function categories (MF). The
results were visualized with the “ggplot2” R package.

Establishment and Validation of the NRG
Prognostic Signature
Based on the prognosis-related NRGs in the univariate Cox
regression model, the “glmnet” R package performed the least

absolute shrinkage and selection operator (LASSO) and selected
the minimum criteria to identify important prognostic genes,
which contained 16 NRGs (Supplementary Table S2).
Eventually, the multivariate Cox regression made the NRG
signature more optimized and practical, with 10 NRGs
remaining. In addition, the NRGscore formula was obtained as
follows:

NRGscore � Σ(exp Genei × coefficient Genei ) .

After calculating the optimal cutoff of NRGscore by the
“surv_cutpoint” function in R, we divided TCGA-KIRC cohort
into high- and low-risk groups. With the help of Kaplan–Meier
analysis (“survival” package) and receiver operating
characteristic (ROC) curve (“timeROC” package), the
predictive ability of the prognostic model was assessed. The
ROC curve was quantified with the area under the curve
(AUC). The same NRGscore calculation formula, cutoff
value, and analysis methods were applied in the E-MTAB-
1980 cohort to validate the signature.

Establishment of the Nomogram Model
A nomogram is an intuitive clinical prognosis prediction model
integrating a variety of prognosis-related variables. We
established a nomogram model to provide a more accurate
prediction of prognosis for clinical patients based on
NRGscore and clinicopathological characteristics. First,
univariate Cox regression analysis was utilized to evaluate
predicted values of variables. Then, the coefficient was further
determined viamultivariate Cox regression analysis. The “rms” R
package then established a nomogram for predicting the
operating system. In addition, we used the “DynNom” R
package to construct a dynamic nomogram to visualize the
model. Concordance index (C-index) and calibration analysis
were applied to estimate the accuracy and consistency. Finally,
the clinical application value of the nomogram was evaluated
using decision curve analysis (DCA).

Evaluation of the Efficacy of Chemotherapy
and Targeted Drugs
The chemotherapeutic response of KIRC patients was evaluated
by Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.
cancerRxgene.org). Eight chemotherapeutic and targeted drugs in
KIRC treatment were chosen, including axitinib, bortezomib,
cisplatin, gefitinib, sorafenib, sunitinib, temsirolimus, and
vinblastine. The ridge regression algorithm was used to
calculate the half-maximal inhibitory concentration (IC50), and
satisfactory prediction accuracy was obtained through 10-fold
cross-validation (Geeleher et al., 2014). The process was
calculated by the “pRRophetic” R package.

Statistical Analysis
All statistical analyses were completed with R software (version
4.0.4) in this study. The Wilcoxon rank-sum test or paired-
samples t-test was used to verify the statistical difference in
two groups. When comparing the difference among more than
two groups, the Kruskal–Wallis test was selected. Spearman’s
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correlation analysis calculated the correlation coefficients
between TMB, immune checkpoint gene expression, and
NRGscore. The “maftools” package was used to build waterfall
plots to show the frequency of gene mutations. P-value <0.05 was
set as a statistically significant standard.

RESULT

To describe our research intuitively and systematically, we show
the research process in Figure 1.

NMF Clustering of Necroptosis-Related
Patterns in KIRC
We performed NMF clustering on TCGA-KIRC cohort based on
33 prognosis-related NRGs in the univariate COX regression
model (Table 1). According to cophenetic coefficients, k = 2 was
the best clustering result (Figures 2A,B). Eventually, we identified
two distinct necroptosis-related patterns termed necroptosis. C1
(n = 126) and necroptosis. C2 (n = 400). Figure 2C showed a
transcription profile heatmap of 33 prognosis-related NRGs in C1
and C2. Afterward, we performed PCA to further complement
the distinction between C1 and C2 at NRG transcription levels
(Figure 2D). Kaplan–Meier analysis indicated that C2 had
significantly longer OS than C1 (Figure 2E, p < 0.001).

Ultimately, the chi-square test was used to reveal the
distinction in clinicopathological characteristics between C1
and C2 (Figure 2F). As shown in the figure, the distribution
of TNM stages, pathologic stage, histologic grade, OS, DSS, and
PFI events was significantly distinct in C1 and C2. In addition, the
advanced pathological characteristics and bad prognosis results
had a tendency to concentrate on C1.

Tumor Immune Microenvironment of
Necroptosis-Related Patterns
Through GSEA analysis, we confirmed the concentration level of
TCGA-KIRC samples in DNA damage repair, immune
activation, stromal score, and carcinogenic-related pathways
(Figure 3A). We believed that C1 had a higher expression in
DNA damage repair and immune activation–related pathways,
while C2 had significantly higher concentration in carcinogenic-
related pathways, including regulation of autophagy. According
to previous studies, the process of necroptosis shows a strong
inflammatory response. To distinguish the difference between C1
and C2 in immune-related characteristics, we first quantified the
tumor microenvironment composition using ESTIMATE
(Figure 3B). The stromal score (p < 0.001), immune score
(p < 0.001), and ESTIMATE score (p < 0.001) of C1 were all
significantly higher than those in C2. Then, we compared the
distinctions between TIICs and immune-related functions

FIGURE 1 | Flow chart of our study.
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between necroptosis-related patterns through ssGSEA.Moreover,
the expression of multiple immune checkpoints, including
PDCD1, PDCD1LG2, LAG3, TIGIT, and CTLA4, was
significantly higher in C1 (Figure 3C). ssGSEA analysis
revealed that B cells, T cells, DCs, macrophages, and
neutrophils in C1 infiltrated significantly higher than those in
C2 (Figure 3D). Consistently, almost all immune functions in C1
were expressed higher (Figure 3E).

In addition, functional enrichment analyses of DEGs between
necroptosis-related patterns were applied to explore differences at
the molecule. GO analysis indicated that DEGs were mainly
involved in the regulation of the immune effector process,
phagocytosis, positive regulation of leukocyte activation, and
multiple immune-related biological processes (Figure 4A).
Transcription proteins were mostly located in mitochondrial
matrix, cell leading edge, and cell−substrate junction
(Figure 4B). Molecular functions were mostly concentrated in
molecular adapter activity, ubiquitin−like protein ligase binding,
and protein−macromolecule adapter activity (Figure 4C). In
addition, the DEGs were related to several immune-related
pathways, such as the chemokine signaling pathway, mTOR
signaling pathway, and TGF-β signaling pathway (Figure 4D).

Establishment of the NRG Signature in
TCGA-KIRC Cohort
We established a NRG prognostic signature to obtain an
indicator that could accurately and effectively predict the
clinical survival rate of KIRC patients. In previous studies,
we have obtained a univariate COX regression analysis model
with 33 NRGs. Then, the univariate Cox regression model was
processed to obtain the coefficient through LASSO Cox
regression analysis, and the minimum standard was selected
to further screen 16 genes (Figures 5A,B). The model was
eventually optimized using multivariate Cox regression
analysis, with a total of 10 genes remaining, including
PLK1, APP, TNFRSF21, CXCL8, MYCN, TNFRSF1A,
TRAF2, HSP90AA1, STUB1, and FLT3. We also obtained a
quantitative indicator: NRGscore = (0.39839 × PLK1
expression)—(0.21626 × APP expression)—(0.13856 ×
TNFRSF21 expression) + (0.08438 × CXCL8
expression)—(0.31476 × MYCN expression) + (0.40884 ×
TNFRSF1A expression) + (0.39387 × TRAF2
expression)—(0.26223 × HSP90AA1 expression)—(0.48853
× STUB1 expression)—(0.25716 × FLT3 expression). Then,
we calculated NRGscore for each patient based on the
abovementioned formula. In Kaplan–Meier analysis, we
divided patients into the high-risk group (n = 165) and
low-risk group (n = 361) based on the optimal cutoff value
(cut point = 1.276099) for NRGscore. In addition, the result
revealed that the OS of patients in the high-risk group was
significantly worse than that in the low-risk group [Figure 5C,
hazard ratio (HR) = 3.95 (2.91–5.37), p < 0.001]. Additionally,
we used ROC curves to assess the veracity of NRGscore to
predict the OS survival rate of KIRC patients. The AUCs for
the 1-, 3-, and 5-year OS survival rates were 0.770, 0.731, and
0.763, respectively (Figure 5D). Figures 5E–G showed that the
proportion of deaths in the high-risk group was elevated and
increased with NRGscore. The expression of PLK1, CXCL8,
TNFRSF1A, and TRAF2 was increased with the risk processes,
whereas APP, TNFRSF21, MYCN, HSP90AA1, STUB1, and
FLT3 were negatively correlated with NRGscore.

Validation of the NRG Signature in the
E-MTAB-1980 Cohort
To further verify the stability and accuracy of NRGscore in KIRC
patients, we used 101 KIRC patients in E-MTAB-1980 as the test
set. We quantified samples in the test set using the same
NRGscore calculation formula and grouped them with the
same cutoff value (cut point = 1.276099) as the training set
[high-risk group (n = 31) and low-risk group (n = 70)].
Kaplan–Meier analysis showed that a high NRGscore indicated
significantly poor OS [Figure 6A, hazard ratio (HR) = 6.70
(2.74–16.36), p < 0.001]. ROC curves showed favorable results
that the AUCs were 0.793 at a 1-year OS survival rate, 0.780 at a 3-
year OS survival rate, and 0.789 at a 5-year OS survival rate
(Figure 6B). The risk score distribution, survival status, and
expression profile heatmaps showed a trend similar to that of
the training set (Figures 6C–E).

TABLE 1 | Prognosis-related NRGs selected by univariate COX regression
analysis.

Gene HR z p-value

PLK1 1.979299 9.051351 1.41E-19
BCL2 0.621209 −6.31464 2.71E-10
KLF9 0.593631 −6.20142 5.60E-10
APP 0.568731 −5.56018 2.69E-08
ZBP1 1.579254 4.719934 2.36E-06
CDKN2A 1.562045 4.677732 2.90E-06
TNFRSF21 0.714626 −4.55388 5.27E-06
CXCL8 1.236663 4.489611 7.14E-06
MYCN 0.546308 −4.3527 1.34E-05
SIRT1 0.537114 −4.34934 1.37E-05
TLR3 0.744846 −4.30921 1.64E-05
TNFRSF1A 2.102905 3.896019 9.78E-05
MAPK8 0.459532 −3.75792 0.000171
MPG 1.778068 3.732143 0.00019
TRIM11 2.37506 3.701839 0.000214
BNIP3 0.734319 −3.62944 0.000284
TLR4 0.706861 −3.61795 0.000297
ATRX 0.542251 −3.53318 0.000411
BRAF 0.551977 −3.46673 0.000527
TRAF2 1.765383 3.347284 0.000816
LEF1 1.224713 3.28036 0.001037
DDX58 0.780107 −2.89537 0.003787
USP22 0.677291 −2.68993 0.007147
SIRT3 0.558047 −2.62101 0.008767
AXL 1.290534 2.593384 0.009504
HAT1 0.602383 −2.49452 0.012613
HSP90AA1 0.705533 −2.46741 0.013609
STUB1 0.720338 −2.31529 0.020597
FLT3 0.751125 −2.27881 0.022679
TERT 1.31171 2.251203 0.024373
FASLG 1.171632 2.107158 0.035104
EGFR 0.854597 −2.09633 0.036053
RIPK3 1.371085 1.980909 0.047601

HR, hazard ratio.
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To illustrate the superiority of the NRG signature, we
compared the other two immune-autophagy–related gene
signature (Zhang et al., 2021) and pyroptosis-related gene
signature (Sun et al., 2021) recently published. After obtaining
the genes constituting the prognosis signature from literature, the
Kaplan–Meier curves and ROC curves were constructed by
TCGA-KIRC cohort (Supplementary Figure S1). According
to the results, the NRG signature had better prediction
accuracy for the OS of KIRC patients.

Clinical Relevance of the NRG Signature
We calculated the correlation between NRGscore and
clinicopathological characteristics for further analysis of the
clinical benefits of the NRG signature. It can be seen that
NRGscore increased significantly with the progress of TNM
stages, pathologic stage, and histologic grade (Figures 7A–E).
Male patients also scored higher than female patients
(Figure 7F). There was no statistical difference between the
age group (Figure 7G). In addition, the high NRGscore
indicated a higher incidence of bad OS, DSS, and PFI
events (Figures 7H–J).

Next, we applied univariate and multivariate Cox regression
analyses to investigate whether NRGscore was an independent
prognostic indicator of KIRC patients. Univariate Cox regression
analysis pointed out that pathologic stage, histologic grade, age,
and NRGscore were hazard factors (Figure 7K). Then,
multivariate Cox regression analysis verified that NRGscore
could be utilized as a robust independent prognostic indicator
for KIRC patients [hazard ratio (HR) = 1.180 (1.127–1.235), p <
0.001, Figure 7L].

Construction of a Nomogram Model Based
on the NRG Signature
Next, according to the results of Cox regression analyses, we
integrated NRGscore with several clinicopathological
characteristics, including pathologic stage, histologic grade,
and age, to construct a nomogram model that can more
accurately and steadily evaluate the OS survival probability of
patients in TCGA-KIRC cohort (Figure 8A). A total of 515 KIRC
patients with complete clinicopathologic information were
included in the model analysis. Then, C-index and calibration

FIGURE 2 | Non-negative matrix factorization clustering of necroptosis-related patterns in TCGA-KIRC cohort. (A) Cophenetic coefficients. (B) Consensus matrix
heatmap when k = 2. (C) Expression profile of prognosis-related NRGs. PCA analysis (D) and Kaplan–Meier analysis (E) of necroptosis-related patterns. (F) Clinical
relevance of necroptosis-related patterns. *p < 0.05; **p < 0.01; ***p < 0.001.
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curves were utilized to assess the precision of the nomogram
model. The C-index reached 0.771 (95% CI: 0.736–0.807, p <
0.0001). The calibration curves also confirmed that the
nomogram model possessed excellent accuracy (Figures
8B–E). In addition, we used DCA curves to prove that
NRGscore has a better clinical application value for patient OS
prediction than the pathologic stage and histologic grade (Figures
8F–I). Finally, we defined patients in TCGA-KIRC cohort as high
or low risk according to the optimal cutoff nomogram score (cut
point = 0.7666527). Kaplan–Meier analysis suggested that high-
risk patients showed poorer OS than low-risk patients [Figure 8J,
hazard ratio (HR) = 6.55 (4.83–8.89), p < 0.001]. AUCs were
0.873 at the 1-year OS survival rate, 0.813 at the 3-year OS
survival rate, and 0.775 at the 5-year OS survival rate
(Figure 8K). We also validated the nomogram model using
the E-MTAB-1980 cohort. The test set used the same model
and cutoff value. Kaplan–Meier analysis showed the same result
as the training set [Figure 8L, hazard ratio (HR) = 8.26
(3.53–19.35), p < 0.001]. In addition, the 1-, 3-, and 5-year
AUCs were 0.925, 0.913, and 0.860, respectively (Figure 8M).

Coexpression Relevance and GSEA
We used GeneMANIA to predict and visualize the interaction
networks of the 10 NRGs that comprise NRGscore and potential
interactive molecules (Figure 9A) (Warde-Farley et al., 2010).
GeneMANIA automatically identifies genes that contained
several hub genes for necroptosis, including RIPK1, TNF,
BIRC2, and CDC37. Figure 9B showed the coexpressed
correlation of 10 NRGs in KIRC. TRAF2 had the highest
number of NRGs with significant coexpression
correlation (n = 8).

Then, GSEA was used to explore potential biological processes
and signal pathways in the high-risk group of TCGA-KIRC

cohort. GSEA based on the KEGG gene set suggested that
carcinogenic and immune-related pathways were highly
concentrated, including complement and coagulation cascades,
cytokine–cytokine receptor interaction, NOD-like receptor
(NLR) signaling pathway, and P53 signaling pathway
(Figure 9C). The NLR signaling pathway plays a regulatory
role in inflammation-related cancer and can be used as a
therapeutic target (Liu et al., 2019). The transcription factor
p53 is an important tumor suppressor. A p53 activating
compound has been proven to be significantly cytotoxic to
breast cancer and colon cancer cells (Mirgayazova et al., 2019).
In addition, Hallmark gene sets of cell cycles and
epithelial–mesenchymal transition were also highly expressed
(Figure 9D). In addition, Figures 9E–G indicated that the
high-risk group was related to immune-related reactions,
classic pathways, and coagulation pathways.

Correlation Between theNRGSignature and
Tumor Immune Microenvironment
As a result of the strong inflammatory response of necroptosis
reported in previous studies and the distinction in
immunophenotype between necroptosis-related patterns, we
further analyzed the correlation between the NRG signature
and TIME. First, we evaluated the distinction in TME scores
between NRG-defined groups with the ESTIMATE algorithm
(Figure 10A). The Wilcoxon rank-sum test suggested that
immune score (p < 0.001) and ESTIMATE score (p < 0.001)
in the high-risk group were significantly higher than those in the
low-risk group. Figure 10B indicated that the expression of
costimulatory molecules, except CD40, was significantly
elevated in the high-risk group. As for adhesion molecules,
ICAM1 and ICAM2 were highly expressed in high- and low-

FIGURE 3 | Correlation between necroptosis-related patterns and the tumor immune microenvironment. (A) Heatmap of GSEA analysis results. (B) Differential
analysis of stromal, immune, and ESTIMATE scores. (C) Differential analysis of the expression of immune checkpoints. (D) Infiltration of 23 TIICs in necroptosis-related
patterns. (E) Enrichment scores of immune-related functions in necroptosis-related patterns. *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
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risk groups, respectively. Moreover, the expression levels of most
major histocompatibility complex (MHC) molecules had no
statistical difference in NRGscore-defined groups. ssGSEA
showed that most immune-related functions were highly
concentrated in the high-risk group (Figure 10C).
Consistently, there was no significant distinction in antigen
presentation between NRGscore-defined groups.

Then, we calculated the fraction of 22 TIICs in each TCGA-
KIRC sample on the basis of the CIBERSORT algorithm. The
results of a total of 415 samples were statistically significant.

Figure 11A showed the distribution of TIICs in KIRC in the form
of a grouping histogram. T cells and macrophages could be seen
to account for the largest components. Next, we found that the
fractions of plasma cells, CD8 T cells, activated CD4 memory
T cells, follicular helper T cells, regulatory T cells (Tregs), M0
macrophages, and activated DCs were significantly higher in the
high-risk group (Figure 11B), while resting CD4 memory T cells,
resting natural killer (NK) cells, monocytes, M2 macrophages,
resting DCs, and resting mast cells had lower fractions in the
high-risk group (Figure 11B). Among these differentially

FIGURE 4 | Functional enrichment analyses of DEGs between necroptosis-related patterns. (A) Biological process, (B) cellular component, (C)molecular function,
and (D) KEGG pathways.
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distributed TIICs, higher fractions of plasma cells, activated CD4
memory T cells, follicular helper T cells, Tregs, and M0
macrophages and lower fractions of resting CD4 memory
T cells, monocytes, M2 macrophages, resting DCs, and resting
mast cells were significantly associated with poor OS survival
probability in KIRC patients (Figures 11C−L). The
abovementioned results suggested that necroptosis might affect
the prognosis of KIRC patients through potential regulation of
these TIICs.

Correlation Between theNRGSignature and
Somatic Mutation
Tumorigenesis frequently occurs after accumulation of gene
mutations (Martincorena and Campbell, 2015). Hence, we
explored the distinction in somatic mutations between
NRGscore-risk groups. The mutation spectrum and TMB of
each sample in TCGA-KIRC were calculated on the basis of
the single-nucleotide variation information. Waterfall plots
showed that the 20 genes with the highest mutation rate in
KIRC were VHL, PBRM1, TTN, SETD2, BAP1, MTOR,
KDM5C, MUC16, DNAH9, HMCN1, ATM, LRP2, SPEN,
ANK3, FBN2, CSMD2, ARID1A, MUC4, FLG, and MACF1
(Figures 12A,B). We applied the optimal TMB cutoff value to
divide patients into low- and high-TMB groups. KIRC patients
with higher TMB were associated with poorer OS survival
probability (Figure 12C). As shown in Figure 12D, the
proportion of high-TMB patients was higher in the high-risk
group. In addition, we revealed a significant positive relevance
between NRGscore and TMB in KIRC patients (Figure 12E, R =
0.2, p = 0.00025).

Correlation Between theNRGSignature and
Drug Sensitivity
Recently, ICIs have gradually shown clinical benefits for
advanced KIRC. However, because most patients showed no
response to immunotherapy, it was important to find effective
predictive markers. We calculated the correlation between
NRGscore and gene expression of several immune
checkpoints (Figure 13A). It was found that NRGscore was
significantly positively correlated with the expression of
PDCD1, CD274, PDCD1LG2, LAG3, TIGIT, and CTLA4,
which indicated that patients in the high-risk group were
more likely to benefit from immunotherapy.

The responsive predictive values of NRGscore for
chemotherapy and targeted drugs were also calculated by IC50

values (Figures 13B–I). Compared with the low-risk group, the
IC50 value of bortezomib, cisplatin, gefitinib, sunitinib,
temsirolimus, and vinblastine was significantly lower in the
high-risk group, which means patients with higher NRGscore
were more sensitive to these drugs.

DISCUSSION

Necrosis was originally thought to be an uncontrolled form of
accidental cell death, but a growing body of research has
confirmed that necrosis can be induced and carried out in
the form of apoptosis (Christofferson and Yuan, 2010;
Linkermann and Green, 2014). This form of programmed
cell death was called necroptosis. These activation factors
include TNF-receptor superfamily, Toll-like-receptor
superfamily, and interferon receptor (Khoury et al., 2020).

FIGURE 5 | Establishment of the NRG signature based on the training set. (A, B) LASSO COX regression analysis. (C) Kaplan–Meier analysis between NRGscore-
defined groups. (D) Time-dependent ROC curve of NRGscore. (E) NRGscore distribution. (F) Survival status heatmap. (G) NRG expression profile heatmap.
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But, unlike apoptosis cells, which maintain cell membrane
integrity, necrosis-experiencing cells show damage to the cell
membrane, leading to the release of immunogenic DAMPs,
which in turn shows extreme immunogenicity (Häcker, 2000;
Rosenbaum et al., 2009; Kaczmarek et al., 2013; Svensson et al.,
2017). DAMPs can mediate the interaction between cancer
cells and immune cells to trigger an anticancer-related
immune response, such as the activation of cytotoxic CD8+

T lymphocytes, prompting DC to release proinflammatory
cytokines and reduce Treg tumor immersion (Biswas and
Mantovani, 2010; Werthmöller et al., 2015; Yatim et al.,
2015; Sprooten et al., 2020). However, the immune
landscape caused by necroptosis rarely is a one-way
antitumor effect. For instance, IL-1α produced by necrotic
tumor cells can directly stimulate the proliferation of
neighboring cells and promote tumor progression
(Grivennikov et al., 2010). The release of active nitrogen
intermediates (RNI) and/or ROS associated with necrosis
apoptosis may facilitate tumor development (Grivennikov
et al., 2010). Therefore, further experimental research is
needed to balance this complex immune landscape, through
the necroptosis inducer in the in vivo tumor environment to

achieve a “pure” protective effect, to achieve the purpose of
precision immunotherapy. In addition, the detailed effects of
necroptosis on KIRC are yet to be fully studied.

In this study, we identified two necroptosis-related patterns
by NMF algorithm clustering. Necroptosis C1 showed a
significantly poor OS survival probability. The proportion
of patients in the advanced clinicopathological stages in
high-risk necroptosis C1 was also significantly elevated.
Furthermore, these two necroptosis-related patterns showed
distinct biological pathway enrichment and TME immune cell
infiltration. In TCGA-KIRC cohort, C1 was characterized by
high levels of adaptive immunity activation and TME immune
cell immersion. In addition, we found that several immune
checkpoints (PD-1, PD-L2, LAG3, TIGIT, and CTLA4) were
highly expressed in C1. Properly located and migrated T cells
are the basis of tumor immune monitoring, but there was no
matching survival advantage in C2. We speculated that the
immunosuppressive microenvironment induced by high-level
expression of immune checkpoint genes eliminated the
antitumor effect based on activating the immune pathway
and high infiltration level T cells (Dunn et al., 2002). The
abovementioned evidence proved that necroptosis was of

FIGURE 6 | Validation of the NRG signature based on the test set. (A) Kaplan–Meier analysis between NRGscore-defined groups. (B) Time-dependent ROC curve
of NRGscore. (C) NRGscore distribution. (D) Survival status heatmap. (E) NRG expression profile heatmap.
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great significance in regulating the immune landscape
of KIRC.

Then, we established a prognostic signature for predicting OS
including 10 NRGs (PLK1, APP, TNFRSF21, CXCL8, MYCN,
TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3) in TCGA-
KIRC cohort to evaluate and quantify the necroptosis pattern of

KIRC individuals (NRGscore). A series of analyses were carried
out by NRGscore-defined groups. Survival analysis suggested that
the OS of patients in the high-risk group should be significantly
reduced. It was consistently and significantly confirmed in a
separate external E-MTAB-1980 cohort. High NRGscore also
indicated tumor progression or poor prognosis event. Univariate

FIGURE 7 | Clinical relevance of the NRG signature. (A–J) NRGscore differences between subgroups of clinicopathological parameters, including T stage (A), N
stage (B), M stage (C), pathologic stage (D), histologic grade (E), gender (F), age (G), OS event (H), DSS event (I), and PFI event (J). Univariate (K) and multivariate (L)
Cox regression analysis of NRGscore and clinicopathological parameters. *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
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and multivariate Cox analyses proved that NRGscore could be
utilized as an independent prognostic marker. Among the 10
NRGs included in the prognostic signature, PLK1 could promote

proliferation and inhibit apoptosis in KIRC cells, and had been
proven to be upregulated and inhibit necroptosis in hormone-
resistant prostate cancer (Deeraksa et al., 2013; Gao et al., 2020).

FIGURE 8 |Construction of the nomogrammodel. (A)Nomogram for predicting the OS probability over 1, 3, and 5 years (B–E)Calibration curves for evaluating the
fitness of the nomogram model in 1, 3, 5, and 7 years. (F–I) DCA curves of 1, 3, 5, and 7 years. Kaplan–Meier analysis (J) and time-dependent ROC curves (K) of the
nomogram model in TCGA-KIRC cohort. Validation of the nomogram model in the E-MTAB-1980 cohort with the Kaplan–Meier analysis (L) and time-dependent ROC
curves (M).
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The compound of APP and death receptor 6 (DR6/TNFRSF21)
inhibited the activation of necroptosis of vascular endothelial
cells, resulting in significant reduction in transdermal migration
of tumor cells, thus controlling tumor metastasis (Wang et al.,
2021). IL-8/CXCL8 was found to be regulated by JNK/MAPK8 in
colon cancer and became a downstream signal pathway of tumor
regrouping induced by necroptosis (Wang et al., 2019). High-risk
neuroblastoma (NB) often showed MYCN amplification and

decreased susceptibility to the death of programmed cells
induced by chemotherapy drugs (Nicolai et al., 2015).
Watanabe S. further confirmed that polyphyllin D induced
necroptosis in MYCN-amplified NB cells and apoptosis in
NB cells without MYCN amplification (Watanabe et al., 2017).
TNFR1/TNFRSF1A was a typical necroptosis inducer in
pancreatic catheter adenocarcinoma (Seifert et al., 2016).
TRAF2 could mediate cross-talk between TNFR1 and TNFR2,

FIGURE 9 | Coexpression relevance and GSEA of the NRG signature. (A) Regulatory network of 10 signature-related NRGs and conceivable interaction proteins
built by GeneMANIA. (B)Coexpressed correlation of 10model-related NRGs in KIRC. (C–G)GSEA analyses based on KEGG (C), Hallmark (D), Reactome (E), BioCarta
(F), and PID (G) gene sets in the high-risk group. *p < 0.05; **p < 0.01; ***p < 0.001.
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affecting signal conduction results of TNF stimulation, including
necroptosis (Borghi et al., 2016). HSP90 regulated the stability of
MLKL and RIPK3 and was necessary for TNF-stimulated
necrosis assembly (Zhao et al., 2016). CHIP/STUB1 regulated
necroptosis through ubiquitination and lysosomal-dependent
degradation of RIPK1 and RIPK3 (Tang et al., 2018). In
addition, RIPK1 in the myeloid progenitor with FLT3
mutations had a strongly increasing tendency (Hillert et al.,
2019). Furthermore, we established a nomogram model for
predicting the OS of KIRC patients in combination with
NRGscore and several clinicopathological characteristics. It
showed excellent stability and clinical benefit and was
validated in the E-MTAB-1980 cohort.

Due to the strong inflammatory nature of necroptosis, we
investigated the correlation between the NRGscore and
TIME. Our results indicated that the TME of NRGscore-
defined groups was quite distinct. The expression of HLA-
related genes had no significant fluctuation, and

costimulatory molecules and adhesion molecules were
upregulated in the high-risk group. The infiltration level of
CD8+ T cells that play an antitumor protection role was
significantly elevated in the high-risk group. However,
patients in the high-risk group had significantly lower OS.
In our study, the high-risk group had a significantly elevated
immune score and ESTIMATE score, which indicated that
the tumor purity of the high-risk group was lower. D Zeng
also found that a high immune score was associated with poor
prognosis in patients with gastric cancer (Zeng et al., 2018).
Similar studies reported that lower tumor purity was related
to adverse prognosis and immune escape phenotype (Gong
et al., 2020). In addition, as an immunogenic tumor, KIRC
could cause immune dysfunction by inducing
immunosuppressive cell immersion (Díaz-Montero et al.,
2020). We found that Tregs and DCs were highly
infiltrated into the TME in patients of the high-risk group.
Numerous studies have confirmed that Tregs could form an

FIGURE 10 | Correlation between the NRG signature and tumor immune microenvironment. (A) Differential analysis of stromal, immune, and ESTIMATE scores
between NRGscore-defined groups. (B) Differential analysis in the expression of MHC molecules, costimulatory molecules, and adhesion molecules between
NRGscore-defined groups. (C) Enrichment scores of immune-related functions in NRGscore-defined groups. *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
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immunosuppressive microenvironment to promote tumor
metastasis and progression (Ohue et al., 2019). In
addition, DCs regulated the immune system and induce
immune tolerance in a stable state (Audiger et al., 2017).
The accumulation of M2 macrophages in the TME was
generally associated with poor prognosis (Lan et al., 2019).
However, we found that the discovery of M2 macrophages
with low components of the TME in KIRC indicated better
OS. This contradiction needs further study to be explained.

Somatic mutation is not only the driving factor of
tumorigenesis but also TMB can be used as a guiding basis
for diagnosis and treatment. As shown in Kaplan–Meier
analysis, KIRC patients with high TMB possessed poorer
OS survival probability. We also found a significant positive
correlation between NRGscore and TMB in KIRC. Some
studies have reported that cancer patients with high TMB
were more likely to get effective and long-term responses from
immunotherapy (Chan et al., 2019; Sholl et al., 2020).
Furthermore, we found that NRGscore was significantly
positively correlated with the expression of multiple
immune checkpoint genes. This means that the
immunosuppressive microenvironment played a key role in

high-risk patients, who were more likely to benefit from ICIs.
We also evaluated the ability of the NRG signature to predict
the sensitivity of chemotherapy and targeted drugs in KIRC
patients. The results revealed that bortezomib, cisplatin,
gefitinib, sunitinib, temsirolimus, and vinblastine had more
significant benefits in high-risk patients. We, therefore, believe
that NRGscore is helpful for identifying better treatment
strategies for individual advanced KIRC patients.

Our research still has limitations. First, this study is a
retrospective study in which patient clinical information is
prone to bias and requires large, multicenter, prospective
studies to further confirm our results. Second, the ability of
NRGscore to predict drug efficacy needs to be confirmed by
clinical studies with sufficient samples. Finally, the NRGs we
included in the study were based on non-KIRC cancer types, and
their specific molecular mechanisms for necroptosis in KIRC still
need to be further explored.

To sum up, NRGscore can individualize and quantify the
necroptosis phenotype of patients and make comprehensive
assessments of the clinical, cellular, and molecular
characteristics of KIRC patients, including prognosis, clinical
characteristics, pathologic stage, histologic grade, TIME, and

FIGURE 11 |Correlation between the fraction of 22 TIICs and the NRG signature on the basis of the CIBERSORT algorithm. (A) Proportion of 22 TIICs in KIRC. (B)
Differential analysis of 22 TIIC fractions between NRGscore-defined groups. (C–L) Association between the infiltration level of TIICs [plasma cells (C), activated CD4
memory T cells (D), resting CD4 memory T cells (E), follicular helper T cells (F), Tregs (G), monocytes (H), M0 macrophages (I), M2 macrophages (J), resting DCs (K),
and resting mast cells (L)] and OS of KIRC patients. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 12 | Correlation between the NRG signature and somatic mutation. (A, B)Waterfall plots of 20 genes with the highest mutation rate in the high-risk group
(A) and low-risk group (B). (C) Kaplan–Meier analysis of TMB in KIRC patients. (D) Distribution of the TMB level in NRGscore-defined groups (E) Correlation between
NRGscore and TMB.

FIGURE 13 | Therapeutic benefit of the NRGscore (A) Correlation between NRGscore and gene expression of seven immune checkpoints. (B–I) Correlation
between the NRG signature and IC50 values of chemotherapy and targeted drugs, including axitinib (B), bortezomib (C), cisplatin (D), gefitinib (E), sorafenib (F), sunitinib
(G), temsirolimus (H), and vinblastine (I). *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
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tumor mutation. NRGscore is an independent prognostic marker
for KIRC patients and can be utilized as a guiding indicator in the
formulation of treatment strategies for immunotherapy,
chemotherapy, and targeted drugs.
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