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Distinct mechanisms control genome recognition
by p53 at its target genes linked to different cell
fates
Marina Farkas 1, Hideharu Hashimoto1, Yingtao Bi2, Ramana V. Davuluri 2, Lois Resnick-Silverman 3,

James J. Manfredi 3, Erik W. Debler1 & Steven B. McMahon 1✉

The tumor suppressor p53 integrates stress response pathways by selectively engaging one

of several potential transcriptomes, thereby triggering cell fate decisions (e.g., cell cycle

arrest, apoptosis). Foundational to this process is the binding of tetrameric p53 to 20-bp

response elements (REs) in the genome (RRRCWWGYYYN0-13RRRCWWGYYY). In general,

REs at cell cycle arrest targets (e.g. p21) are of higher affinity than those at apoptosis targets

(e.g., BAX). However, the RE sequence code underlying selectivity remains undeciphered.

Here, we identify molecular mechanisms mediating p53 binding to high- and low-affinity REs

by showing that key determinants of the code are embedded in the DNA shape. We further

demonstrate that differences in minor/major groove widths, encoded by G/C or A/T bp

content at positions 3, 8, 13, and 18 in the RE, determine distinct p53 DNA-binding modes by

inducing different Arg248 and Lys120 conformations and interactions. The predictive capa-

city of this code was confirmed in vivo using genome editing at the BAX RE to interconvert

the DNA-binding modes, transcription pattern, and cell fate outcome.
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In response to different forms of stress, the tumor suppressor
p53 selectively induces one of a variety of distinct transcrip-
tional programs, each linked to a unique biological outcome

(e.g., cell cycle arrest, apoptosis, DNA repair, ferroptosis)1,2. The
central event in this process is the binding of tetrameric p53 to
regulatory DNA motifs in the genome (i.e., response elements) of
the consensus sequence RRRCWWGYYYN0–13RRRCWWGYYY
(R=A or G, W=A or T, Y=C or T, N= any base)3,4. Focusing
on this initial step, the prevailing model holds that p53 exhibits
dose-dependent target gene activation, with REs linked to cell
cycle arrest targets exhibiting higher affinity and REs linked to
pro-apoptotic targets exhibiting lower affinity5–7. This has pro-
vided a conceptually satisfying model in which cells with modest
DNA damage induce low levels of p53 that are capable of binding
only at the high-affinity REs, thus providing the cell with the
opportunity to repair its genome prior to advancing through the
cell cycle. However, if levels of DNA damage exceed the cell’s
repair capacity, sufficiently high quantities of p53 are induced and
even the low-affinity REs linked to pro-apoptotic target genes are
occupied and activated.

It has been previously proposed that the number of mismatched
bps within a given RE determines its binding affinity8,9. However,
REs with equal numbers of mismatches still show different affi-
nities for p53, suggesting that mechanisms beyond the degree of a
mismatch from the consensus are responsible. This is of physio-
logical relevance because only 10% of 2183 in vivo verified p53
REs match the consensus sequence across all 20 bps10. p53 REs
exhibit the highest sequence variability at the triplets RRR/YYY,
which flank the core (CWWG) sequence11, and p53 tetramers
interact with REs at those bases via Arg248 from the DNA minor
groove and Lys120 from the DNA major groove12. Of note, dif-
ferent crystal structures and molecular dynamics simulations of
p53 bound to DNA reveal that the Arg248 and especially
Lys120 side chains are highly dynamic and can adopt multiple
conformations when in complex with DNA12–15. This set of
observations triggered our hypothesis that the interplay of Lys120
and Arg248 residues with variable sequences of REs might be a
potential source of p53 selectivity.

The role of Lys120 in regulating p53 target gene selectivity has
been previously explored. Acetylation of this residue positively
correlates with the increase in the expression of pro-apoptotic
genes16,17, while a conservative, cancer-derived mutation of
Lys120 to Arg (K120R) selectively impairs the induction of
apoptosis and binding of p53 to pro-apoptotic REs without
impacting induction of cell cycle arrest18. However, the molecular
mechanism responsible for p53 dose-dependent and Lys120-
dependent target gene selectivity has not been identified. In our
study, we describe a mechanism that explains the differential
binding of p53 to two major sets of genomic targets—high-affi-
nity and low-affinity REs, linked to cell cycle arrest and pro-
apoptotic genes, respectively. Specifically, we show that RE minor
groove width, which is encoded by G/C or A/T bp content at
positions 3, 8, 13, and 18 in the RE and sensed by Arg248,
determines two distinct p53 DNA-binding modes. Our findings
advance a p53 RE code that mechanistically links RE sequence,
DNA shape, DNA-binding mode, and biological output.

Results
An RE code distinguishes p53 effector pathways. To gain
insight into the role of Lys120 integrity in the recognition of
specific RE sequences, we performed a chromatin-
immunoprecipitation experiment and analyzed genome-wide
occupancy of conditionally-expressed wild-type (WT) and
K120R forms of p53 in the isogenic human H1299 lung cancer
cell line that is null for endogenous p53 (Fig. 1a). In our ChIP-seq

data we identified 1358 unique genomic-binding sites for WT p53
that were associated with previously identified, 20-bp REs
(Fig. 1b)10. Of these 1358 REs, only 622 (45.8%) retained p53
binding when Lys120 was converted to arginine (termed “K120R-
bound”). The remaining 736 (54.2%) sites lost p53 binding upon
conversion of Lys120 to arginine (termed “K120R-unbound”) and
exhibited generally lower WT p53 occupancy (Supplementary
Fig. 1a, b). In agreement with previous biological observations18,
the vast majority of REs at genes linked to the positive regulation
of apoptosis were K120R-unbound in our studies. In contrast,
REs at genes crucial for activation of processes such as cell cycle
arrest or DNA repair were still bound by the K120R p53 variant
(Fig. 1c and Supplementary Fig. 1c).

Further analysis of the nucleotide sequence of REs present
within our ChIP-seq peaks revealed that the generic number of
mismatches from the consensus RE did not directly correlate with
in vivo occupancy by WT p53 or the dependence on Lys120
integrity (Supplementary Fig. 2). We therefore postulated that
sequence identity at specific positions within the RE contributes
to these two, presumably linked characteristics. To interrogate
this hypothesis, consensus sequences were generated for the
K120R-bound and K120R-unbound REs in our datasets. This
analysis demonstrated that the major difference in the sequence
of these two groups of REs resides at positions adjacent to the
core (CWWG) sequence (Fig. 1d). More specifically, it demon-
strated a preponderance of A/T bps at positions 3, 8, 13, and 18 in
the K120R-bound group and G/C bps in the K120R-unbound
group of REs. Additional analysis of the nucleotide content
specifically at those positions confirmed this observation by
showing that ~80% of the sites enriched with G/C bps were
deficient in K120R-p53 binding (Fig. 1e).

As the role of Lys120 integrity in distinguishing between REs is
linked to distinct cell fates18, we assessed whether the G/C vs. A/T
bp content at positions 3, 8, 13, and 18 could similarly distinguish
targets linked to distinct cell fates. We analyzed REs from our
ChIP-seq data, which were linked to the genes previously
identified as high-confidence p53 targets through the compre-
hensive meta-analysis of 319 previously published gene studies19.
Remarkably, analysis of the REs connected to 16 pro-apoptotic
targets revealed enrichment of G/C bps at these positions, similar
to the sequence developed in Fig. 1d for the entire K120R-
unbound group of REs (Fig. 2a, b, bottom). An analysis of REs of
sixteen, high-confidence, pro-survival targets revealed a con-
sensus sequence with predominantly A/T bps at these positions,
similar to the sequence developed in Fig. 1d for all K120R-bound
REs (Fig. 2a, b, top). Additionally, REs linked to pro-apoptotic
targets averaged more mismatches at the core (CWWG)
sequence, relative to pro-survival REs. However, further testing
showed that these mismatches only marginally decrease the p53
occupancy in vivo (Supplementary Fig. 3a), and do not regulate
K120-dependency (Supplementary Fig. 3b). Interestingly, the G/C
vs. A/T bp content at positions directly adjacent to the CWWG
core still distinguished K120R-bound and K120R-unbound REs,
independent of the status of the CWWG sequence itself
(Supplementary Fig. 3c). Collectively, these findings suggest that
differential recognition by p53 of distinct classes of REs is
encoded, at least in part, by the A/T vs. G/C bp content at
positions 3, 8, 13, and 18 within the primary DNA sequence.

p53 uses two distinct RE-binding modes in vitro. To quantify
p53 binding to K120R-bound and K120R-unbound REs in vitro,
we measured the dissociation constants (Kd) of natural and
artificial REs, employing fluorescence polarization at 275 mM
NaCl, which would best reflect in vivo conditions and which
rendered non-specific DNA binding undetectable (Table 1 and
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Supplementary Fig. 4)14,20,21. For these experiments, we used a
thermostable recombinant p53 protein lacking the unstructured
N-terminal transactivation and proline-rich regions. This ΔN-p53
construct (residues 94-393) has previously been demonstrated to
retain the same DNA-binding specificity as a full-length p53
protein14,22. Under the salt conditions described above, WT p53
exhibited high affinity for K120R-bound REs (23–97 nM), but
one order of magnitude lower affinity for K120R-unbound REs
(254–783 nM). This supports previous reports of higher affinity
for cell cycle arrest REs such as p21 RE and lower affinity for pro-
apoptotic REs such as BAX RE6,21. Conversion of Lys120 to Arg
had relatively little impact on binding affinity for K120R-bound
REs (43–80 nM), while significantly reducing binding affinity for
K120R-unbound REs (800 nM to non-detectable). Together, these
in vitro data recapitulate the K120R binding selectivity observed
in vivo by ChIP-seq (Fig. 1b), and elsewhere18.

To gain further insight into the nature of K120R-bound and
K120R-unbound-binding modes, we determined the Kd values at
a lower salt concentration (200 mM NaCl). Under this condition,
binding affinity for K120R-unbound REs was increased, when
compared to the higher salt concentration, for both WT p53
(8–45 nM) and the K120R mutant (23–280 nM), suggesting an
electrostatically-driven interaction. By contrast, recognition of
K120R-bound REs increased only slightly at lower ionic strength
for both WT (6–26 nM) and K120R (33–37 nM) proteins,
consistent with predominantly non-polar interactions. We also
analyzed an ideal, G/C-rich, presumably K120R-unbound RE
termed “Pro-apoptotic RE” because the natural REs that we used
in our binding assay (BAX RE and NOXA RE) contained
mismatches with respect to the p53 consensus sequence,
including the core (CWWG) sequence (indicated by lower-case
letters in Table 1). The ideal RE confirmed the observed
characteristics of the natural K120R-unbound REs, indicating
that the mismatches had no effect on the binding mode or K120R
sensitivity. Altogether, these in vitro binding data suggest that p53
employs a high-affinity, non-electrostatic effective binding mode
for K120R-bound REs, while utilizing a lower affinity, electro-
static effective binding mode for K120R-unbound REs.

p53 uses structurally distinct DNA-binding modes for differ-
ent classes of REs. To investigate whether the two distinct p53-
binding modes observed in vitro have correlates on the atomic
level, we analyzed p53-DNA crystal structures available in the
Protein Data Bank (PDB) and classified them into two groups
based on Lys120 being ordered or disordered, as judged by an
omit electron density map (Supplementary Table 1). In the first
group, represented by a p53 structure complexed with a BAX-like
RE (PDB: 6FJ523, Fig. 3a and Supplementary Fig. 5), Lys120
protrudes into the major groove in an extended conformation
and forms direct hydrogen bonds with the purine bases R12 and
R13. On the opposite side of the double helix (minor groove),
Arg248 adopts a bent conformation in which its guanidinium
group engages in a direct or water-mediated electrostatic inter-
action with the phosphate(s) of Y8 and/or Y9, which base-pair
with R12 and R13 (Fig. 3a and Supplementary Fig. 5). In the
second group represented by a p53 structure complexed with a
p21-like RE (PDB: 3Q0514, Fig. 3b and Supplementary Fig. 6), the
Lys120 side chain is disordered, which is a result of its Cα atom
within the p53 L1 loop being farther away from the DNA (outside
of the major groove), precluding the Lys120 Nζ atom from
hydrogen bonding with the purine bases. Arg248 is extended and
penetrates into the minor groove undergoing primarily hydro-
phobic interactions14,22. We confirmed that the DNA sequences
of the two representative PDB structures, which only differ at 4
bps, recapitulated the characteristics of the two distinct binding
modes observed in vitro (Table 1). Thus, p53 indeed adopts
structurally distinct binding modes at high-affinity, K120R-bound
and low-affinity, K120R-unbound REs.

Although distinct Lys120 and Arg248 conformations have
previously been reported in complex with different REs12,15, the
current findings provide a mechanistic understanding of the roles
played by these two key DNA contact residues in providing
specificity to genome occupancy by p53. For example, the
conversion of Lys120 to arginine exclusively affects the binding
affinity to the low-affinity, K120R-unbound REs, since the
arginine side chain causes a steric clash with these REs (Fig. 3c).
Our analysis also provides a structural basis for the different salt
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Fig. 1 Differential recognition by p53 of distinct classes of REs is encoded in the G/C vs. A/T bp content at positions 3, 8, 13, and 18 in the RE
sequence. a Representative western blot from three independent experiments showing the expression of WT and K120R-p53 in Tet-inducible H1299 cells.
b Venn diagram depicting the number of significantly enriched (with at least 0.3 counts per million [cpm] reads) and previously identified10 WT p53 peaks,
which are either bound (blue) or unbound (salmon) by K120R-p53 variant. c UCSC Genome Browser view of WT and K120R-p53 occupancy at selected
K120R-bound and K120R-unbound-binding sites. Untreated (−) and Tet-treated (+) tracks for WT and K120R-p53 are shown in blue and salmon,
respectively. dMotif analysis of K120R-bound (upper) and K120R-unbound (lower)-binding sites. Red dashed boxes highlight the differences at positions 3,
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K120R sensitivity with an increase in G/C bp content. Tet tetracycline. TetR tetracycline repressor. Source data are provided as a Source Data file.
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sensitivities observed in vitro (Table 1), as the salt-dependent
interaction at low-affinity, K120R-unbound REs can be ascribed
to the electrostatic interactions of the four Arg248 residues
in tetrameric p53 with the DNA backbone phosphates, while
these arginine residues convert to predominantly non-polar,

hydrophobic interactions in the salt-insensitive binding mode at
high-affinity, K120R-bound REs.

Minor groove width is sensed by Arg248 and determines the
p53 RE-binding mode. Comparison of the DNA sequences in the
structurally distinct p53-DNA complexes (Supplementary Table 1)
revealed a preponderance of A/T bps in the flanking RRR/YYY
regions in the group featuring a disordered Lys120 side chain.
Since A/T bps can induce a narrow minor groove and a wider
major groove in B-form DNA24,25, we examined the shape of the
DNA in the representative p53-DNA structures. We found that
the width of the major and minor grooves in the regions adjacent
to the CWWG core motif—the sites where Arg248 interacts with
DNA— are indeed altered in these two structures (Fig. 3d). In A/
T-rich, p21-like, K120R-bound RE, the minor groove is narrow
and recognized by the extended Arg248 side chain in the primarily
hydrophobic mode (Fig. 3b and Supplementary Fig. 6). In G/C-
rich, BAX-like, K120R-unbound RE, the minor groove is wider
and sensed by Arg248 in a bent conformation, interacting elec-
trostatically with DNA (Fig. 3a and Supplementary Fig. 5). Thus,
only two bps adjacent to the CWWG motifs (positions 8 and 18,
Fig. 3d) suffice to switch the p53-binding mode in these examples,
regardless of the base composition of the CWWG core motif
(Supplementary Fig. 7)11,26. Our hypothesis that the Arg248 side
chain conformation is influenced by minor groove width is con-
firmed by a double mutation in p53 (R273H/T284R) that widens
the minor groove width, resulting in a change of the Arg248 side
chain conformation (Supplementary Fig. 8)27,28. These findings
support the conclusion that minor groove width at bps 3, 8, 13,
and 18 in p53 REs is critical in determining different DNA-
binding modes because it induces distinct Arg248 conformations
and interactions.

Rewriting the RE code reprograms p53 function. Our model
predicts that single or dual bp conversions at positions 3, 8, 13,
and/or 18 will impact the minor groove width of an RE, alter
interactions of Arg248 and Lys120, and ultimately dictate the
binding mode utilized by p53. To rigorously test this model,
targeted G/C to A/T, along with A/T to G/C bp conversions were
introduced in specific REs in vitro and in vivo. Using the in vitro
DNA-binding assay, we measured Kd values of the modified
BAX_8/13 RE that carried G/C to A/T conversions at positions 8
and 13 in a natural BAX RE (Fig. 4a). Consistent with the model,
these conversions increased the affinity of WT p53 for this RE
(from 460 nM to 40 nM) and restored K120R-p53 binding. An
increase in WT and K120R-p53 binding was similarly observed
for the NOXA_3/13 RE, which contained G/C to A/T conversions
at positions 3 and 13 (Supplementary Fig. 9a). We also measured
Kd values of the p21_8/13 RE, which carried reciprocal A/T to G/
C conversions, at positions 8 and 13. As expected, these

Fig. 2 G/C vs. A/T bp content at positions 3, 8, 13, and 18 distinguishes
REs linked to distinct p53-driven cell fates. a The list of sixteen pro-
apoptotic p53 REs (bottom) and 16 previously confirmed REs corresponding
to genes driving p53-dependent pro-survival response (top)19, with their
nucleotide sequence. Lower-case letters in RE sequences indicate
mismatches from p53 RE consensus. The last column shows the number of
G/C bps at positions 3, 8, 13, and 18, emphasizing a tendency of pro-
apoptotic REs having≥ 2, and pro-survival REs having≤ 2. b Motif analysis
of pro-survival (top) and pro-apoptotic (bottom) REs listed in a. Positional
analysis confirms an increased frequency of G/C bps at the core sequence-
adjacent positions among pro-apoptotic REs and A/T bps among pro-
survival REs. Source data are provided as a Source Data file.
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conversions decreased the affinity of the WT p53 (from 23 nM to
99 nM) and more markedly K120R-p53 (from 43 to 479 nM) for
this RE (Supplementary Fig. 9b). Next, we experimentally
manipulated the minor groove width of the RE in vitro by
introducing G/C to inosine-cytosine (I/C) conversions, which
narrows the minor groove without impacting major groove
width29. These changes are predicted to impact the interaction of
Arg248 with DNA by increasing the non-polar nature of the
binding while having no impact on K120R sensitivity. Supporting
this scenario, WT p53 exhibited an increased affinity for the
BAX_8/13 I/C RE (from 460 nM to 83 nM), but K120R-p53
binding remained undetectable (Fig. 4b). Increased WT affinity
and retention of K120R binding was also observed after intro-
ducing G/C to I/C substitutions at the analogous positions in the
artificial 6FJ5 RE (Supplementary Fig. 9c).

To assess whether the RE code could be predictably
manipulated in vivo, we examined whether the in vitro binding
data correlated with p53-binding behavior in human cells.
Initially, this strategy relied on a panel of luciferase reporters
driven by specific variants of the p53 RE. Natural and artificial
high-affinity and A/T-rich REs (p21 and 3Q05) exhibited full
activation by K120R-p53, whereas low-affinity and G/C-rich REs
(BAX and 6FJ5) were significantly defective for activation by
K120R-p53 (Fig. 4c), in agreement with in vitro results (Table 1).
Notably, converting the BAX RE positions 8 and 13 from G/C to
A/T or fully converting positions 8 through 13 to resemble the
p21 RE (from CCCGGG to TCCCAA, “BAX_4bp”), fully restored
K120R-p53 responsiveness. In contrast, A/T to G/C conversions
in the p21_8/13 RE decreased activation by K120R-p53, again
consistent with the dual-binding mode model proposed here
(Fig. 4d).

Editing the RE code interconverts p53-driven cell fates. As the
p53 RE consensus sequence is extremely degenerate, there are few
examples in the human genome of active REs, which differ only
by a single nucleotide at positions 3, 8, 13, and/or 18. To test our
model in the context of native chromatin, this limited number of
examples were examined for p53 occupancy. In one of these
examples, relying on a comparison of the validated but unchar-
acterized p53 target genes APBB2 and SSUH2, a dual nucleotide

conversion at positions 8 and 13 from A/T bps, in the RE linked
to APBB2 gene, to G/C bps, in the RE linked to SSUH2 gene,
strongly decreased WT p53 binding and completely diminished
binding of K120R-p53 protein, again supporting the model
(Supplementary Fig. 10).

To formally test the proposed p53 RE code in the context of
native chromatin, we utilized CRISPR/Cas9 to edit the sequence
of the endogenous BAX RE in human cells. We edited the wild-
type BAX RE to increase its A/T content, by converting positions
8, 11, 12, and 13, from CCCGGG to TCCCAA (“BAX_4bp”,
identical to the sequence used in the Fig. 4d). Our model predicts
that this edited BAX_4bp RE should be recognized by WT p53
through a non-polar, K120R-bound binding mode. Remarkably,
when compared to a G/C-rich WT BAX RE, WT p53 exhibited
higher occupancy at the edited BAX_4bp RE locus and K120R-
p53 binding was completely restored (Fig. 5a and Supplementary
Fig. 11a). Furthermore, the restoration of K120R-p53 binding
observed by ChIP analysis was of functional relevance as it
resulted in rescued BAX mRNA transcription and protein
expression, in both WT and K120R-p53-expressing cells (Fig. 5b,
c and Supplementary Fig. 11b). Finally, targeted conversions of
the BAX RE within native chromatin resulted in a restoration of
the pro-apoptotic functions of the cancer-derived K120R-p53
mutant, under conditions where unedited cells undergo cell cycle
arrest (Fig. 5d, e)18. This data strongly supports the model in vivo
and highlights DNA-binding as a crucial step in p53’s ability to
selectively activate distinct effector functions. In summary, by
introducing this targeted 4-bp change in a BAX RE and
converting this binding site from lower affinity, K120R-
unbound to higher affinity, K120R-bound, p53-dependent cell
fate outcomes were transformed.

Discussion
Cell fate decisions are frequently regulated by the presence or
absence of key transcription factors that control gene expression
programs ultimately responsible for the cell phenotype. In some
cases, a critical transcription factor can “decide” between multiple
cell fate options, depending on the cellular context. For example,
in response to different developmental cues, individual members
of the SOX and WNT/β-catenin families of transcription factors

Table 1 Measured Kd values (in nM) of representative natural and artificial K120R-bound and K120R-unbound REs for WT and
K120R-p53.

RE name RE sequence Kd [nM]

WT K120R

200mM NaCl 275mM NaCl 200mM NaCl 275mM NaCl

p21 GAACATGTCCcAACATGTTg 26 23 35 43
MDM2 AGACAAGTCaGGACTTaaCT 20 97 36 72
APBB2 AGGCATGTCCcAACATGCCC 10 40 37 80
3Q05 pdb GGGCATGTCTGGGCATGTCT 6 33 33 78
BAX GGGCAgGCCCGGGCTTGTCg 22 460 280 N/A
NOXA GAGCgTGTCCGGGCAgGTCg 45 446 68 ∼2900
“Pro-apoptotic” GGGCATGCCCGGGCATGCCC 15 254 23 ∼3500
6FJ5 pdb AGGCATGCCTAGGCATGCCT 8 783 140 800
BAX_8/13 GGGCAgGTCCGGACTTGTCg 8 40 94 168
NOXA_3/13 GAACgTGTCCGGACAgGTCg 23 60 14 181
p21_8/13 GAACATGCCCcAGCATGTTg 33 99 55 479
BAX_8/13 I/C GGGCAgG(I-)CCCGGI(-C)CTTGTCg 9 83 150 N/A
6FJ5_8/18 I/C AGGCATG(I-)CCTAGGCATG(I-)CCT 8 58 72 691

Lower-case letters in RE sequences indicate mismatches from p53 RE consensus. I (inosine) and C (cytosine) in bold indicate I/C bps. Letters in parenthesis indicate a nucleotide of the I-C bp found on
the complementary strand. Underlined are core (CWWG) sequences.
N/A not available.
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can drive cell differentiation along several distinct lineage
pathways30,31. Similarly, the oncogenic transcription factor MYC
can trigger either cell cycle progression or cell death, also in a
context-dependent manner32. Like MYC, the tumor suppressor
p53 can trigger multiple cellular outcomes, often depending on

the form of stress that initially drove p53 activation4. The ability
of a single, sequence-specific transcription factor to “choose” to
activate only one of several of its gene expression programs raises
a number of biochemical questions. Central among these is how
recognition of genomic targets linked to different effector

Fig. 3 Structural analysis of p53 in complex with distinct REs. a, b Binding modes of p53 in complex with low-affinity, K120R-unbound (a) and high-
affinity, K120R-bound RE (b). Top left: schematic representation of tetrameric p53 and DNA interactions. The CWWG core motifs are highlighted in red or
gold. The four Arg280 residues of tetrameric p53 (molecules I to IV) that interact with guanine of the CWWG core regions are marked as black lines. DNA
sequence differences between 6FJ523 (a) and 3Q0514 (b) are shown in bold (positions 1, 8, 11, and 18). Lower left: overview of the p53 structure in complex
with the respective RE. The 2Fo–Fc electron density map contoured at 1σ above the mean is shown for the L1 loops in green and for the Arg248 residues in
brown. Right: detailed view of molecule I-DNA interactions. c Modeling the Lys120 to Arg (K120R) mutation in the binding mode of low-affinity, K120R-
unbound REs suggests steric clashes, indicated by pink stars with two guanine bases at positions 2 and 3. d Left: superimposition of the DNAs of 6FJ5
(green) and 3Q05 (blue). Arrows indicate significant differences between the two DNA structures and the approximate positions of the Arg248 residues
colored as in a and b sensing the minor groove width. The aligned sequences are shown on the bottom, with differences in the 20-bp regions highlighted in
bold, and positions 3, 8, 13, and 18 underlined in red. Right: width of major (dashed) and minor grooves (solid) calculated by the program 3DNA47,48. The
plotted points correspond to positions between bps. Source data are provided as a Source Data file.
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functions can be discriminated by a conserved DNA-binding
domain. Here, we report a new mechanism of DNA-binding
specificity of p53 protein, by showing that a nucleotide code at
positions 3, 8, 13, and 18 in the p53 RE creates a DNA shape
recognition difference between distinct categories of genomic
targets, with these differences being sensed by two key DNA
contact residues—Lys120 and Arg248. The code our findings
establish is predictive and, when manipulated in vivo, can be
utilized to interconvert p53 target gene transcription patterns and
cell fate.

As previously mentioned, p53 RE is unusually long and tol-
erates a substantially higher level of degeneracy than what is
typically observed for a sequence-specific DNA-binding protein.
Out of twenty nucleotides, G/C bps at positions 4, 7, 14, and 17
(RRRCWWGYYYRRRCWWGYYY) are the only invariant posi-
tions in the p53 RE. Guanines at those positions are directly
recognized by four Arg280 residues, and this base-specific read-
out is a well-defined mechanism by which tetrameric p53
recognizes specific genomic targets33–35. The number of mis-
matched bps within a RE, in particular within a core (CWWG)
sequence, generally lowers the affinity of individual REs11.
However, identical numbers of mismatches to the consensus
sequence, including mismatches in the crucial G/C bps at

positions 4, 7, 14, and 17, are present in both high- and low-
affinity-binding sites. This finding suggests that the degree of a
mismatch from the consensus RE fails to fully explain the dif-
ferential binding of p53 to high- and low-affinity REs and that a
mechanism beyond base-specific recognition must account for
the exquisite ability of p53 to distinguish between different
targets.

With base-specific recognition ruled out as the major deter-
minant of RE recognition by p53, other biophysical mechanisms
must be considered. Relevant to the findings reported here, minor
groove shape recognition is a commonly used mechanism in
protein-DNA interactions, utilized by a variety of DNA-binding
proteins24,36. In particular, recognition of a narrow minor groove
by arginine residues has a thermodynamically beneficial impact
on protein-DNA interactions, by increasing binding affinity24,37.
However, differential arginine-minor groove interactions that
modulate DNA binding without base-specific recognition, and a
DNA-binding protein that uses two binding modes through
distinct minor groove interactions, have not been previously
described to our knowledge. Our findings identify two distinct
molecular mechanisms used by p53 for differential recognition of
its genomic targets as a direct consequence of that phenomenon.
We find that minor groove width, encoded by the presence of G/

Fig. 4 Rewriting the RE code reprograms p53 function in vitro and in cells. a G/C to A/T conversions at positions 8 and 13 in BAX RE increase its affinity
for WT p53 (from 460 nM to 40 nM, left) and restore K120R-p53 binding (right). b G/C to I/C conversions at positions 8 and 13 in BAX RE increase its
affinity for WT p53 (from 460 nM to 83 nM, left), but do not have an impact on K120R-p53 binding deficiency (right). Data are shown as graphs depicting
the percent of bound protein and plotted as a function of the protein concentration (from 0.001 to 1 μM, in log scale). Two independent measurements
were performed at “low-salt” (dashed curves) and “high-salt” (solid curves) buffer conditions. Relevant Kd values measured at high-salt concentrations are
depicted on the graphs. I/C inosine/cytosine. N/A not available. c A luciferase reporter plasmid containing p21, 3Q05, 6FJ5, BAX, BAX_8/13, BAX_4bp or
p21_8/13 RE (nucleotide sequences are listed in table) were co-transfected with an empty vector, WT or K120R-p53 expression plasmid. Twenty-four
hours after transfection cells were harvested and luminescence was measured. K120R-p53 has identical activity as WT p53 protein on A/T-rich p21 and
3Q05 REs, but is defective in trans-activating G/C-rich BAX and 6FJ5 REs. These data confirm K120R-p53 binding behavior observed in vitro. Data are
presented as a fold change of measured luminescence in either WT (blue) or K120R (salmon)-p53-expressing cells over luminescence measured in cells
transfected with an empty vector (no p53). d Substituting G/C to A/T bps in BAX RE (“BAX_8/13”, converted nucleotides are depicted in salmon letters)
or changing positions 8–13 from CCCGGG to TCCCAA (“BAX_4bp”) restores K120R-p53 transactivation activity. Conversely, substituting A/T to G/C bps
in p21 RE (“p21_8/13”) reintroduces K120R deficiency. Graphs in panels c and d show cumulative data from three independent experiments (mean ± s.e.
m.). Two-tailed unpaired Students t-test was used for statistical analysis in panels c and d. RLU, relative light units. Source data are provided as a Source
Data file.
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C or A/T bps at positions 3, 8, 13, and 18 in the RE, determines
the two distinct p53 DNA-binding modes, which are in turn
linked to different cell fates.

The RE code proposed here explains initial DNA recognition
by p53. However, other factors, such as chromatin structure or
central insertions in the RE, may impact or even override this
code. For example, discontinuous REs with inserts between two
half-sites generally have a lower affinity, independent of their
DNA sequence38. Furthermore, some genomic sites containing a
consensus RE sequence, do not exhibit p53 binding in vivo,
perhaps due to a suppressive effect of the aforementioned

chromatin landscape9. These exceptions provide an important
caveat to our model. However, for the vast majority of established
p53 targets10,19, RE recognition is regulated primarily by DNA
sequence, and for these genomic targets, selective DNA-binding,
as the first, fundamental step in the activation of downstream p53
targets, can be largely explained via the use of the two distinct
DNA-binding modes described in our model.

These two binding modes constitute an additional layer of gene
regulation by the p53 protein to create, via Arg248, qualitatively
(predominantly hydrophobic vs. predominantly electrostatic) and
quantitatively (high-affinity vs. low-affinity) different interactions
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Fig. 5 Genomic editing of BAX RE modifies p53 binding and interconverts cell fate outcome. a ChIP signals at the genomic BAX RE locus for WT (blue)
and K120R (red) p53 in cells with a WT BAX RE (left) or genetically edited BAX_4bp RE (right). Graphs represent precipitated DNA relative to an input
(total) DNA and show cumulative data from three independent experiments (mean ± s.e.m.). b Quantitative polymerase chain reaction (qPCR) of BAX
mRNA (represented relative to GAPDH mRNA) from the same cells as in panel a. The graphs show cumulative data from three independent experiments
(mean ± s.e.m.). c Representative Western blot from three independent experiments. Blots were probed with antibodies specific for p53, MDM2, GAPDH,
and BAX proteins. d Same cells as in panels a–c were treated additionally for 12 h with camptothecin (CPT, 1 μM; to induce DNA damage) and induction of
apoptosis was detected by visualizing cleaved Caspase-3/7 by fluorescence microscopy (d), or by measuring Annexin V positivity by flow cytometry (e).
In both assays, a restoration of pro-apoptotic functions of the K120R-p53 variant in cells with edited BAX RE could be observed. Scale bars, 50 μm. PC,
phase contrast. Representative images from three independent experiments are shown in panel d. Graphs in panel e represent an average percentage of
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panels a, b, and e. Source data are provided as a Source Data file.
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with distinct classes of REs. This unique role of Arg248 in target
gene selectivity builds on its already established and crucial role in
p53 biology, most evident from Arg248 being the most frequently
mutated residue in human cancer39. The observation reported
here regarding the ability of Lys120 to sense differences in the RE
shape relates to two previous findings of the role this residue
plays in DNA recognition and cell fate. First, the Halazonetis
group has reported structural findings that the L1 loop, which
contains Lys120, can adopt two different conformations when
complexed with DNA14,22. These conformations are referred to as
extended and recessed, reflecting the position of the L1 loop
relative to the DNA major groove. Similarly, Ethayathulla et al.40

have reported that Lys138, which is the Lys120 analog in the L1
loop of the p53 family member p73, displays different con-
formations at different REs. The combination of biophysical,
genomic, and biological evidence reported here has established a
DNA code and p53 recognition mechanisms that unifies these
observations. Second, we and others have shown that the Lys120
residue is post-translationally modified by acetylation, whose
levels correlate with apoptosis but not cell cycle arrest16,17. Ulti-
mately, the acetylation of Lys120 may be a mechanism by which
DNA recognition by the p53 is stabilized in one mode or the
other and future studies should elucidate its potential role.

In summary, our discovery of two distinct binding modes as a
means of conferring p53 RE selectivity through differential
recognition of minor groove shape offers an explanation for a
major unresolved mystery in p53 biology—the mechanism by
which p53 achieves dose-dependent RE recognition and differ-
ential target gene activation. Since the existence of four p53
monomers in a complex with four RE quarter-sites allows for a
wide range of p53-RE interactions (from strongly polar to
strongly non-polar), the two biochemically distinct binding
mechanisms identified here allow p53 to impose a subtle “fine-
tuning” of its DNA recognition. Additionally, our model
describes DNA recognition by p53 via two distinct binding modes
as initial and foundational step in p53-dependent activation of
downstream targets. Other factors, such as the specific stress
signaling pathway responsible for p53 activation, post-
translational modification of residues beyond Lys120 in the p53
DNA binding domain or elsewhere in the protein, differential co-
factor binding, or pulsatile expression dynamics, are likely to play
a role in modulating selective target gene activation by p53 and
enacting an ultimate cell fate outcome4. Having established a
paradigm for a single transcription factor using different DNA-
binding modes determined by different arginine-minor groove
interactions to selectively effect distinct downstream pathways,
future studies may identify other DNA-binding proteins involved
in cell fate decisions, that use similar mechanisms to gain target
gene selectivity.

Methods
Cell culture, creation of stable cell lines, and transient transfections. The p53-
null human lung cancer cell line H1299 (ATCC) was cultured in Dulbecco’s
Modified Eagle Medium (DMEM, Corning) supplemented with 10% fetal bovine
serum (FBS, GeminiBio) at 37 °C and 5% CO2. Tetracycline (Tet)-inducible p53-
expressing stable cell lines (H1299To-p53) were generated via lentiviral infection
using a ViraPower HiPerform Lentiviral Expression System (Invitrogen)18. p53
expression vectors were generated in pLenti6.3/V5-DEST cloning vectors (Invi-
trogen) and p53 protein expression was induced by treatment of tetracycline
repressor (TetR)-expressing H1299 cells with 1 μg/ml of Tetracycline (Millipore
Sigma). Expression vectors encoding for Lys120 to Arg mutants of p53 (K120R)
were generated using the QuikChange XL Site-Directed Mutagenesis kit (Agilent).
For transient protein expression, parental H1299 cells were transfected with p53
expression vectors, generated in a pcDNA3.1 cloning vector (Addgene) and har-
vested 24 h after transfection. All transfections were performed using Lipofecta-
mine 2000 (Invitrogen), according to manufacturer’s instructions. Cell lines were
regularly tested and verified to be mycoplasma negative using LookOut Myco-
plasma PCR Detection Kit (Sigma-Aldrich).

Western blotting. After harvesting, cells were lysed in an E1A-style cell-lysis buffer
[20mMNaH2PO4, 150mM NaCl, 50mMNaF, 0.5% (w/v) IGEPAL, 2.5mM EDTA,
125mM sodium pyruvate, and 10% (w/v) glycerol]17, supplemented with a proteinase
inhibitor cocktail (1:1000, Millipore Sigma). After 30min on ice, lysates were cen-
trifuged at 20,000 × g for 10min at 4 °C to remove cell debris. Protein concentrations
in lysates were determined using the Pierce BCA Protein Assay Kit (ThermoFisher
Scientific) according to manufacturer’s instructions. Cell lysates were then boiled with
sodium dodecyl sulfate (SDS) loading buffer (250mM Tris–HCl (pH 6.8), 8% (w/v)
sodium dodecyl sulfate, 0.2% (w/v) bromophenol blue, 40% (v/v) glycerol, 20% (v/v)
β-mercaptoethanol) for 10min, separated by SDS–polyacrylamide gel electrophoresis
(SDS-PAGE) and electroblotted onto nitrocellulose membranes. After blotting,
membranes were blocked in 3–5% dry milk (AppliChem) in TBS-T [20mM Tris, 150
mM NaCl, 0.1% Tween (Millipore Sigma)] and incubated with primary antibodies
(Supplementary Table 2). After an overnight incubation at 4 °C, membranes were
washed three times in TBS-T before 1–2 h incubation with a mouse and/or rabbit
secondary antibodies (Supplementary Table 2). After the final wash, proteins were
detected using a chemiluminescence reagent (Thermo Scientific).

RNA analysis and chromatin-immunoprecipitation. Total RNA was isolated
using TRIzol (Thermo Fisher) according to manufacturer’s instructions. cDNA was
generated from 200 ng of RNA using the High Capacity cDNA Reverse Transcription
Kit (Thermo Fisher). For reverse transcription polymerase chain reactions (RT-
PCRs), 2 μl of cDNA was used per reaction. Quantification of DNA was performed
using the Step One Plus Real Time-PCR system (v2.3) with Fast SYBR Green Master
Mix (both Applied Biosystems). Gene values were normalized to GAPDH gene
expression. Primer sequences for each gene are listed in Supplementary Table 3.

Chromatin-immunoprecipitation, including cross-linking, cell lysis, sonication,
immunoprecipitation, purification, and PCR were performed as previously
described41 using anti-p53 antibody (rabbit monoclonal, sc-6243 X, Santa Cruz
Biotechnology). ChIP products were quantified using the Step One Plus RT-PCR
system (v2.3) and Fast SYBR Green Master Mix (both Applied Biosystems). Each
immunoprecipitation was normalized to the amount of DNA detected in the input
sample by RT-PCR. The list of primers used for PCR reactions can be found in the
Supplementary Table 4.

Chromatin-immunoprecipitation sequencing (ChIP-seq) data generation and
analysis. The chromatin-immunoprecipitation sequencing (ChIP-seq) experi-
ments were performed in H1299To-p53 cells treated with Tet for 24 h, as pre-
viously described41, using the anti-p53 antibody (rabbit monoclonal, sc-6243 X,
Santa Cruz Biotechnology). Sequencing libraries were prepared using Accel-NGS
2S Plus Library Kit (Swift Biosciences) with unique single indexes. Library insert
size and molarity was quantified using the BioAnalyzer (Agilent) and KAPA
Library Quantification methods. Multiplexed libraries were sequenced on the
NextSeq 500 System (Illumina) with V1 chemistry to generate 75-bp reads.
Uniquely aligned reads were aligned to the GRCh37/hg19 reference genome using
BWA-MEM (v0.7.12)42 and enriched regions were determined using MACS (v2)43.
Bed files for visualization on the UCSC Genome Browser were generated using
HOMER (v4.10)44 with a visualization fragment length equal to the median esti-
mated fragment length. 20-bp-long p53 response element sequences were obtained
from a previously published list of DNA sequences of all natural p53-binding sites
by aligning chromosomal locations of our ChIP-seq-generated peaks to 20 bp-long
ChIP-Exo-generated p53-binding sites by Chang et al.10. DNA logos were created
using WebLogo (v3)45.

Protein purification. Untagged, thermostable, N-terminally truncated human p53
(residues 94-393)14,22 and its Lys120 to Arg (K120R) mutant were expressed in
BL21-CodonPlus (DE3)-RIL E. coli (Stratagene). Typically, 6 L of bacteria cell
cultures were grown at 37 °C until they reached an OD600= 0.5–0.8 when they
were shifted to 18 °C. Protein expression was induced by addition of 0.2 mM
isopropyl-β-D-thiogalactoside (IPTG). Cells were harvested by centrifugation (20
min, at 7500 × g and 4 °C), resuspended in cell lysis buffer [20 mM bis-tris propane
(BTP, pH 6.8), 200 mM NaCl, 2 mM DTT, and 0.5 mM Tris (2-carboxyethyl)
phosphine hydrochloride (TCEP)] and homogenized by an Emulsiflex C5 cell
disruptor (Avestin). Cell lysates were centrifuged at 35,000 × g for 30 min, at 4 °C
and cleared cell extracts were loaded onto a HiTrap SP cation exchange column
(GE Healthcare) pre-equilibrated with a lysis buffer. The proteins were eluted using
a linear gradient of NaCl from 200 mM to 1M concentration. Eluted proteins were
then loaded onto a HiTrap Q anion exchange column (GE Healthcare) to remove
residual nucleic acids, and the protein-containing flow through was collected.
Finally, the pooled protein was concentrated and loaded onto a HiLoad Superdex
200 16/60 size exclusion column (GE Healthcare) and eluted in a buffer containing
150 mM NaCl, 20 mM BTP (pH 6.8), and 0.5 mM TCEP. Final protein con-
centrations were estimated by measuring absorbance at 280 nm.

Steady-state fluorescence-based DNA binding assay. Fluorescence polarization
measurements were carried out at 25 °C on a VICTOR3V plate reader (Perkin
Elmer), as previously described20. The 6-carboxy-fluorescein (FAM)-labeled
dsDNA probes (2.5 nM) were incubated for 10 min with increasing amounts of
protein up to 1 μM in a buffer containing 200 or 275 mM NaCl, 20 mM BTP (pH
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6.8), 5% (v/v) glycerol, 0.1 mg/ml BSA, and 0.5 mM TCEP. The 36-bp oligonu-
cleotides used in DNA-binding assays are listed in the Supplementary Table 5. No
change in fluorescence intensity was observed with the addition of protein. Binding
curves were fit individually using GraphPad Prism (v8.4.2, GraphPad Software,
Inc.). Binding constants (Kd values) were obtained from curve fitting using the
following formula for millipolarization (mP): [mP]= [maximum mP] × [C]/(Kd+
[C])+ [baseline mP], where [C] is the protein concentration. Normalized [mP]
values were calculated from {([mP]− [baseline mP])/([maximum mP]− [baseline
mP])} × 100, and plotted as “% bound”. Averaged Kd values are reported (n= 2).

Crystallographic analysis. All coordinates and structural factors were retrieved
from Protein Data Bank (PDB) (https://www.rcsb.org/). Simulated annealing omit
maps were calculated by PHENIX (v1.6)46. Major and minor groove widths were
measured by 3xDNA (v2)47,48. Molecular graphics were generated using PyMol
(v2.3, DeLano Scientific, LLC).

Luciferase reporter assay. pGL3 firefly luciferase reporter plasmids encoding for
natural (p21 and BAX) REs have been described previously49. Reporter plasmids
with mutated p53 REs were generated using the QuikChange II Site-Directed
Mutagenesis kit (Agilent), according to manufacturer’s instructions. A list of all RE
sequences used in Luciferase reporter assays is included in Fig. 4c. Briefly, 500 ng of
Firefly luciferase reporter plasmids were co-transfected with 250 ng of p53
expression vectors and 100 ng of pRL-TK Renilla luciferase control reporter vectors
(Promega), using Lipofectamine 2000 (Invitrogene), according to manufacturer’s
instructions. Cells were harvested 24 h post transfection and relative luciferase
activity, in terms of relative luminometer units (RLU), was measured using the
Dual-Luciferase Reporter Assay System (Promega), using Infinite 200 Pro (v3.37,
Tecan). All data is presented as fold induction over the empty vector control with
standard deviations from three independent experiments.

CRISPR/Cas9-mediated editing of the BAX RE in human cells. The wild-type
response element within the intronic region of BAX gene (RefSeq NG_012191.1)
was examined for available Streptococcus pyogenes (Sp) Cas9 guide RNA (gRNA)
sites and a gRNA with the 5’- GTGGTGCGGGCGACAAGCCC sequence was
chosen. To drive the homology directed repair (HDR), a 200-mer single-stranded
oligonucleotide (Supplementary Table 6) complementary to the plus-strand, cen-
tered over the intended mutation site, and with targeted four nucleotide mis-
matches was synthesized. In all, 50 pmol of purified SpCas9 and 250 pmol of gRNA
were incubated at room temperature for 20 min in 1x Tris-EDTA (TE) buffer, prior
to transfection. Human H1299 cells were cultured in DMEM (Corning) with 10%
FBS (GeminiBio). Transfections were performed using a 4D-Nucleofector (Lonza).
Cells, the prepared RNP and 6 μM of single-stranded HDR template were trans-
fected in a 100 μl reaction utilizing the Lonza SF solution and DS-138 program.
After transfection, the cells were returned to culture for 72 h to recover. The cells
were then single-cell sorted into 96-well plates using manual limited dilutions.
Expanded clones were sampled and genomic DNA was purified for PCR ampli-
fication. Samples were then sequenced across the BAX RE region (SeqStudio,
Applied Biosystems) in both directions using the PCR primers (primer sequences
are listed in Supplementary Table 5). Clones with the desired 4-bp mutation
(termed “BAX_4 bp”) were identified by alignment to the BAX gene sequence.

Creation of Tet-inducible, p53-expressing, CRISPR/Cas9-edited stable cell
lines. After identification and expansion of the desired 4-bp mutation clones, Tet-
inducible p53-expressing, “BAX-4bp” stable H1299 cell lines were generated as
previously described, via lentiviral infection using a ViraPower HiPerform Lenti-
viral Expression System (Invitrogen)18. WT and K120R-p53 protein expression was
induced by treatment of TetR-expressing “BAX_4bp” cells with 1 μg/ml of Tetra-
cycline (Millipore Sigma).

Annexin V staining. Following treatment, cells were collected by trypsinization
(Corning), washed three times with phosphate buffer saline (PBS, Corning), and
stained for Annexin V, using an Annexin V-FITC apoptosis detection kit (BD
PharMingen), for 45 min, at room temperature, as previously described50. The
percentage of Annexin V-positive cells was determined by flow cytometry on a
CytoFlex, using the CytExpert (v1.2, both Beckman Coulter). Reported are average
values with standard errors, in a population of 10,000 cells, from three independent
experiments. The original source images for a representative data and Annexin V
gating strategies can be found in the Supplementary Fig. 12.

Cleaved Cas3/7 fluorescent dye staining and visualization. To visualize the
induction of apoptosis, cells were stained with the IncuCyte Caspase-3/7 Green
Reagent (Sartorius), according to manufacturer’s instructions. Following treatment,
cell culture media were incubated with green fluorescent dye for 24 h, and live-cell
images of cells undergoing caspase-3/7-mediated apoptosis were acquired by
fluorescence contrast and phase contrast microscopy on an Axio Vert.A1 inverted
microscope, equipped with the Axiocam ICm 1 camera, and microscopic images
were generated using ZEN (v2.3, all Zeiss). Reported images are representative of
one experiment with at least three independent biological replicates.

Statistical analysis. All statistical analyses were performed with GraphPad Prism
software (v.8.4.2, GraphPad Software, Inc.) and Microsoft Excel 2010. Statistical
differences between two groups were assessed using a two-tailed Student’s t-test. P
< 0.05 was the cutoff used for statistical significance and exact P-value was reported
where available.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary available in Supplementary Information linked to this
article.

Data availability
The data supporting the study are available within the paper and its Supplementary
Information files. ChIP-sequencing data generated during the study have been deposited
in the Gene Expression Omnibus (GEO) repository and are available under GEO
accession number GSE159945. UCSC Genome Browser session for the visualization of
generated ChIP-sequencing data is available from the corresponding author on request.
Structural figures of p53 in a complex with different DNA were generated from publicly
available datasets from the Protein Data Bank (3Q05 [DOI: 10.2210/pdb3q05/pdb]; 6FJ5
[DOI: 10.2210/pdb6FJ5/pdb]; 4HJE [DOI: 10.2210/pdb4HJE/pdb]; 4IBW [DOI: 10.2210/
pdb4IBW/pdb]; 3IGL [DOI: 10.2210/pdb3IGL/pdb]. Source Data are provided with
this paper.
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