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Abstract: Instrumental insemination of Apis mellifera L. queens is a widely employed technique used
in honeybee breeding that enables the effective control of mating. However, drone semen represents a
potential source of honeybee viruses. In this study, 43 semen doses collected from apparently healthy
drones, and consequently used in instrumental insemination, were analysed using PCR or RT-PCR to
detect the presence of viral genome of 11 honeybee viruses. In 91% of samples, viral infection was
detected. The survey revealed genomes of five viruses, namely Deformed wing virus (DWV), Acute
bee paralysis virus (ABPV), Black queen cell virus (BQCV), Sacbrood virus (SBV), and A. mellifera
filamentous virus (AmFV) in 84%, 19%, 14%, 2%, and 67% of samples, respectively. Single infection
(30% of samples) as well as multiple infection (61% of samples) of two, three or four pathogens
were also evaluated. To the best of our knowledge, this is the first study describing the presence
of the BQCV and SBV genome sequence in drone ejaculate. Phylogenetic analysis of BQCV partial
helicase gene sequence revealed the high similarity of nucleotide sequence of described Czech strains,
which varied from 91.4% to 99.6%. The findings of our study indicate the possibility of venereal
transmission of BQCV and SBV.

Keywords: honeybees; ejaculate; instrumental insemination; virus detection; BQCV; SBV

1. Introduction

Instrumental insemination of Apis mellifera queens started in the 1920s [1], and was first described
in the 1940s [2]. It has been widely used in honeybee breeding programs and represents a primary
method of controlling mating where there is no other option to effectively isolate a breeding
population [3]. As honeybee queens mate in flights with drones originating from colonies up to
15 km distant [4], the use of geographically isolated mating stations usually located in small islands or
confined valleys is the second and the last method for honeybee breeding [4,5]. Naturally, honeybee
queens mate with numerous drones (12–14 on average) coming from various genetic sources, which
is generally considered to be a means to increase colony fitness [6–9]. However, techniques enabling
the mixing of large sperm volumes to inseminate the queens have been described [10,11]. Another
significant advantage of instrumental insemination is the ability to not only store but also ship semen
instead of live bees, which minimizes the risk of spreading pests and diseases threatening the health and
vigour of honeybee colonies [1]. Nevertheless, honeybee viruses in semen have been recognized among
the risk factors in the trade of honeybees and their products, as collected semen and consequently
semen trade could be responsible for virus spreading [12]. Actually, honeybee viruses have been
identified as crucial contributors to huge losses of managed honeybees, which have been reported
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in the recent past worldwide [13]. Moreover, queen loss has been mentioned as the second most
important factor in colony collapses in Europe [14]. Queen health is a crucial factor affecting the
survival of a colony. Despite queens being considered less susceptible to infection than workers,
several viruses cause problems for queen bees [15]. Regardless of the fact that the knowledge of these
viruses grows every year, little is known about the transmission of viruses to the honeybee queen
during instrumental insemination. However, the presence of several viruses in ejaculate, a prerequisite
of virus transmission, has been described [16–19]. Beekeeping represents one of the basic fields of
agriculture. In the Czech Republic, 56,921 beekeepers keeping 662,523 colonies were registered in
2016. Moreover, in the Czech territory there were 67 queen bee producers rearing 33,443 queen bees
annually [20]. Instrumental insemination is employed in approximately 2-5% of all produced queens
in the Czech queen-rearing farms [21]. However, viral contamination of the used ejaculate has not
been tested yet. Therefore, the presence of viral nucleic acids of 11 honeybee viruses was surveyed in
this study.

2. Materials and Methods

2.1. Sample Collection and Handling

In 2016 and 2017, a total of 43 pooled semen doses of Austrian (2), Czech (33), Hungarian (3), and
German (5) origin were collected. Each dose contained ejaculate obtained from 10 drones per colony.
Active drones aged two weeks were collected from flight cages placed in apparently healthy colonies
showing no signs of overt viral infection. Moreover, the sampled colonies were regularly tested for the
presence of Paenibacillus larvae, the causative agent of American foulbrood (all negative); the presence
of ectoparazitic mite Varroa destructor was also monitored. Colony conditions were evaluated by the
beekeeper based on direct observation. All semen doses included in the survey were prepared using
a protocol for instrumental insemination [21]. Briefly, ejaculate was taken directly from the drone’s
penis. Ejaculation was induced by pressing on the thorax and semen was collected in a disposable
glass capillary connected with a vacuum device. Semen doses were stored at room temperature until
use. The period of storage of the ejaculate at room temperature typically ranges from 5 to 36 h. In rare
cases (e.g., parental combinations from multiple sites), ejaculate can be kept for up to five days, but
longer storage results in a decrease in sperm counts in the spermatheca of inseminated queens. Prior
to instrumental insemination, 3 to 5 µL of each semen dose were sampled and stored at −80 ◦C until
nucleic acid extraction.

2.2. Nucleic Acid Preparation

Both DNA and RNA were extracted simultaneously using magnetic beads. Chemagic Viral
DNA/RNA Kit (Perkin Elmer Chemagen, Baesweiler Germany) was employed according to the
slightly modified manufacturer’s protocol. In short, immediately before nucleic acid extraction,
the semen samples were homogenised directly in a lysis buffer supplied with the extraction kit in
the presence of Garnet Beads 0.70 mm (Qiagen, Hilden, Germany) by vortexing (3500 rpm/2 min).
Homogenates were centrifugated for 1 min at 13,000 rpm and 200 µL of the supernatants were mixed
with 30 µL of magnetic beads. Subsequently, the manufacturer’s protocol was continued. The obtained
nucleic acids were stored at −80 ◦C until further use.

2.3. Molecular Detection of Viruses and Sequence Analysis

For the detection of RNA viruses, a random primed reverse transcription (RT) was carried out with
the use of ProtoScript® II First Strand cDNA Synthesis Kit (New England Biolabs, Ipswich, MA, USA)
according to the manufacturer’s protocol. Target viral sequences were detected by PCR with specific
primers employing Aptamer Hot Start Master Mix (Top-Bio, Prague, Czech Republic. The primers
were chosen on the basis of previous virus survey in the Czech apiaries. The used primers [16,22–33],
sizes of the expected amplicons, and references are listed in Table S1. The presence of viral RNA
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or DNA of the following honeybee viruses was surveyed: Deformed wing virus A and B (DWV),
Acute bee paralysis virus (ABPV), Israeli acute paralysis virus (IAPV), Kashmir bee virus (KBV), Black
queen cell virus (BQCV), Sacbrood virus (SBV), Varroa destructor macula-like virus (VdMLV), Big Sioux
River virus (BSRV), Lake Sinai virus (LSV), Chronic bee paralysis virus (CBPV), and Apis mellifera
filamentous virus (AmFV). The specificity of detection primers was verified on our own field isolates
of honeybee viruses. The PCR products were examined by electrophoreses in a 1.5% agarose gel
stained with Midori Green stain (Nippon Genetics Europe, Dueren, Germany) and visualized by
ultraviolet transillumination. Selected PCR products of employed diagnostic assays were submitted
to sequencing (Eurofins, Ebersberg, Germany) and the obtained sequences were analysed with the
use of MEGA version 7 [34]. The dendrograms were prepared with the neighbour-joining method
and the evolutionary distances were calculated with the use of the Kimura 2-parameter model [35].
The BQCV sequences described in this study were submitted to the GenBank under accession numbers
MG584538, MH992095, MH992096, and MH992097 (strains Dol826, Dol35, Dol45, and Dol47). Likewise,
phylogenetic analyses of the only SBV strain (GenBank accession number MK550481) detected in a
drone ejaculate was conducted and a dendrogram was prepared with the use of the same tools as in
BQCV analyses. Accession numbers of the described Czech strains as well as other analysed strains of
BQCV and SBV are listed in Table S2.

3. Results

In total, 43 pooled drone semen samples were surveyed for the presence of 11 honeybee viruses.
The screening revealed genomes of five viruses, namely DWV, ABPV, BQCV, SBV, and AmFV. Within
the detected viral species, DWV and AmFV were discovered as the most prevalent viruses in the
analysed samples. Viral infection was detected in 91% (n = 39/43) of samples. Single infection (30%
of samples; n = 13/43) as well as multiple infection (61% of samples; n = 26/43) of two, three or four
pathogens were also evaluated. The results including pathogen combinations are summarized in
Figure 1. Only 9% (n = 4/43) of samples were free of all tested viruses. Detailed description of detected
viral pathogens in individual samples and summary of multiple infections are described in Tables S3
and S4.
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The obtained amplified sequences of BQCV partial helicase gene (between nt positions 2679 and
2961 referring to the complete genome sequence KY243932) were compared to the available BQCV
sequences (see Table S2). Phylogenetic analysis revealed high similarity of nucleotide sequence of the
described Czech strains, which varied from 91.4% to 99.6%. Constructed phylogenetic tree (Figure 2A)
showed that the Czech strains Dol826, Dol35, and Dol47 were closely clustered with the British BQCV
strains R4LY62 and R4LY65 (98.6–99.6% of nt similarity). The last Czech strain Dol45 created a separate
branch (92.3–92.7% similarity with both British strains). Another available Czech sequence of BQCV
(strain PP) showed 90.1–93.6% similarity with our described strains. The most distant BQCV strain
15A from Turkey demonstrated nt similarity rate of 73.4–79.0%. Likewise, to verify SBV detection, the
obtained amplicon was sequenced and the occurrence of SBV genome in the drone ejaculate sample
51/17 (2.3%, n = 1/43) was confirmed). This sequence of SBV partial polyprotein gene (nt position
240–668 referring to the complete genome sequence HM237361) was aligned with all partial European
sequences of SBV and also with several Asian complete sequences of SBV available in the GenBank (see
Table S2). The phylogenetic analysis (Figure 2B) showed very high similarity between all European
SBV strains in the analysed partial sequence (99.1–99.8% similarity on nucleotide level).
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Figure 2. (A) Phylogenetic tree based on BQCV partial helicase gene sequences (between nt positions 2679
and 2961 referring to the complete genome sequence KY243932). The Czech BQCV strains described in
this study are marked with a black dot (•). (B) Phylogenetic tree based on partial SBV polyprotein gene
sequences (between nt 240 and 668 referring to the complete genome sequence HM237361). The Czech SBV
strain from this study is marked with a black square (�). The evolutionary distances in both trees are in
the units of the number of base substitutions per site. The trees were generated with the neighbour-joining
method using MEGA version 7. Bootstrap values (1000 replicates) below 70% were hidden.
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4. Discussion

Only limited data exist on the effect of stressors on health and quality of reproductive casts of
honeybees and the available studies are historically focused on queens. Currently, drone health and
quality are presented as vital aspects of reproduction management [36]. However, the virological
status of drones is not usually monitored. Honeybee viruses are transmitted vertically from a
mother to her offspring, or horizontally among individuals of the same generation. In eusocial
insects, horizontal transmission can occur in multiple ways, either directly through contact between
individuals, contaminated colony food, and infected drone sperm (i.e., venereal transmission), or
indirectly through biological vectors such as the parasitic mite Varroa destructor [37]. In the present
study, we demonstrate the occurrence of viral genome of DWV, ABPV, BQCV, SBV, and AmFV in 91%
(n = 39/43) of the ejaculate doses tested. Similarly, sequences of viral nucleic acid of DWV, ABPV,
IAPV, and AmFV were detected in the semen of apparently healthy drones [16–19], which implies the
possibility of venereal transmission. Furthermore, sexual transmission of DWV by infected drones was
clearly demonstrated [26,38], and the virus can be consequently transovarially transmitted through
infected queen gonads to eggs [38]. Both natural mating and artificial insemination were found to be
effective transmission routes of DWV [38,39]. Furthermore, the importance of venereal transmission
during natural mating or instrumental insemination is supported by the detection of several honeybee
viruses in fertilised queen eggs [40] when the presence of DWV, ABPV, and BQCV in 40%, 14%,
and 5% of eggs, respectively, was described. On the contrary, BQCV (+ssRNA virus within family
Dicistroviridae), one of the honeybee viruses most often detected with laboratory techniques in adult
honeybees worldwide [41], has not been described in ejaculate yet; and venereal transmission was not
ascertained. However, the vertical transmission of the virus from an infected queen to her progeny
was demonstrated [40]. The presence of BQCV was confirmed in colony food, such as pollen and
honey, as well as in the gut, which provides an evidence for the horizontal transmission of the virus via
food-borne infection [37]. Although BQCV is most often isolated from asymptomatic colonies, overt
infection causes deaths of queen pupae and pre-pupae, which are being found decomposed in patchily
black cells [42]. BQCV infection was suggested to be associated with colony weakening [43]. However,
it is deleterious, especially on queen-rearing farms [44]. Thus, the detection of BQCV genome sequences
in 13.9% (n = 5/43) of semen doses obtained from apparently healthy drones and subsequent use of the
sperm for instrumental insemination of a bee queen could imply future risk to the colony health via
sold queen. However, in order to assess the effect of insemination with the contaminated ejaculate, the
life story of these colonies will have to be monitored. Interestingly, one ejaculate sample was found to
be positive for SBV, which is a causative agent of sacbrood disease. The virus is transmitted horizontally
to young larvae through food contaminated by glandular secretion of latently infected nurse bees.
The highest prevalence of sacbrood disease is observed during early spring, probably due to cold stress
induced by fluctuating temperatures [45]. Although SBV is frequently detected in managed European
honeybee colonies [46–51], only one of 43 ejaculate samples was tested positive for this virus. Even
though infection is lethal for drone and worker brood, infected colonies usually survive, and thus
SBV poses only a moderate threat to managed European honeybees [13]. On the other hand, SBV has
been recognized as a dangerous pathogen of the Asian honeybee (Apis cerana) capable of causing huge
losses in the Asian apiculture industry [45]. SBV was also found to be infecting adult queens; however,
the effect of the infection on behaviour and physiology of queens was not clarified [52]. Since SBV may
primarily be evolutionary adapted to the horizontal transmission route [53], the impact of venereal
transmission of SBV is probably negligible. Among 43 tested samples, only four samples were free of
all surveyed viruses. Based on the available data, we were not able to identify any differences between
infected and those virus-free colonies (two Austrian, one German, and one Czech origin). These results
are, however, in accordance with previously published data describing only a minor fraction of the
honeybee populations free of persistent virus throughout the year [46–48].

In conclusion, we demonstrated the presence of BQCV and SBV partial genome sequences in
semen doses used in instrumental insemination of honeybee queens. Thus, our results indicate the
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possibility of venereal transmission of those two important honeybee pathogens. The use of ejaculate
obtained from infected drones could represent an effective model of BQCV’s transmission and the
virological analysis of the collected semen testing could help to maintain the high quality of produced
queen bees.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/4/306/s1,
Table S1: List of PCR primers used in the study. Table S2: Accession numbers of BQCV strains used in phylogenetic
analysis of partial helicase gene segment. Table S3: List and description of samples and detection of viral sequences
in sperm used for insemination. Table S4: The distribution of honeybee viruses in single or mixed infections in
drone semen samples.
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20. Krejčík, J. Situational and Prospective Report of a Honey Bee. Ministry of Agriculture of the Czech Republic,
2017; In Czech. Available online: http://eagri.cz/public/web/mze/lesy/vcelarstvi/situacni-a-vyhledove-
zpravy-vcely/vcely-11--2017.html (accessed on 20 September 2018).
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