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Abstract: The inverse problem of structural system identification is prone to ill-conditioning issues;
thus, uniqueness and stability cannot be guaranteed. This issue tends to amplify the error propagation
of both the epistemic and aleatory uncertainties, where aleatory uncertainty is related to the accuracy
and the quality of sensors. The analysis of uncertainty quantification (UQ) is necessary to assess
the effect of uncertainties on the estimated parameters. A literature review is conducted in this
paper to check the state of existing approaches for efficient UQ in the parameter identification field.
It is identified that the proposed dynamic constrained observability method (COM) can make up
for some of the shortcomings of existing methods. After that, the COM is used to analyze a real
bridge. The result is compared with the existing method, demonstrating its applicability and correct
performance by a reinforced concrete beam. In addition, during the bridge system identification by
COM, it is found that the best measurement set in terms of the range will depend on whether the
epistemic uncertainty involved or not. It is concluded that, because the epistemic uncertainty will
be removed as the knowledge of the structure increases, the optimum sensor placement should be
achieved considering not only the accuracy of sensors, but also the unknown structural part.

Keywords: system identification; uncertainty quantification; observability; frequencies; mode shapes;
epistemic uncertainty; aleatory uncertainty; sensors

1. Introduction

Numerical or mathematical models are common tools in civil and structural engi-
neering when analyzing the internal forces, the displacements and modal attributes of
a structure, or the vibration responses due to dynamic loading. These can be addressed
as a direct analysis when the structural parameters are all known. However, given the
structural degradation during service life, some structural properties become unknown or
uncertain. Structural system identification (SSI), as a one way of inverse analysis, evaluates
the actual condition of existing structures, which is of primary importance for their safety.

Most research works focus on the deterministic SSI and probabilistic approach [1–3],
which aims to find the structural parameters of a numerical model that guarantees the best
possible fit between the model output and the observed data. Nevertheless, considering the
uncertainties related to the structure model and observed data, uncertainty quantification
(UQ) is necessary for assessing the effect of uncertainty and the estimated accuracy [4]. The
detail literature review of the UQ approach is given in Section 2.

The observability method (OM) has been used in many fields, such as hydraulics,
electrical, and power networks or transportation. This mathematical approach has been
applied as a static SSI method [5–8]. The numerical OM [9] and constrained observability
method (COM) [10,11] were developed based on the observability method for the static and
dynamic analysis. In order to obtain accurate and reliable parameters, OM identification
needs to be robust in terms of variations of systematic modeling uncertainty introduced
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when modeling complex systems and measurement uncertainty caused by the quality
of test equipment and the accuracy of the sensors [12]. Therefore, in order to apply OM
accurately and with the required reliability, it is necessary to carry out an UQ analysis. This
is the objective of the present paper when dynamic data is used.

UQ analysis seems to be highly probability-independent from optimal sensor place-
ment. In contrast, the sensors need to be installed on the most informative position, that is,
the location that provides the least uncertainty in the bridge parameter evaluations [13].
One of the most known and commonly adopted approaches for optimal sensor placement
was developed by Kammer [14]. Since then, several variants of this approach have been
suggested to resolve the positioning of SSI sensors [13,15–17]. However, no research works
have noticed that the choice in the best position of the sensors might change when different
sources of uncertainty are considered in the uncertainty analysis. To fill this gap, one of the
major contributions of this study is to investigate whether there is a best measurement set
(optimum sensor deployment providing the most accurate results) independently from the
different sources of uncertainty.

This research aims to understand how the uncertainty in the model parameters and
data from sensors affect the uncertainty of the output variables, that is, how the uncertain-
ties from different sources propagate or how they will pose their influence on the estimated
result. Moreover, by dividing the source of uncertainty into aleatory and epistemic, impor-
tant insights can be obtained into the extent of uncertainty that can be potentially removed.

Epistemic uncertainty refers to the type of uncertainty caused by the lack of knowledge,
thus, with time and more data acquisition, this type of uncertainty can be reduced. On the
other hand, the aleatory uncertainty refers to the intrinsic uncertainty that depends on the
random nature of the observed property or variable, thus, it cannot be removed no matter
the amount of data used [18] as the noise of measurement sensors always exists.

From the practical point of view, determining the level of uncertainty of the estimated
parameters through the dynamic observability method is of interest to determine the ro-
bustness of the method. Moreover, an informed decision-making process requires not only
of a punctual estimation of the variables, but also the level of confidence of the estima-
tion. The uncertainty of the structural parameters will allow a more accurate reliability
analysis of the structure. Additionally, it is also essential to compare the advantages and
disadvantages of this method with the existing methods to show the applicability of COM.

The motivation of this paper is to check the possibility of gaining insight into the
uncertainty quantification before the actual monitoring of a structure. The Dutch bridge
known as ‘Hollandse Brug’ is used as an example. This bridge was monitored without
a previous evaluation and after its monitoring, the conclusion was that the uncertainty
was too big to make any conclusive assessment. What is more, the UQ analysis in the
framework of the observability method will be developed to fill the blank of the OM
method, and the merit of this COM method for UQ analysis will be discussed.

This paper is organized as follows. In Section 2, an overview of available UQ ap-
proaches is given. The principle of the constrained observability method (COM) is de-
scribed in Section 3. Section 4 presents the case study, the Dutch bridge. The uncertainty
analysis considering the effect of aleatory and epistemic by COM is shown in this section,
and the analysis conducted to choose the best measurement set of sensors in different
scenarios of uncertainty. In Section 5, the comparison of COM and one existing approach,
the Bayesian method, is conducted and the discussion of proposed COM. Finally, some
conclusions are drawn in Section 6.

2. Literature Review of Uncertainty Quantification

The ill-posedness of the inverse SSI problem occurs frequently and SSI is extremely
susceptible to uncertainties. Uncertainty quantification is a tool to explore and improve
the robustness of the SSI methods. In general, methods for quantifying uncertainty can be
divided into two major categories: probabilistic and non-probabilistic approaches. Proba-
bilistic approaches reflect the traditional approach to modeling uncertainty, set on the firm
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foundations of probability theory, where uncertainty is modeled by appointing unknown
quantities to probability density functions (PDFs); these PDFs are then propagated to
probabilistic output descriptions. Non-probabilistic methods use random matrix theory to
construct an uncertain output of the prediction model operator [4,19].

Non-probabilistic approaches, such as interval methods [20–22], fuzzy theory [23] and
convex model theory [24], and probabilistic methods, such as the maximum likelihood
estimation method [25], Bayesian method [26,27], stochastic inverse method [28], non-
parametric minimum power method [29], and probabilistic neural networks [30] have been
presented in the existing literature.

In the management of uncertainty, probabilistic Bayesian theory is an attractive frame-
work. It has been widely applied, such as in the identification of material parameters
in a cable-stayed bridge [31], plate structures [32], and steel towers [33]. Although the
probabilistic method is commonly seen as the most rigorous methodology for dealing with
uncertainties effectively and is exceptionally robust to sensor errors [16], it is not especially
suitable for epistemic uncertainty modeling [34–36]. The argumentation behind this relates
to the definition of the (joint) PDFs explaining the unknown quantities: it is argued that
adequate qualitative knowledge for constituting a truthful and representative probabilistic
model is hardly available. However, model uncertainty has a major effect on estimating
structural reliability [37].

To respond to some obvious disadvantages/limitations of the probabilistic approach
related to the construction of PDFs and the modeling of epistemic uncertainty, the last few
decades have seen an increase in non-probabilistic techniques for uncertainty modeling.
It was developed by Soize [19,38–41], based on the principle of maximum entropy. Most
non-probabilistic methods are generated based on the interval analysis. Interval methods
are useful to consider the crisp bounds on the non-deterministic values [20]. The non-
probabilistic fuzzy approach, an extension of the interval method, was introduced in
1965 by Zadeh [42], aiming to evaluate the response membership function with different
confidence degrees [43,44]. Ben-Haim developed the convex model method for evaluating
the model usability based on the robustness to uncertainties [45]. Interval approaches,
however, are not capable of distinguishing dependency between various model responses
by themselves, which may make them severely over-conservative with regard to the real
complexity in the responses to the model. Most of the non-probabilistic methods are
somehow based on a hypercubic approximation of the result of the interval numerical
model, and therefore neglect possible dependence between the output parameters [46,47].

It is worth mentioning that perturbation approaches are proved to be useful for the
uncertainty analysis of discrete structural models [48–50]. However, this method works
well for the aleatory uncertainty (sensitivity to eigenvalues and eigenvectors) but not for
epistemic uncertainty.

A probabilistic UQ approach was proposed in this paper to analyze the SSI through the
dynamic constrained observability method, by considering both the epistemic uncertainty
modeling and the aleatory uncertainty. To overcome some of the drawbacks mentioned
above, different modal orders are considered separately, after that, all involved mode
orders are put together to estimate the output parameters in an objective function. The
method of simultaneous evaluation can appropriately take into account the dependence
between various parameters.

3. Dynamic Structural System Identification Methodology

In dynamic SSI by COM, the finite element model (FEM) of the structure has to be
defined first. Subsequently, the dynamic equation is obtained with no damping and no
external applied forces. For illustration, assume that the system of equations is as follows:

K{∅} = λM{∅} (1)

In Equation (1), K, M, λ, and {∅}, respectively represent the global stiffness matrix,
the mass matrix, squared frequency and mode shape vector. For two-dimensional models
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with Bernoulli beam elements and NN nodes, the global stiffness matrix K is composed of
the characteristic of the beam elements (i.e., length L, elastic moduli E, area A, and inertia
I). The mass matrix, M, refers either to the consistent mass matrix or to the lumped one.
In this paper, the consistent mass matrix was used applying a unit mass density, m. The
squared frequency, λ, is considered when the free-vibration happened. ∅ stands for the
displacement shapes of the vibrating system, containing the corresponding information,
x-direction, uik, y-direction, vik, and rotation, wik, at each node k for each vibration mode i.
For each node, 3-dof are considered.

In the direct analysis, every element in the matrix K and M is assumed to be known.
The squared frequency, λ, and mode shape vector, ∅, are solved by Equation (1). In dynamic
SSI by COM, which is an inverse analysis, the matrix is partially known. Parameters
appearing in the matrices K and M are {E, A, L, I, m}. It is generally assumed that the
length, L, the unit mass density, m, and area, A, are known, whereas elastic moduli, E, and
inertia, I, are unknowns. Since the main objective of SSI is to assess the condition of the
structure, the estimations of bending stiffnesses, EI, are of primary importance.

Once the unknowns in the matrix K, boundary conditions, NB, and measurements are
determined, the COM of dynamic SSI can be conducted. Here, the measurement sets are
the frequencies and the corresponding partial modal information of the ith vibration mode.

Firstly, the separation of the column of matrix K and M is conducted to place unknown
variables of K and M into {∅} for the ith vibration mode to form a new matrix K∗i and a
new matrix M∗i . After that, the modified modal shapes ∅∗Ki and ∅∗Mi of the corresponding
K∗i and M∗i include known and unknown terms. Terms of ∅∗sx×1

Ki,1 and ∅∗nx×1
Mi,1 are known,

whereas ∅∗rx×1
Ki,0 and ∅∗rx×1

Ki,0 include unknown terms. ∅∗rx×1
Ki,0 ,∅∗sx×1

Ki,1 , ∅∗mx×1
Mi,0 , and ∅∗nx×1

Mi,1
are the partitioned vectors of ∅∗Ki and ∅∗Mi, respectively. The dimensions of each of the
elements are given by their superscripts. The modified stiffness and mass matrices, K∗i
and M∗i , are given the corresponding label according to the split of the modal shapes, as
shown in Equation (2). R is the number of measured modes.

Secondly, the system is rearranged in order to have all the unknowns of the system in
one column vector, as shown in Equation (3). Thereafter, the product variables are treated
as single linear variables to linearize the system for ith vibration mode, such as EIjuik,
EIjvik, and EIjwik instead of “E·Ij·uik”, “E·Ij·vik”, or “E·Ij·wik”.

Thirdly, the equation will be built by combining the information of several models
when multiple modal frequencies are considered together. Equation (4) is an example for
the first R modal system. Expression in which Bi is a matrix of constant coefficients, Di is
a fully known vector, and zi contains the full set of unknown variables.

K∗i ∅∗Ki =
[

K∗(3NN−NB)×rx
i,0 K∗(3NN−NB)×sx

i,1

]{ ∅∗rx×1
Ki,0

∅∗sx×1
Ki,1

}

=
[

M∗(3NN−NB)×mx
i,0 M∗(3NN−NB)×nx

i,1

]{ ∅∗mx×1
Mi,0

∅∗nx×1
Mi,1

}
= M∗i ∅∗Mi

(i = 1, 2, 3 . . . , R)

(2)

Bizi =
[

K∗(3NN−NB)×rx
i,0 −M∗(3NN−NB)×mx

i,0

]{ ∅∗rx×1
Ki,0

∅∗mx×1
Mi,0

}

=
{

M∗(3NN−NB)×nx
i,1 ∅∗nx×1

Mi,1 − K∗(3NN−NB)×sx
i,1 ∅∗sx×1

Ki,1

}
= Di

(i = 1, 2, 3 . . . , R)

(3)

Bz =


B1 0 0 0
0 B2 0 0

0 0
. . . 0

0 0 0 BR




z1
z2
...

zR

 =


D1 0 0 0
0 D2 0 0

0 0
. . . 0

0 0 0 DR

 = D (4)
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Fourth, the Bz = D is treated as a system of linear equations and its general solution is
the sum of a particular solution, zp, and a homogeneous one, znh, which corresponds to the
case Bz = 0. The general solution is expressed as Equation (5). The value of [V] is critical for
the result of Bz = D. If any row of [V] is composed by only zeros, then the corresponding
particular solution will represent the unique solution of that parameter. The parameter
obtained in this step is categorized as an observed parameter. New observed parameters
are applied to a next iteration (steps 1–4), until no new parameters are recognized.

z = zp + znh = zp + [V]{ρ} (5)

Lastly, an objective function, Equation (6), is applied to optimize the equation Bz = D,
which is extracted from the last iteration. Here, in order to uncouple the observed variables,
the potential implicit condition is constrained in the objective function, i.e., EIjvik =
EIj ∗ vik, EIjwik = EIj ∗ wik.

J = Wλ

R

∑
i=1

(
∆λi

λ̃i

)2
+ W∅

R

∑
i=1

(1−MACi)
2 (6)

MACi (∅mi, ∅̃mi) =

[
∅T

mi∅̃mi
]2(

∅T
mi∅mi

)(
∅̃mi

T∅̃mi

) (7)

Equation (6) is used to minimize the squared sum of frequency-related error and mode
shape-related error. ∆λi is the difference between the measured λ̃i, and the estimated
circular frequencies, MACi is the modal assurance criterion, which measures the closeness
between the calculated mode shape , ∅mi, obtained from the inverse analysis using the
estimated stiffnesses and areas, and the measured shape, ∅̃mi, as shown in Equation (7).
Wλ and W∅ represent the weighting factors of the mode shape components and circular
frequencies coefficient components, respectively. In most analyses, Wλ and W∅ are assumed
to be equal [51]. In this paper, the effect of weighting factors was ignored. The specific
implementation steps can be found in the literature [11].

4. Hollanddse Brug Case Study By COM
4.1. Bridge Introduction

The case study is a prestressed concrete bridge in the Netherlands known as “Hol-
landse Brug”, see Figure 1. Hollandse Brug, since its opening in 1969, is an important link
between Amsterdam and the northeastern area of the country.

Figure 1. Picture of the Hollandse Brug.

The bridge is 355 m long, divided into seven spans of 50.75 m long separated by
dilatation joints impeding bending moment transference. Thus, the bridge can be studied
by analyzing single-supported beams. Regarding the spans, they are made of nine prefabri-
cated prestressed longitudinal girders of 50.55 m long separated a distance of 4.11 m from
each other. Reference [52] includes detailed structural parameters.

Structural Health Monitoring (SHM) data were collected for InfraWatch project and
obtained from an SHM system installed after the renovation. The SHM system on the
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Hollandse Brug has strain, vibration, and temperature sensors mounted on three cross-
sections of the first span (Figure 2), mid-span (first cross-section), a second cross-section,
and a third cross-section (over the bearings). Some of the strain data is available in
http://www.infrawatch.com (accessed on 19 April 2021).

Figure 2. Sensors location of the InfraWatch project.

Details about natural frequencies, mode shapes and damping ratios can be collected
using vibration sensors placed at different transverse and longitudinal locations of the
bridge [52–54], and then, the bridge stiffness can be derived through modal data [55,56].
There are many methods to extract modal information, such as the state-space identification,
peak-picking method, and frequency domain decomposition [57].

4.2. Model Calibration

The unidimensional model of the span of Hollandse Brug is divided into 6 elements
(Figure 3). According to the parameters given in References [52–54] and model calibration,
the simplified model uses the parameters shown in Table 1, obtaining estimations of
the frequencies and mode shapes close to the experimental mean data ( f1 = 2.51 Hz,
f2 = 10.09 Hz). The first and second frequencies match the experimental data correctly
with −0.1% and −0.5% errors respectively.

Figure 3. (a) First span of Hollandse Brug; (b) first and second mode shape.

Table 1. Parameter of each element (deterministic values).

Element Type
Mode Value

Length (m/each) EI (Nm2) Mass (kg/m)

Bridge 1–3 8.425 8.15× 1011 49, 000

This model will be used as the theoretical representation of the bridge in order to
evaluate the effects of uncertainty. The estimated values of the parameters from the analysis
done in this paper when sources of uncertainty are considered will be compared with
values from Table 1. This will be referred as the theoretical values to be targeted.

http://www.infrawatch.com
http://www.infrawatch.com
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4.3. Case UQ Analysis

The goal of this section is to assess the uncertainty regarding the estimation of EI2 and
EI3 of the Hollandse Brug when EI1 and m are known with some degree of uncertainty.
EI1, EI2 and EI3 represent the corresponding values of elements 1©, 2©, and 3© in Figure 3a.

To assess the uncertainty associated with the output of the structural system identifi-
cation, the epistemic uncertainty involved in the assumption of the input-parameters (error
incurred during the modeling process) and the aleatory uncertainty involved in the mea-
surement error (inaccuracy of sensors) are independently considered. In that way, insights
into the contribution of each type of error to the total uncertainty can be obtained. Then, the
combined effect is analyzed to determine the total uncertainty of each estimated parameter.

4.3.1. Epistemic Uncertainty: Input-Parameter Errors

The contribution of the errors of the input parameters of the structural model, some-
times referred as model errors, are first analyzed. Here, the effect of boundary conditions
was not considered as it is assumed that they were perfectly determined through the
model calibration carried out in Section 4.2. In fact, the calibration using the first 2 modal
frequencies identified that a pin connection is the correct assumption. In addition, the
shear deformation was ignored based on the low value of the ratio cross-section depth to
span length.

Table 2 shows the input parameters considered in this analysis, namely, the mass of
the bridge, m, assumed as a constant for the entire bridge, the Young modulus of element
type 1, E1, and its flexural inertia, I1 (see Figure 3). The probabilistic distributions assumed
to introduce the uncertainty regarding those parameters are also indicated.

Table 2. Statistical definition of input variables.

List of Variables (Units) Sampling Size Probabilistic Distribution 95% Confidence Interval

m1 = m2 = m3 = m (kg/m)

103
N(49, 000, 49, 000× 0.05) 49, 000 (1± 0.1)

E1 (N/m2) N
(
4× 1010, 4× 1010 × 0.25

)
4× 1010 × (1± 0.5)

I1 (m4) N(20.4, 20.4× 0.02) 20.4 (1± 0.04)

They are assumed to follow a normal distribution N(u, δ), where u is the mean corre-
sponding to the expected value of the variable. The standard deviation, δ, has been chosen
to guarantee that the 95% of the distribution falls within the interval [u− 2σ, u + 2σ]. Thus,
the intervals of m, E1 and I1 are [0.9u 1.1u], [0.5u 1.5u] and [0.96u 1.04u], respectively. The
variability in the Young modulus was chosen according to the Reference [58]. All the input
parameters are assumed to be statistically independent. It is noted that the uncertainty of
the three input parameters of the model can be reduced by conducting non-destructive
tests in the bridge.

In order to propagate the uncertainty, Monte Carlo simulation (MCS) was used. MCS
requires an input sample made of combinations of realizations of each parameter upon
which a model will be evaluated to obtain a sample of the model response. However, this
approach may be very time-consuming and for large dimensional problems and some
reliability problems, the selected combinations might not yield a response sample that
can be considered as a good representation of the population. In other words, relevant
information can be dismissed if the input sample is not large enough or not adequately
selected. To overcome this issue, several sampling methods have been developed. In this
research, the fast optimal Latin hypercube (FOLH) sampling is preferred for its sampling
strategy, which can achieve higher sampling accuracy with a smaller sampling scale [59].

The FOLH, like the common Latin hypercube (LH) method, requires the selection of
the individual realizations of the input parameters according to their probability distri-
bution. To do that, the cumulative distribution function (CDF) of each input parameter
was equally divided into the number of required realizations, and then, the corresponding
percentile was obtained. By doing so, the set of selected realizations will follow the required
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probability distribution. The main contribution of FOLH with respect to LH was the way
that the realizations were combined (pairing process). To illustrate this process, Figure 4
shows an example considering only two random variables, for instance m and E1. Figure 4a
depicts the equal division of the CDFs to obtain 103 realizations of each variable. Then
the realizations were paired into 103 combinations. Figure 4b shows the resulting sample
points. In the case of the variables shown in Table 3, combinations of the three variables
should be generated. In this case, a total of 103 sampling points were selected to statistically
represent the 3-dimensional space. It is noted that the benefit of the FOLH method was
not so obvious in this case, as only three variables were combined. Nevertheless, in the
following sections, the number of the involved variables is significantly larger, thus, the
FOLH method is required to reduce the computational time without a loss of representation
of the input space.

Figure 4. (a) Division of the CDFs equally and pairing process; (b) resulting sample points.

Table 3. Statistical data of the estimated EI2 and EI3 under different measurement sets (normalized).

EI2 EI3

Measurement Set A B C A B C

p5 0.684 0.879 0.77 0.608 0.884 0.782
p95 1.312 1.117 1.228 1.383 1.113 1.217
p50 1.000 0.999 0.999 1.003 0.999 0.999

Range 0.628 0.238 0.458 0.775 0.229 0.435
Skewness 0.000 −0.001 −0.001 0.003 −0.001 −0.001

Mean (Bias) 0.999 0.999 1.000 0.999 0.999 1.000
Standard Deviation 0.257 0.096 0.185 0.319 0.092 0.176

Probability of
Overestimated 49.8% 49.8% 49.8% 49.9% 49.6% 49.8%

The sample points were studied for three scenarios that differ in the considered
measurement sets. It is noted that in this stage the measurements were assumed error free.
The three measurement sets are shown in Figure 5. The symbols vji and wji in Figure 5
represent the vertical displacement and rotation of the jth node of the ith mode shape.
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Figure 5. (a) Measurement Set A; (b) Measurement Set B; (c) Measurement Set C.

Thus, measurement Set A (Figure 5a) mainly focuses on the estimation of element
type 2, the distribution of measurement Set B (Figure 5b) aims at both element types, 2 and
3, and measurement Set C (Figure 5c) includes all the possible measures as it is expected to
improve the estimation accuracy of EI2 and EI3. Given that the corresponding raw row of
[V] to EI2 and EI3 is equal to 0 under these three sets, EI2 and EI3 can be directly identified
by Equation (5), with no need of conducting the optimization step.

The results corresponding to the three measurement sets are depicted by their empir-
ical cumulative distribution functions (ECDFs) to avoid making any assumption on the
probability distribution of the results. The obtained values, shown in Figure 6, are normal-
ized with respect to the theoretical values. In all the cases, the distributions were almost
unbiased and symmetric, which is reflected in the mean and probability of overestimated
rows in Table 3.

More precisely, for the measurement Set A, the expected values of the estimated
parameters (EI2, EI3) had 0.0% and 0.3% skewness with respect to the theoretical values,
respectively. The 5% and 95% percentages of the normalized values of EI2 and EI3 were
[0.684, 1.312] and [0.608, 1.383], respectively. In absolute terms, EI2 will be in the range of
[5.57, 10.68]×1011 and EI3 in [4.96, 11.27]×1011 within 95% confidence interval. It can be
seen that the output variable EI2 exhibited less uncertainty. This can be explained by the
amount of information provided per unit length, which in the case of EI2 was bigger than
in the case of EI3 (see Figure 6).
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Figure 6. ECDF (empirical cumulative distribution functions) of estimated under different sets
considering epistemic uncertainty (the vertical dotted line represents the correct value, and the 5 and
95 percentiles are indicated with horizontal dotted lines).

For the case of the measurement Set B, the skewness and 90% confidence intervals of
the normalized EI2 and EI3 were −0.1% and −0.1% and [0.879, 1.117] and [0.884, 1.113],
respectively. In this case, both estimations exhibited the same level of uncertainty. For
the measurement Set C, the 90% confidence intervals of the normalized EI2 and EI3 were
[0.770, 1.228] and [0.782, 1.217], which were surprisingly wider than in the case of the
Set B even though the Set C contained more information than Set B. This is because of
the introduction of redundant information that may derive in some lack of consistency
between the mechanical properties of elements 1© and the observed displacement and
rotation in this part of the structure. In fact, the model to be identified assumed the same
mass per unit length all along the span, but not for the stiffness. As no error is assumed
in the mode shape measurements (only epistemic uncertainty was considered here) and
those were obtained assuming both mass and stiffness uniformly distributed along the
span (remember that the modal displacements used in the simulations are obtained with
the calibrated model), this produces an inconsistency with the introduction of additional
information in Set C. Due to the perfect symmetry and anti-symmetry for modes 1 and 2
respectively under the case of uniformly distributed mass and stiffness along the span, the
optimization process does not require information from the half-part of the span. If this
information is introduced and does not fit with a symmetrical or anti-symmetrical shape,
then the redundant information derives on difficulties in the optimization process and, at
the end, on worse (more uncertain) identified parameters.

Therefore, it seems that the best measurement set is B. Table 3 summarizes the dis-
cussed results. It is noted that the observed errors can also be affected by the unavoidable
computational inaccuracies. As seen in Table 3, the probability of over/underestimation
was similar and roughly about 50% in all the cases.

4.3.2. Aleatory Uncertainty: Measurement Errors from Sensors

This part considers the error caused by the accuracy of measurement devices, although
the effect of other factors, such as the computational error and the accuracy of the data-
extraction method are implicitly included as part of the data processing.

The error assumed for the analysis of this section adopts the values indicated in Table 4.
Following the same method as the previous section, 104 samples are generated for each set
with a frequency error level of 3%, a vertical displacement error level of 6%, and a rotation
displacement error level of 30%. Normally, the frequency error is small according to the
relevant literature [60–62], the vertical displacement error range was chosen following
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Reference [60], who identifies the first vertical displacement with accuracies of about 6%.
Given that the accuracy of rotations is lower than the accuracy of vertical displacements [63],
30% was chosen for this purpose.

Table 4. Measurement input variables.

List of Variables Sampling Size Probabilistic
Distribution 95% Confidence Interval

Main bridge
Frequencies ( fi , i = {1, 2})

104
N( fi , fi × 0.015) fi (1± 0.03)

Vertical displacements (vji) N
(
vji , vji × 0.03

)
vji (1± 0.06)

Rotation displacements (wji) N
(
wji , wji × 0.15

)
wji (1± 0.3)

The choice of the sampling size is because the number of actual optimization parame-
ters in Equation (6) is 4 when the information of two mode-shapes is used, two frequencies
and two MAC. To further check the rationale of this sample size, the MAC1 and MAC2 are
analyzed under different sample sizes and measurement sets. Figure 7 shows an example
of the corresponding ECDF under different sample sizes. It shows how the quality of the
ECDF for different sample sizes significantly improves till the case of 104. After this, there
is not a significant improvement. See how the sample size of 104 was extremely close to the
ECDF of 105 in Figure 7. The measurement Set D (Figure 8) is added to compare the effect
with three previously defined measurement sets (Figure 5).

Figure 7. ECDF of MAC2 under set C and different sample sizes.

Figure 8. Measurement set D.

Figure 9 shows the ECDF of the estimated EI2 and EI3 under the three measurement
sets considering the aleatory uncertainty of the sensor measurements. Table 5 shows
5%, 95% percentages, the bias, standard deviation, and skewness of the estimated data.
Here, again, the obtained results show that Set B is the best among the three original sets
because it presents the smallest confidence interval, which is non-skewed in the case of EI2
and slightly skewed in the case EI3 towards conservative values (i.e., underestimate the
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structural stiffness). Sets A and C exhibit comparable results in terms of confidence intervals.
However, the results yielded by Set A are clearly skewed; EI3 towards conservative values
compensated by EI2, which tends to be overestimated under this measurement set. It
is recalled that, similarly, Set B presented the most reliable results in terms of epistemic
uncertainty, whereas Set A presented the worst estimation. As in the case of epistemic
uncertainty, it seems illogical that Set C, which provides more measured data into the
system than Set B, provides worse results than Set B.

Figure 9. ECDF of estimated under different set considering aleatory uncertainty (the vertical
dotted line represents the correct value, and the 5 and 95 percentiles are indicated with horizontal
dotted lines).

Table 5. Statistical data of the estimated EI2 and EI3 under different measurement sets.

EI2 EI3

Measurement Set A B C D A B C D

p5 0.788 0.865 0.728 0.936 0.666 0.827 0.670 0.857
p95 1.313 1.092 1.292 1.060 1.336 1.169 1.352 1.165
p50 1.006 1.000 0.997 0.998 0.968 0.995 1.000 0.999

Range 0.525 0.227 0.564 0.124 0.67 0.342 0.682 0.308
Skewness 0.006 0.000 0.003 0.002 −0.032 −0.005 0.000 0.001

Mean (Bias) 1.032 1.003 0.980 0.998 0.997 1.000 1.007 0.997
Standard Deviation 0.144 0.064 0.195 0.053 0.152 0.099 0.191 0.087

Probability of
Overestimated 56.8% 50.1% 49.8% 50.2% 45.7% 49.8% 49.5% 51.2%

In Set C, more measurements corresponding to the left part of the beam are introduced.
Error level of the measurements taken from the left and right part of the beam is the same.
However, the measurement errors from the left part of the beam have a worse effect on the
observed values (corresponding to parameters from the right part of the beam) than the
measurement errors from the right part of the beam. In this sense, on the one hand, adding
more information should improve the results but on the other hand the errors of this new
information are impacting much more the variability and values of the targeted parameters,
in such a way that the overall result is worse. This is an interesting and non-intuitive result,
as it can be thought that, with the same error level the more measurements, the better and
it is not always the case. It is always interesting to add more measurement points, but in
the vicinity of the structural part whose mechanical properties are to be identified. This
aligns with the fact that where new information without error is introduced (Set D) results
from Set B are improved. The most important conclusion of this example is that when the
model error is supposed to be low, to decide the sensor locations and, therefore, where
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to obtain information, it should be taken into account not only the measurement number,
but also the structural part whose properties need to be identified. Only in this way, the
optimum sensor deployment will be achieved in order to obtain the maximum information
(not being redundant) with the minimum uncertainty.

4.3.3. Combination of Epistemic Uncertainty and Aleatory Uncertainty

The combination of the two types of errors, i.e., input-parameter error and measure-
ment error, are considered and the three measurement sets shown in Figure 5. The total
calculation sample was 104 for each set by the fast optimal Latin hypercube (FOLH) sam-
pling to produce the independent and representative samples and ensure the accuracy of
MAC. The ECDF under this combination is shown in Figure 10, and the related numerical
information is illustrated in Table 6.

Figure 10. ECDF of estimated under different set considering aleatory and epistemic uncertainties (the vertical dotted line
represents the correct value, and the 5 and 95 percentiles are indicated with horizontal dotted lines).

Table 6. Statistical data of the estimated EI2 and EI3 under different measurement sets.

EI2 EI3

Measurement Set A B C A B C

p5 0.663 0.754 0.860 0.709 0.742 0.911
p95 1.250 1.320 1.080 1.295 1.304 1.094
p50 0.906 1.000 1.013 0.9691 0.9946 1.050

Range 0.587 0.566 0.222 0.586 0.562 0.183
Skewness −0.094 0.000 0.013 −0.031 −0.005 0.050

Mean (Bias) 0.915 1.032 1.006 0.979 1.003 1.042
Standard Deviation 0.168 0.158 0.079 0.172 0.152 0.072

Probability of
Overestimated 26.6% 49.9% 67.8% 42.8% 42.8% 81.6%

When both aleatory and epistemic uncertainties were considered, the best measure-
ment set in terms of the uncertainty range was Set C, which includes all the measurement
information, instead of Set B that was identified as the best measurement set when con-
sidered the uncertainties individually. However, the results from Set C produce some
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skewness compared with the corresponding value in Tables 4 and 5, especially for EI3,
where an overestimation probability of 81.6% is observed. While in terms of structural
safety, compared with the huge overestimation of Set C, the results by Set A and Set B
tended to be safer with lower percentage of overestimation, the former one performed
better on the range and the latter one on the standard deviation. Set B results in the least
skewed estimation when compared to the other two sets, while the values of the 5% and
95% percentiles were worse than the ones under Set C. Compared to Figures 6 and 9, the
best measurement set in terms of accuracy was Set C rather than Set B, which highlighted
the importance of understanding the error source when trying to improve the quality of
the estimation. When both model and measurement errors play an important role in the
identification process, introducing as many measurements as possible is the best strategy
because the information provided by them was not redundant in this case to improve
the estimated accuracy. The result for Set C was slightly more biased (compared with
the normalized value 1), however, with less uncertainty, as clearly shown by the rows of
standard deviation and probability of overestimation in Table 6.

As a summary, it can be concluded that both error sources, epistemic and measurement,
interacted in a non-linear manner due to the dynamic effects, in such a way that from
the results of their individual effects it cannot be concluded what will happen when both
sources act in a combined manner. Hence, to study this, it is necessary to tackle both effects
jointly and not in a disaggregate manner.

5. Discussion

Hollandse bridge was studied in the InfraWatch project [49–51]. After much effort
in collecting and analyzing data, no conclusive results were obtained in the structural
identification process due to the large level of uncertainty. This fact has motivated the
present work, because it is important to know in advance if the uncertainty related to a
given SSI approach when applied to a specific structural setup is acceptable or not in real
practice. With proper sensor placement, the 90% confidence interval range of the estimated
stiffness was found as small as 0.222 for EI2 and 0.183 for EI3 when considering both
sources of uncertainty (Table 6). This means that the estimated stiffness presents around
10% of uncertainty to each direction given that the range was sensibly unbiased. This
uncertainty range seems very reasonable if we consider the high level of uncertainty of the
input variables (e.g., 50% in the case of the Young modulus or 30% in the rotation of the
node of mode shape).

To assess to which extent the dynamic COM provides acceptable results in terms of
uncertainty when compared with other SSI methods in the literature, the example proposed
by [4], and further investigated in [11] was used (see Figure 11). This is a reinforced concrete
beam with a length of 6 m divided into 10 substructures with a uniform stiffness value, as
shown in Figure 11. The measured transverse mode shape displacements were observed at
equidistant positions along the beam at 31 points. The resulting mode shape measurements
are shown in Figure 12 with their corresponding natural frequencies. The stiffness of
these 10 elements given in Reference [4] were taken as the real values for this beam. The
considered measurement set includes the frequencies and vertical displacement at the
31 points given by the same reference. Regarding the errors considered, to introduce the
epistemic uncertainty, given that it is a free-free vibration beam with unknown stiffness,
only the input parameter m is considered. It takes the common density of reinforced
concrete ρ = 2551 kg/m3 (probabilistic distribution N(1, 1 ∗ 0.05), the same as in Table 2).
The aleatory uncertainty was calculated through the difference between the experimental
bending modes and frequencies and the corresponding theoretical data at each of these
31 points. The average values of the obtained uncertainty are given in Table 7.
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Figure 11. (a) Sketch of an reinforced concrete (RC) beam showing 10 sub-elements with 10 different
bending stiffness; (b) the cross section of the RC beam [4].

Figure 12. (a) The first experimental bending mode and its frequency; (b) the second experimental
bending mode and its frequency; (c) the third experimental bending mode and its frequency; (d) the
fourth experimental bending mode and its frequency [11].

Table 7. Measurement input variables (averaged values for the 31 measured points).

List of Variables ProbabilisticDistribution 95% Confidence Interval

Structure in Figure 11
Frequencies ( fi, i = {1, 4}) N( fi, fi × 0.005) fi (1± 0.01)
Vertical displacements (vji) N

(
vji, vji × 0.03

)
vji (1± 0.06)

Considering the epistemic and aleatory uncertainty together, the sample size was
determined based on the ECDF of MACi, as shown in Figure 13. The MACi distributions
obtained for sample sizes of 103 and 104 were very close to each other, which implies that a
sample size of 103 was enough to guarantee the accuracy of MACi. Figure 14 shows the
estimated unknown stiffnesses EIi, i = 1 ∼ 10 and their standard deviation. The COM
tended to slightly underestimate the mean values of the stiffness when all mode-shape
information was used. The stiffness range associated with the 99% confidence interval
obtained by COM was shown in red color in Figure 15, in comparison with the results
reported by Simoen when using a Bayesian approach for the SSI (grey shadow). The
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real values are indicated with a thick black line. For all the elements, COM provides less
uncertain estimations. All in all, this figure shows how the UQ associated with COM
provides reasonable and acceptable results, and these results were slightly better than the
Bayesian approach. Figure 16 depicts the distribution of Young’s moduli E2 and E8 by the
UQ analysis of COM (red line) and the distributions obtained by the Bayesian approach
(grey line). It is shown that the proposed approach did not require a prior joint PDF to
obtain an accurate stiffness probability distribution.

Figure 13. ECDF of MAC1 under different sample sizes.

Figure 14. Uncertainty of EIi, i = 1 ∼ 10 given by the mean value and the standard deviation.
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Figure 15. The stiffness range associated with the 99% confidence interval along the beam (the grey
shadow represents the result by Bayesian analysis given in [4], the red line represents the range
obtained by COM).

Figure 16. Uncertainty distribution of Young’s modulus E2 and E8, prior and posterior PDF (grey
line) of element Young’s modulus according to [4], the red PDF by COM UQ analysis.

Even when the obtained uncertainty is acceptable, it is always desirable to minimize
such an uncertainty. The analysis of the two sources of uncertainty takes relevance in
this context. For instance, it is appreciated that there was no bias and skewness in Table 3
(epistemic uncertainty), whereas obvious bias and skewness is presented in Tables 5 and 6,
which mean these were caused by the sensor error. Thus, increasing the sensor accuracy
might reduce the bias and skewness effects. Besides, compared to the estimated data
of Sets A, B and C in Tables 3, 5 and 6, the optimal sensor set shifts from Set B under a
single source of uncertainty to Set C when considering both uncertainties. This means
that selecting the optimal placement of the sensor sets is also an effective method to lower
uncertainty of the output in addition to increase the sensor accuracy. However, because
the aleatory uncertainty is hard to remove [18], efforts must be made in minimizing the



Sensors 2021, 21, 2918 18 of 21

epistemic uncertainty involved in the problem. The more information about the structural
setup, the closer the UQ of the SSI will be to the analysis of Section 4.3.2.

6. Conclusions

This paper conducted the literature review of UQ analysis to find out the disadvan-
tages of existing methods. The proposed COM method was used to perform the UQ
analysis, making up for some drawbacks appropriately. In addition to introducing the
basic principles of COM, two sources of uncertainty, that is, epistemic and aleatory, were
studied separately and also together to better understand the role of modeling error and
measurement error when dynamic COM was used. The following conclusions could
be drawn:

1. The analysis of the error propagation in the case of the Hollandse bridge made evident
that when the epistemic uncertainty was low (i.e., when very accurate models were
used in the identification process), the sensor deployment should take into account
not only the measurement accuracy but also the location of unknown structural part.
Only in this way, the optimum sensor placement will be achieved in order to obtain
the maximum of information (not being redundant) with the minimum uncertainty.
Feeding the model with redundant information (if, for instance, the location of sensors
is not conveniently chosen) could produce worse results, although more measurement
points (more sensors) were deployed.

2. When both epistemic and aleatory uncertainties were relevant, the error propagation
decreased with the increase of the measurement points. In this case, the results show
that Set B, which includes two additional sensors, was biased to the overestimation
side when compared to Set A. If the objective of the identification process was to
detect damage, as damage will produce a reduction of the stiffness (due to cracking,
for instance), it will be a better solution of the use of fewer sensors, as the trend to
the overestimation of the stiffness in the identified elements could hide the existence
of damage. This appears as a contradictory conclusion, where the use of an increas-
ing number of sensors derives on decreasing the potentiality of damage detection.
However, this result was well in line with the result obtained in the case when only
aleatory uncertainty was considered and stated as Conclusion 1, where the addition of
more data measurements (Set C compared to Set B) resulted in a worse identification
due to the redundancy in the information and the increase in the global measurement
error introduced by the additional measurements.

3. The analysis of Hollandse bridge shows that the best measurement set will change
from Set B to Set C in terms of range depending whether the epistemic uncertainty was
involved or not. Therefore, before the field test execution, when deciding the optimal
sensor deployment, it is important to consider the effect of epistemic uncertainty in
the sense of trying to gather information from the test that is compatible and non-
contradictory with the proposed model. The calculated mode shapes can help on
this objective.

4. More accurate estimation of both aleatory and epistemic uncertainty can be obtained
with more information about the distribution of the input variables, such as E, m, I
(Table 2) and fi, vji, wji (Table 4).

5. The correct performance of the UQ analysis by COM was verified by an example
where the results from the Bayesian method were compared. The performance of
the proposed approach was better despite the modeling error in the mass of the
structure being considered. The results show the robustness of the method in terms
of propagated uncertainty.
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